/*
* QEMU i8255x (PRO100) emulation
*
* Copyright (C) 2006-2011 Stefan Weil
*
* Portions of the code are copies from grub / etherboot eepro100.c
* and linux e100.c.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) version 3 or any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* Tested features (i82559):
* PXE boot (i386 guest, i386 / mips / mipsel / ppc host) ok
* Linux networking (i386) ok
*
* Untested:
* Windows networking
*
* References:
*
* Intel 8255x 10/100 Mbps Ethernet Controller Family
* Open Source Software Developer Manual
*
* TODO:
* * PHY emulation should be separated from nic emulation.
* Most nic emulations could share the same phy code.
* * i82550 is untested. It is programmed like the i82559.
* * i82562 is untested. It is programmed like the i82559.
* * Power management (i82558 and later) is not implemented.
* * Wake-on-LAN is not implemented.
*/
#include /* offsetof */
#include "hw.h"
#include "pci.h"
#include "net.h"
#include "eeprom93xx.h"
#include "sysemu.h"
/* QEMU sends frames smaller than 60 bytes to ethernet nics.
* Such frames are rejected by real nics and their emulations.
* To avoid this behaviour, other nic emulations pad received
* frames. The following definition enables this padding for
* eepro100, too. We keep the define around in case it might
* become useful the future if the core networking is ever
* changed to pad short packets itself. */
#define CONFIG_PAD_RECEIVED_FRAMES
#define KiB 1024
/* Debug EEPRO100 card. */
#if 0
# define DEBUG_EEPRO100
#endif
#ifdef DEBUG_EEPRO100
#define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__)
#else
#define logout(fmt, ...) ((void)0)
#endif
/* Set flags to 0 to disable debug output. */
#define INT 1 /* interrupt related actions */
#define MDI 1 /* mdi related actions */
#define OTHER 1
#define RXTX 1
#define EEPROM 1 /* eeprom related actions */
#define TRACE(flag, command) ((flag) ? (command) : (void)0)
#define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n")
#define MAX_ETH_FRAME_SIZE 1514
/* This driver supports several different devices which are declared here. */
#define i82550 0x82550
#define i82551 0x82551
#define i82557A 0x82557a
#define i82557B 0x82557b
#define i82557C 0x82557c
#define i82558A 0x82558a
#define i82558B 0x82558b
#define i82559A 0x82559a
#define i82559B 0x82559b
#define i82559C 0x82559c
#define i82559ER 0x82559e
#define i82562 0x82562
#define i82801 0x82801
/* Use 64 word EEPROM. TODO: could be a runtime option. */
#define EEPROM_SIZE 64
#define PCI_MEM_SIZE (4 * KiB)
#define PCI_IO_SIZE 64
#define PCI_FLASH_SIZE (128 * KiB)
#define BIT(n) (1 << (n))
#define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
/* The SCB accepts the following controls for the Tx and Rx units: */
#define CU_NOP 0x0000 /* No operation. */
#define CU_START 0x0010 /* CU start. */
#define CU_RESUME 0x0020 /* CU resume. */
#define CU_STATSADDR 0x0040 /* Load dump counters address. */
#define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */
#define CU_CMD_BASE 0x0060 /* Load CU base address. */
#define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */
#define CU_SRESUME 0x00a0 /* CU static resume. */
#define RU_NOP 0x0000
#define RX_START 0x0001
#define RX_RESUME 0x0002
#define RU_ABORT 0x0004
#define RX_ADDR_LOAD 0x0006
#define RX_RESUMENR 0x0007
#define INT_MASK 0x0100
#define DRVR_INT 0x0200 /* Driver generated interrupt. */
typedef struct {
PCIDeviceInfo pci;
uint32_t device;
uint8_t stats_size;
bool has_extended_tcb_support;
bool power_management;
} E100PCIDeviceInfo;
/* Offsets to the various registers.
All accesses need not be longword aligned. */
typedef enum {
SCBStatus = 0, /* Status Word. */
SCBAck = 1,
SCBCmd = 2, /* Rx/Command Unit command and status. */
SCBIntmask = 3,
SCBPointer = 4, /* General purpose pointer. */
SCBPort = 8, /* Misc. commands and operands. */
SCBflash = 12, /* Flash memory control. */
SCBeeprom = 14, /* EEPROM control. */
SCBCtrlMDI = 16, /* MDI interface control. */
SCBEarlyRx = 20, /* Early receive byte count. */
SCBFlow = 24, /* Flow Control. */
SCBpmdr = 27, /* Power Management Driver. */
SCBgctrl = 28, /* General Control. */
SCBgstat = 29, /* General Status. */
} E100RegisterOffset;
/* A speedo3 transmit buffer descriptor with two buffers... */
typedef struct {
uint16_t status;
uint16_t command;
uint32_t link; /* void * */
uint32_t tbd_array_addr; /* transmit buffer descriptor array address. */
uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */
uint8_t tx_threshold; /* transmit threshold */
uint8_t tbd_count; /* TBD number */
#if 0
/* This constitutes two "TBD" entries: hdr and data */
uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */
int32_t tx_buf_size0; /* Length of Tx hdr. */
uint32_t tx_buf_addr1; /* void *, data to be transmitted. */
int32_t tx_buf_size1; /* Length of Tx data. */
#endif
} eepro100_tx_t;
/* Receive frame descriptor. */
typedef struct {
int16_t status;
uint16_t command;
uint32_t link; /* struct RxFD * */
uint32_t rx_buf_addr; /* void * */
uint16_t count;
uint16_t size;
/* Ethernet frame data follows. */
} eepro100_rx_t;
typedef enum {
COMMAND_EL = BIT(15),
COMMAND_S = BIT(14),
COMMAND_I = BIT(13),
COMMAND_NC = BIT(4),
COMMAND_SF = BIT(3),
COMMAND_CMD = BITS(2, 0),
} scb_command_bit;
typedef enum {
STATUS_C = BIT(15),
STATUS_OK = BIT(13),
} scb_status_bit;
typedef struct {
uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
tx_multiple_collisions, tx_total_collisions;
uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
rx_short_frame_errors;
uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
uint16_t xmt_tco_frames, rcv_tco_frames;
/* TODO: i82559 has six reserved statistics but a total of 24 dwords. */
uint32_t reserved[4];
} eepro100_stats_t;
typedef enum {
cu_idle = 0,
cu_suspended = 1,
cu_active = 2,
cu_lpq_active = 2,
cu_hqp_active = 3
} cu_state_t;
typedef enum {
ru_idle = 0,
ru_suspended = 1,
ru_no_resources = 2,
ru_ready = 4
} ru_state_t;
typedef struct {
PCIDevice dev;
/* Hash register (multicast mask array, multiple individual addresses). */
uint8_t mult[8];
int mmio_index;
NICState *nic;
NICConf conf;
uint8_t scb_stat; /* SCB stat/ack byte */
uint8_t int_stat; /* PCI interrupt status */
/* region must not be saved by nic_save. */
uint32_t region1; /* PCI region 1 address */
uint16_t mdimem[32];
eeprom_t *eeprom;
uint32_t device; /* device variant */
/* (cu_base + cu_offset) address the next command block in the command block list. */
uint32_t cu_base; /* CU base address */
uint32_t cu_offset; /* CU address offset */
/* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
uint32_t ru_base; /* RU base address */
uint32_t ru_offset; /* RU address offset */
uint32_t statsaddr; /* pointer to eepro100_stats_t */
/* Temporary status information (no need to save these values),
* used while processing CU commands. */
eepro100_tx_t tx; /* transmit buffer descriptor */
uint32_t cb_address; /* = cu_base + cu_offset */
/* Statistical counters. Also used for wake-up packet (i82559). */
eepro100_stats_t statistics;
/* Data in mem is always in the byte order of the controller (le).
* It must be dword aligned to allow direct access to 32 bit values. */
uint8_t mem[PCI_MEM_SIZE] __attribute__((aligned(8)));;
/* Configuration bytes. */
uint8_t configuration[22];
/* vmstate for each particular nic */
VMStateDescription *vmstate;
/* Quasi static device properties (no need to save them). */
uint16_t stats_size;
bool has_extended_tcb_support;
} EEPRO100State;
/* Word indices in EEPROM. */
typedef enum {
EEPROM_CNFG_MDIX = 0x03,
EEPROM_ID = 0x05,
EEPROM_PHY_ID = 0x06,
EEPROM_VENDOR_ID = 0x0c,
EEPROM_CONFIG_ASF = 0x0d,
EEPROM_DEVICE_ID = 0x23,
EEPROM_SMBUS_ADDR = 0x90,
} EEPROMOffset;
/* Bit values for EEPROM ID word. */
typedef enum {
EEPROM_ID_MDM = BIT(0), /* Modem */
EEPROM_ID_STB = BIT(1), /* Standby Enable */
EEPROM_ID_WMR = BIT(2), /* ??? */
EEPROM_ID_WOL = BIT(5), /* Wake on LAN */
EEPROM_ID_DPD = BIT(6), /* Deep Power Down */
EEPROM_ID_ALT = BIT(7), /* */
/* BITS(10, 8) device revision */
EEPROM_ID_BD = BIT(11), /* boot disable */
EEPROM_ID_ID = BIT(13), /* id bit */
/* BITS(15, 14) signature */
EEPROM_ID_VALID = BIT(14), /* signature for valid eeprom */
} eeprom_id_bit;
/* Default values for MDI (PHY) registers */
static const uint16_t eepro100_mdi_default[] = {
/* MDI Registers 0 - 6, 7 */
0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
/* MDI Registers 8 - 15 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* MDI Registers 16 - 31 */
0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
};
/* Readonly mask for MDI (PHY) registers */
static const uint16_t eepro100_mdi_mask[] = {
0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
};
/* Read a 16 bit little endian value from physical memory. */
static uint16_t e100_ldw_le_phys(target_phys_addr_t addr)
{
/* Load 16 bit (little endian) word from emulated hardware. */
uint16_t val;
cpu_physical_memory_read(addr, &val, sizeof(val));
return le16_to_cpu(val);
}
/* Read a 32 bit little endian value from physical memory. */
static uint32_t e100_ldl_le_phys(target_phys_addr_t addr)
{
/* Load 32 bit (little endian) word from emulated hardware. */
uint32_t val;
cpu_physical_memory_read(addr, &val, sizeof(val));
return le32_to_cpu(val);
}
/* Write a 16 bit little endian value to physical memory. */
static void e100_stw_le_phys(target_phys_addr_t addr, uint16_t val)
{
val = cpu_to_le16(val);
cpu_physical_memory_write(addr, &val, sizeof(val));
}
/* Write a 32 bit little endian value to physical memory. */
static void e100_stl_le_phys(target_phys_addr_t addr, uint32_t val)
{
val = cpu_to_le32(val);
cpu_physical_memory_write(addr, &val, sizeof(val));
}
#define POLYNOMIAL 0x04c11db6
/* From FreeBSD */
/* XXX: optimize */
static unsigned compute_mcast_idx(const uint8_t * ep)
{
uint32_t crc;
int carry, i, j;
uint8_t b;
crc = 0xffffffff;
for (i = 0; i < 6; i++) {
b = *ep++;
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
crc <<= 1;
b >>= 1;
if (carry) {
crc = ((crc ^ POLYNOMIAL) | carry);
}
}
}
return (crc & BITS(7, 2)) >> 2;
}
/* Read a 16 bit control/status (CSR) register. */
static uint16_t e100_read_reg2(EEPRO100State *s, E100RegisterOffset addr)
{
assert(!((uintptr_t)&s->mem[addr] & 1));
return le16_to_cpup((uint16_t *)&s->mem[addr]);
}
/* Read a 32 bit control/status (CSR) register. */
static uint32_t e100_read_reg4(EEPRO100State *s, E100RegisterOffset addr)
{
assert(!((uintptr_t)&s->mem[addr] & 3));
return le32_to_cpup((uint32_t *)&s->mem[addr]);
}
/* Write a 16 bit control/status (CSR) register. */
static void e100_write_reg2(EEPRO100State *s, E100RegisterOffset addr,
uint16_t val)
{
assert(!((uintptr_t)&s->mem[addr] & 1));
cpu_to_le16w((uint16_t *)&s->mem[addr], val);
}
/* Read a 32 bit control/status (CSR) register. */
static void e100_write_reg4(EEPRO100State *s, E100RegisterOffset addr,
uint32_t val)
{
assert(!((uintptr_t)&s->mem[addr] & 3));
cpu_to_le32w((uint32_t *)&s->mem[addr], val);
}
#if defined(DEBUG_EEPRO100)
static const char *nic_dump(const uint8_t * buf, unsigned size)
{
static char dump[3 * 16 + 1];
char *p = &dump[0];
if (size > 16) {
size = 16;
}
while (size-- > 0) {
p += sprintf(p, " %02x", *buf++);
}
return dump;
}
#endif /* DEBUG_EEPRO100 */
enum scb_stat_ack {
stat_ack_not_ours = 0x00,
stat_ack_sw_gen = 0x04,
stat_ack_rnr = 0x10,
stat_ack_cu_idle = 0x20,
stat_ack_frame_rx = 0x40,
stat_ack_cu_cmd_done = 0x80,
stat_ack_not_present = 0xFF,
stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
};
static void disable_interrupt(EEPRO100State * s)
{
if (s->int_stat) {
TRACE(INT, logout("interrupt disabled\n"));
qemu_irq_lower(s->dev.irq[0]);
s->int_stat = 0;
}
}
static void enable_interrupt(EEPRO100State * s)
{
if (!s->int_stat) {
TRACE(INT, logout("interrupt enabled\n"));
qemu_irq_raise(s->dev.irq[0]);
s->int_stat = 1;
}
}
static void eepro100_acknowledge(EEPRO100State * s)
{
s->scb_stat &= ~s->mem[SCBAck];
s->mem[SCBAck] = s->scb_stat;
if (s->scb_stat == 0) {
disable_interrupt(s);
}
}
static void eepro100_interrupt(EEPRO100State * s, uint8_t status)
{
uint8_t mask = ~s->mem[SCBIntmask];
s->mem[SCBAck] |= status;
status = s->scb_stat = s->mem[SCBAck];
status &= (mask | 0x0f);
#if 0
status &= (~s->mem[SCBIntmask] | 0x0xf);
#endif
if (status && (mask & 0x01)) {
/* SCB mask and SCB Bit M do not disable interrupt. */
enable_interrupt(s);
} else if (s->int_stat) {
disable_interrupt(s);
}
}
static void eepro100_cx_interrupt(EEPRO100State * s)
{
/* CU completed action command. */
/* Transmit not ok (82557 only, not in emulation). */
eepro100_interrupt(s, 0x80);
}
static void eepro100_cna_interrupt(EEPRO100State * s)
{
/* CU left the active state. */
eepro100_interrupt(s, 0x20);
}
static void eepro100_fr_interrupt(EEPRO100State * s)
{
/* RU received a complete frame. */
eepro100_interrupt(s, 0x40);
}
static void eepro100_rnr_interrupt(EEPRO100State * s)
{
/* RU is not ready. */
eepro100_interrupt(s, 0x10);
}
static void eepro100_mdi_interrupt(EEPRO100State * s)
{
/* MDI completed read or write cycle. */
eepro100_interrupt(s, 0x08);
}
static void eepro100_swi_interrupt(EEPRO100State * s)
{
/* Software has requested an interrupt. */
eepro100_interrupt(s, 0x04);
}
#if 0
static void eepro100_fcp_interrupt(EEPRO100State * s)
{
/* Flow control pause interrupt (82558 and later). */
eepro100_interrupt(s, 0x01);
}
#endif
static void e100_pci_reset(EEPRO100State * s, E100PCIDeviceInfo *e100_device)
{
uint32_t device = s->device;
uint8_t *pci_conf = s->dev.config;
TRACE(OTHER, logout("%p\n", s));
/* PCI Status */
pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
PCI_STATUS_FAST_BACK);
/* PCI Latency Timer */
pci_set_byte(pci_conf + PCI_LATENCY_TIMER, 0x20); /* latency timer = 32 clocks */
/* Capability Pointer is set by PCI framework. */
/* Interrupt Line */
/* Interrupt Pin */
pci_set_byte(pci_conf + PCI_INTERRUPT_PIN, 1); /* interrupt pin A */
/* Minimum Grant */
pci_set_byte(pci_conf + PCI_MIN_GNT, 0x08);
/* Maximum Latency */
pci_set_byte(pci_conf + PCI_MAX_LAT, 0x18);
s->stats_size = e100_device->stats_size;
s->has_extended_tcb_support = e100_device->has_extended_tcb_support;
switch (device) {
case i82550:
case i82551:
case i82557A:
case i82557B:
case i82557C:
case i82558A:
case i82558B:
case i82559A:
case i82559B:
case i82559ER:
case i82562:
case i82801:
case i82559C:
break;
default:
logout("Device %X is undefined!\n", device);
}
/* Standard TxCB. */
s->configuration[6] |= BIT(4);
/* Standard statistical counters. */
s->configuration[6] |= BIT(5);
if (s->stats_size == 80) {
/* TODO: check TCO Statistical Counters bit. Documentation not clear. */
if (s->configuration[6] & BIT(2)) {
/* TCO statistical counters. */
assert(s->configuration[6] & BIT(5));
} else {
if (s->configuration[6] & BIT(5)) {
/* No extended statistical counters, i82557 compatible. */
s->stats_size = 64;
} else {
/* i82558 compatible. */
s->stats_size = 76;
}
}
} else {
if (s->configuration[6] & BIT(5)) {
/* No extended statistical counters. */
s->stats_size = 64;
}
}
assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics));
if (e100_device->power_management) {
/* Power Management Capabilities */
int cfg_offset = 0xdc;
int r = pci_add_capability(&s->dev, PCI_CAP_ID_PM,
cfg_offset, PCI_PM_SIZEOF);
assert(r >= 0);
pci_set_word(pci_conf + cfg_offset + PCI_PM_PMC, 0x7e21);
#if 0 /* TODO: replace dummy code for power management emulation. */
/* TODO: Power Management Control / Status. */
pci_set_word(pci_conf + cfg_offset + PCI_PM_CTRL, 0x0000);
/* TODO: Ethernet Power Consumption Registers (i82559 and later). */
pci_set_byte(pci_conf + cfg_offset + PCI_PM_PPB_EXTENSIONS, 0x0000);
#endif
}
#if EEPROM_SIZE > 0
if (device == i82557C || device == i82558B || device == i82559C) {
/*
TODO: get vendor id from EEPROM for i82557C or later.
TODO: get device id from EEPROM for i82557C or later.
TODO: status bit 4 can be disabled by EEPROM for i82558, i82559.
TODO: header type is determined by EEPROM for i82559.
TODO: get subsystem id from EEPROM for i82557C or later.
TODO: get subsystem vendor id from EEPROM for i82557C or later.
TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later.
TODO: capability pointer depends on EEPROM for i82558.
*/
logout("Get device id and revision from EEPROM!!!\n");
}
#endif /* EEPROM_SIZE > 0 */
}
static void nic_selective_reset(EEPRO100State * s)
{
size_t i;
uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
#if 0
eeprom93xx_reset(s->eeprom);
#endif
memcpy(eeprom_contents, s->conf.macaddr.a, 6);
eeprom_contents[EEPROM_ID] = EEPROM_ID_VALID;
if (s->device == i82557B || s->device == i82557C)
eeprom_contents[5] = 0x0100;
eeprom_contents[EEPROM_PHY_ID] = 1;
uint16_t sum = 0;
for (i = 0; i < EEPROM_SIZE - 1; i++) {
sum += eeprom_contents[i];
}
eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1]));
memset(s->mem, 0, sizeof(s->mem));
e100_write_reg4(s, SCBCtrlMDI, BIT(21));
assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
}
static void nic_reset(void *opaque)
{
EEPRO100State *s = opaque;
TRACE(OTHER, logout("%p\n", s));
/* TODO: Clearing of hash register for selective reset, too? */
memset(&s->mult[0], 0, sizeof(s->mult));
nic_selective_reset(s);
}
#if defined(DEBUG_EEPRO100)
static const char * const e100_reg[PCI_IO_SIZE / 4] = {
"Command/Status",
"General Pointer",
"Port",
"EEPROM/Flash Control",
"MDI Control",
"Receive DMA Byte Count",
"Flow Control",
"General Status/Control"
};
static char *regname(uint32_t addr)
{
static char buf[32];
if (addr < PCI_IO_SIZE) {
const char *r = e100_reg[addr / 4];
if (r != 0) {
snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4);
} else {
snprintf(buf, sizeof(buf), "0x%02x", addr);
}
} else {
snprintf(buf, sizeof(buf), "??? 0x%08x", addr);
}
return buf;
}
#endif /* DEBUG_EEPRO100 */
/*****************************************************************************
*
* Command emulation.
*
****************************************************************************/
#if 0
static uint16_t eepro100_read_command(EEPRO100State * s)
{
uint16_t val = 0xffff;
TRACE(OTHER, logout("val=0x%04x\n", val));
return val;
}
#endif
/* Commands that can be put in a command list entry. */
enum commands {
CmdNOp = 0,
CmdIASetup = 1,
CmdConfigure = 2,
CmdMulticastList = 3,
CmdTx = 4,
CmdTDR = 5, /* load microcode */
CmdDump = 6,
CmdDiagnose = 7,
/* And some extra flags: */
CmdSuspend = 0x4000, /* Suspend after completion. */
CmdIntr = 0x2000, /* Interrupt after completion. */
CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */
};
static cu_state_t get_cu_state(EEPRO100State * s)
{
return ((s->mem[SCBStatus] & BITS(7, 6)) >> 6);
}
static void set_cu_state(EEPRO100State * s, cu_state_t state)
{
s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(7, 6)) + (state << 6);
}
static ru_state_t get_ru_state(EEPRO100State * s)
{
return ((s->mem[SCBStatus] & BITS(5, 2)) >> 2);
}
static void set_ru_state(EEPRO100State * s, ru_state_t state)
{
s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(5, 2)) + (state << 2);
}
static void dump_statistics(EEPRO100State * s)
{
/* Dump statistical data. Most data is never changed by the emulation
* and always 0, so we first just copy the whole block and then those
* values which really matter.
* Number of data should check configuration!!!
*/
cpu_physical_memory_write(s->statsaddr, &s->statistics, s->stats_size);
e100_stl_le_phys(s->statsaddr + 0, s->statistics.tx_good_frames);
e100_stl_le_phys(s->statsaddr + 36, s->statistics.rx_good_frames);
e100_stl_le_phys(s->statsaddr + 48, s->statistics.rx_resource_errors);
e100_stl_le_phys(s->statsaddr + 60, s->statistics.rx_short_frame_errors);
#if 0
e100_stw_le_phys(s->statsaddr + 76, s->statistics.xmt_tco_frames);
e100_stw_le_phys(s->statsaddr + 78, s->statistics.rcv_tco_frames);
missing("CU dump statistical counters");
#endif
}
static void read_cb(EEPRO100State *s)
{
cpu_physical_memory_read(s->cb_address, &s->tx, sizeof(s->tx));
s->tx.status = le16_to_cpu(s->tx.status);
s->tx.command = le16_to_cpu(s->tx.command);
s->tx.link = le32_to_cpu(s->tx.link);
s->tx.tbd_array_addr = le32_to_cpu(s->tx.tbd_array_addr);
s->tx.tcb_bytes = le16_to_cpu(s->tx.tcb_bytes);
}
static void tx_command(EEPRO100State *s)
{
uint32_t tbd_array = le32_to_cpu(s->tx.tbd_array_addr);
uint16_t tcb_bytes = (le16_to_cpu(s->tx.tcb_bytes) & 0x3fff);
/* Sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes. */
uint8_t buf[2600];
uint16_t size = 0;
uint32_t tbd_address = s->cb_address + 0x10;
TRACE(RXTX, logout
("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
tbd_array, tcb_bytes, s->tx.tbd_count));
if (tcb_bytes > 2600) {
logout("TCB byte count too large, using 2600\n");
tcb_bytes = 2600;
}
if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
logout
("illegal values of TBD array address and TCB byte count!\n");
}
assert(tcb_bytes <= sizeof(buf));
while (size < tcb_bytes) {
uint32_t tx_buffer_address = e100_ldl_le_phys(tbd_address);
uint16_t tx_buffer_size = e100_ldw_le_phys(tbd_address + 4);
#if 0
uint16_t tx_buffer_el = e100_ldw_le_phys(tbd_address + 6);
#endif
tbd_address += 8;
TRACE(RXTX, logout
("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
tx_buffer_address, tx_buffer_size));
tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
cpu_physical_memory_read(tx_buffer_address, &buf[size],
tx_buffer_size);
size += tx_buffer_size;
}
if (tbd_array == 0xffffffff) {
/* Simplified mode. Was already handled by code above. */
} else {
/* Flexible mode. */
uint8_t tbd_count = 0;
if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) {
/* Extended Flexible TCB. */
for (; tbd_count < 2; tbd_count++) {
uint32_t tx_buffer_address = e100_ldl_le_phys(tbd_address);
uint16_t tx_buffer_size = e100_ldw_le_phys(tbd_address + 4);
uint16_t tx_buffer_el = e100_ldw_le_phys(tbd_address + 6);
tbd_address += 8;
TRACE(RXTX, logout
("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n",
tx_buffer_address, tx_buffer_size));
tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
cpu_physical_memory_read(tx_buffer_address, &buf[size],
tx_buffer_size);
size += tx_buffer_size;
if (tx_buffer_el & 1) {
break;
}
}
}
tbd_address = tbd_array;
for (; tbd_count < s->tx.tbd_count; tbd_count++) {
uint32_t tx_buffer_address = e100_ldl_le_phys(tbd_address);
uint16_t tx_buffer_size = e100_ldw_le_phys(tbd_address + 4);
uint16_t tx_buffer_el = e100_ldw_le_phys(tbd_address + 6);
tbd_address += 8;
TRACE(RXTX, logout
("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
tx_buffer_address, tx_buffer_size));
tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
cpu_physical_memory_read(tx_buffer_address, &buf[size],
tx_buffer_size);
size += tx_buffer_size;
if (tx_buffer_el & 1) {
break;
}
}
}
TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size)));
qemu_send_packet(&s->nic->nc, buf, size);
s->statistics.tx_good_frames++;
/* Transmit with bad status would raise an CX/TNO interrupt.
* (82557 only). Emulation never has bad status. */
#if 0
eepro100_cx_interrupt(s);
#endif
}
static void set_multicast_list(EEPRO100State *s)
{
uint16_t multicast_count = s->tx.tbd_array_addr & BITS(13, 0);
uint16_t i;
memset(&s->mult[0], 0, sizeof(s->mult));
TRACE(OTHER, logout("multicast list, multicast count = %u\n", multicast_count));
for (i = 0; i < multicast_count; i += 6) {
uint8_t multicast_addr[6];
cpu_physical_memory_read(s->cb_address + 10 + i, multicast_addr, 6);
TRACE(OTHER, logout("multicast entry %s\n", nic_dump(multicast_addr, 6)));
unsigned mcast_idx = compute_mcast_idx(multicast_addr);
assert(mcast_idx < 64);
s->mult[mcast_idx >> 3] |= (1 << (mcast_idx & 7));
}
}
static void action_command(EEPRO100State *s)
{
for (;;) {
bool bit_el;
bool bit_s;
bool bit_i;
bool bit_nc;
uint16_t ok_status = STATUS_OK;
s->cb_address = s->cu_base + s->cu_offset;
read_cb(s);
bit_el = ((s->tx.command & COMMAND_EL) != 0);
bit_s = ((s->tx.command & COMMAND_S) != 0);
bit_i = ((s->tx.command & COMMAND_I) != 0);
bit_nc = ((s->tx.command & COMMAND_NC) != 0);
#if 0
bool bit_sf = ((s->tx.command & COMMAND_SF) != 0);
#endif
s->cu_offset = s->tx.link;
TRACE(OTHER,
logout("val=(cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
s->tx.status, s->tx.command, s->tx.link));
switch (s->tx.command & COMMAND_CMD) {
case CmdNOp:
/* Do nothing. */
break;
case CmdIASetup:
cpu_physical_memory_read(s->cb_address + 8, &s->conf.macaddr.a[0], 6);
TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6)));
break;
case CmdConfigure:
cpu_physical_memory_read(s->cb_address + 8, &s->configuration[0],
sizeof(s->configuration));
TRACE(OTHER, logout("configuration: %s\n",
nic_dump(&s->configuration[0], 16)));
TRACE(OTHER, logout("configuration: %s\n",
nic_dump(&s->configuration[16],
ARRAY_SIZE(s->configuration) - 16)));
if (s->configuration[20] & BIT(6)) {
TRACE(OTHER, logout("Multiple IA bit\n"));
}
break;
case CmdMulticastList:
set_multicast_list(s);
break;
case CmdTx:
if (bit_nc) {
missing("CmdTx: NC = 0");
ok_status = 0;
break;
}
tx_command(s);
break;
case CmdTDR:
TRACE(OTHER, logout("load microcode\n"));
/* Starting with offset 8, the command contains
* 64 dwords microcode which we just ignore here. */
break;
case CmdDiagnose:
TRACE(OTHER, logout("diagnose\n"));
/* Make sure error flag is not set. */
s->tx.status = 0;
break;
default:
missing("undefined command");
ok_status = 0;
break;
}
/* Write new status. */
e100_stw_le_phys(s->cb_address, s->tx.status | ok_status | STATUS_C);
if (bit_i) {
/* CU completed action. */
eepro100_cx_interrupt(s);
}
if (bit_el) {
/* CU becomes idle. Terminate command loop. */
set_cu_state(s, cu_idle);
eepro100_cna_interrupt(s);
break;
} else if (bit_s) {
/* CU becomes suspended. Terminate command loop. */
set_cu_state(s, cu_suspended);
eepro100_cna_interrupt(s);
break;
} else {
/* More entries in list. */
TRACE(OTHER, logout("CU list with at least one more entry\n"));
}
}
TRACE(OTHER, logout("CU list empty\n"));
/* List is empty. Now CU is idle or suspended. */
}
static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
{
cu_state_t cu_state;
switch (val) {
case CU_NOP:
/* No operation. */
break;
case CU_START:
cu_state = get_cu_state(s);
if (cu_state != cu_idle && cu_state != cu_suspended) {
/* Intel documentation says that CU must be idle or suspended
* for the CU start command. */
logout("unexpected CU state is %u\n", cu_state);
}
set_cu_state(s, cu_active);
s->cu_offset = e100_read_reg4(s, SCBPointer);
action_command(s);
break;
case CU_RESUME:
if (get_cu_state(s) != cu_suspended) {
logout("bad CU resume from CU state %u\n", get_cu_state(s));
/* Workaround for bad Linux eepro100 driver which resumes
* from idle state. */
#if 0
missing("cu resume");
#endif
set_cu_state(s, cu_suspended);
}
if (get_cu_state(s) == cu_suspended) {
TRACE(OTHER, logout("CU resuming\n"));
set_cu_state(s, cu_active);
action_command(s);
}
break;
case CU_STATSADDR:
/* Load dump counters address. */
s->statsaddr = e100_read_reg4(s, SCBPointer);
TRACE(OTHER, logout("val=0x%02x (status address)\n", val));
break;
case CU_SHOWSTATS:
/* Dump statistical counters. */
TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val));
dump_statistics(s);
e100_stl_le_phys(s->statsaddr + s->stats_size, 0xa005);
break;
case CU_CMD_BASE:
/* Load CU base. */
TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val));
s->cu_base = e100_read_reg4(s, SCBPointer);
break;
case CU_DUMPSTATS:
/* Dump and reset statistical counters. */
TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val));
dump_statistics(s);
e100_stl_le_phys(s->statsaddr + s->stats_size, 0xa007);
memset(&s->statistics, 0, sizeof(s->statistics));
break;
case CU_SRESUME:
/* CU static resume. */
missing("CU static resume");
break;
default:
missing("Undefined CU command");
}
}
static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
{
switch (val) {
case RU_NOP:
/* No operation. */
break;
case RX_START:
/* RU start. */
if (get_ru_state(s) != ru_idle) {
logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
#if 0
assert(!"wrong RU state");
#endif
}
set_ru_state(s, ru_ready);
s->ru_offset = e100_read_reg4(s, SCBPointer);
TRACE(OTHER, logout("val=0x%02x (rx start)\n", val));
break;
case RX_RESUME:
/* Restart RU. */
if (get_ru_state(s) != ru_suspended) {
logout("RU state is %u, should be %u\n", get_ru_state(s),
ru_suspended);
#if 0
assert(!"wrong RU state");
#endif
}
set_ru_state(s, ru_ready);
break;
case RU_ABORT:
/* RU abort. */
if (get_ru_state(s) == ru_ready) {
eepro100_rnr_interrupt(s);
}
set_ru_state(s, ru_idle);
break;
case RX_ADDR_LOAD:
/* Load RU base. */
TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val));
s->ru_base = e100_read_reg4(s, SCBPointer);
break;
default:
logout("val=0x%02x (undefined RU command)\n", val);
missing("Undefined SU command");
}
}
static void eepro100_write_command(EEPRO100State * s, uint8_t val)
{
eepro100_ru_command(s, val & 0x0f);
eepro100_cu_command(s, val & 0xf0);
if ((val) == 0) {
TRACE(OTHER, logout("val=0x%02x\n", val));
}
/* Clear command byte after command was accepted. */
s->mem[SCBCmd] = 0;
}
/*****************************************************************************
*
* EEPROM emulation.
*
****************************************************************************/
#define EEPROM_CS 0x02
#define EEPROM_SK 0x01
#define EEPROM_DI 0x04
#define EEPROM_DO 0x08
static uint16_t eepro100_read_eeprom(EEPRO100State * s)
{
uint16_t val = e100_read_reg2(s, SCBeeprom);
if (eeprom93xx_read(s->eeprom)) {
val |= EEPROM_DO;
} else {
val &= ~EEPROM_DO;
}
TRACE(EEPROM, logout("val=0x%04x\n", val));
return val;
}
static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
{
TRACE(EEPROM, logout("val=0x%02x\n", val));
/* mask unwritable bits */
#if 0
val = SET_MASKED(val, 0x31, eeprom->value);
#endif
int eecs = ((val & EEPROM_CS) != 0);
int eesk = ((val & EEPROM_SK) != 0);
int eedi = ((val & EEPROM_DI) != 0);
eeprom93xx_write(eeprom, eecs, eesk, eedi);
}
/*****************************************************************************
*
* MDI emulation.
*
****************************************************************************/
#if defined(DEBUG_EEPRO100)
static const char * const mdi_op_name[] = {
"opcode 0",
"write",
"read",
"opcode 3"
};
static const char * const mdi_reg_name[] = {
"Control",
"Status",
"PHY Identification (Word 1)",
"PHY Identification (Word 2)",
"Auto-Negotiation Advertisement",
"Auto-Negotiation Link Partner Ability",
"Auto-Negotiation Expansion"
};
static const char *reg2name(uint8_t reg)
{
static char buffer[10];
const char *p = buffer;
if (reg < ARRAY_SIZE(mdi_reg_name)) {
p = mdi_reg_name[reg];
} else {
snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg);
}
return p;
}
#endif /* DEBUG_EEPRO100 */
static uint32_t eepro100_read_mdi(EEPRO100State * s)
{
uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
#ifdef DEBUG_EEPRO100
uint8_t raiseint = (val & BIT(29)) >> 29;
uint8_t opcode = (val & BITS(27, 26)) >> 26;
uint8_t phy = (val & BITS(25, 21)) >> 21;
uint8_t reg = (val & BITS(20, 16)) >> 16;
uint16_t data = (val & BITS(15, 0));
#endif
/* Emulation takes no time to finish MDI transaction. */
val |= BIT(28);
TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
val, raiseint, mdi_op_name[opcode], phy,
reg2name(reg), data));
return val;
}
static void eepro100_write_mdi(EEPRO100State *s)
{
uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
uint8_t raiseint = (val & BIT(29)) >> 29;
uint8_t opcode = (val & BITS(27, 26)) >> 26;
uint8_t phy = (val & BITS(25, 21)) >> 21;
uint8_t reg = (val & BITS(20, 16)) >> 16;
uint16_t data = (val & BITS(15, 0));
TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data));
if (phy != 1) {
/* Unsupported PHY address. */
#if 0
logout("phy must be 1 but is %u\n", phy);
#endif
data = 0;
} else if (opcode != 1 && opcode != 2) {
/* Unsupported opcode. */
logout("opcode must be 1 or 2 but is %u\n", opcode);
data = 0;
} else if (reg > 6) {
/* Unsupported register. */
logout("register must be 0...6 but is %u\n", reg);
data = 0;
} else {
TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
val, raiseint, mdi_op_name[opcode], phy,
reg2name(reg), data));
if (opcode == 1) {
/* MDI write */
switch (reg) {
case 0: /* Control Register */
if (data & 0x8000) {
/* Reset status and control registers to default. */
s->mdimem[0] = eepro100_mdi_default[0];
s->mdimem[1] = eepro100_mdi_default[1];
data = s->mdimem[reg];
} else {
/* Restart Auto Configuration = Normal Operation */
data &= ~0x0200;
}
break;
case 1: /* Status Register */
missing("not writable");
data = s->mdimem[reg];
break;
case 2: /* PHY Identification Register (Word 1) */
case 3: /* PHY Identification Register (Word 2) */
missing("not implemented");
break;
case 4: /* Auto-Negotiation Advertisement Register */
case 5: /* Auto-Negotiation Link Partner Ability Register */
break;
case 6: /* Auto-Negotiation Expansion Register */
default:
missing("not implemented");
}
s->mdimem[reg] = data;
} else if (opcode == 2) {
/* MDI read */
switch (reg) {
case 0: /* Control Register */
if (data & 0x8000) {
/* Reset status and control registers to default. */
s->mdimem[0] = eepro100_mdi_default[0];
s->mdimem[1] = eepro100_mdi_default[1];
}
break;
case 1: /* Status Register */
s->mdimem[reg] |= 0x0020;
break;
case 2: /* PHY Identification Register (Word 1) */
case 3: /* PHY Identification Register (Word 2) */
case 4: /* Auto-Negotiation Advertisement Register */
break;
case 5: /* Auto-Negotiation Link Partner Ability Register */
s->mdimem[reg] = 0x41fe;
break;
case 6: /* Auto-Negotiation Expansion Register */
s->mdimem[reg] = 0x0001;
break;
}
data = s->mdimem[reg];
}
/* Emulation takes no time to finish MDI transaction.
* Set MDI bit in SCB status register. */
s->mem[SCBAck] |= 0x08;
val |= BIT(28);
if (raiseint) {
eepro100_mdi_interrupt(s);
}
}
val = (val & 0xffff0000) + data;
e100_write_reg4(s, SCBCtrlMDI, val);
}
/*****************************************************************************
*
* Port emulation.
*
****************************************************************************/
#define PORT_SOFTWARE_RESET 0
#define PORT_SELFTEST 1
#define PORT_SELECTIVE_RESET 2
#define PORT_DUMP 3
#define PORT_SELECTION_MASK 3
typedef struct {
uint32_t st_sign; /* Self Test Signature */
uint32_t st_result; /* Self Test Results */
} eepro100_selftest_t;
static uint32_t eepro100_read_port(EEPRO100State * s)
{
return 0;
}
static void eepro100_write_port(EEPRO100State *s)
{
uint32_t val = e100_read_reg4(s, SCBPort);
uint32_t address = (val & ~PORT_SELECTION_MASK);
uint8_t selection = (val & PORT_SELECTION_MASK);
switch (selection) {
case PORT_SOFTWARE_RESET:
nic_reset(s);
break;
case PORT_SELFTEST:
TRACE(OTHER, logout("selftest address=0x%08x\n", address));
eepro100_selftest_t data;
cpu_physical_memory_read(address, &data, sizeof(data));
data.st_sign = 0xffffffff;
data.st_result = 0;
cpu_physical_memory_write(address, &data, sizeof(data));
break;
case PORT_SELECTIVE_RESET:
TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address));
nic_selective_reset(s);
break;
default:
logout("val=0x%08x\n", val);
missing("unknown port selection");
}
}
/*****************************************************************************
*
* General hardware emulation.
*
****************************************************************************/
static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
{
uint8_t val = 0;
if (addr <= sizeof(s->mem) - sizeof(val)) {
val = s->mem[addr];
}
switch (addr) {
case SCBStatus:
case SCBAck:
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
break;
case SCBCmd:
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
#if 0
val = eepro100_read_command(s);
#endif
break;
case SCBIntmask:
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
break;
case SCBPort + 3:
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
break;
case SCBeeprom:
val = eepro100_read_eeprom(s);
break;
case SCBCtrlMDI:
case SCBCtrlMDI + 1:
case SCBCtrlMDI + 2:
case SCBCtrlMDI + 3:
val = (uint8_t)(eepro100_read_mdi(s) >> (8 * (addr & 3)));
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
break;
case SCBpmdr: /* Power Management Driver Register */
val = 0;
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
break;
case SCBgctrl: /* General Control Register */
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
break;
case SCBgstat: /* General Status Register */
/* 100 Mbps full duplex, valid link */
val = 0x07;
TRACE(OTHER, logout("addr=General Status val=%02x\n", val));
break;
default:
logout("addr=%s val=0x%02x\n", regname(addr), val);
missing("unknown byte read");
}
return val;
}
static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
{
uint16_t val = 0;
if (addr <= sizeof(s->mem) - sizeof(val)) {
val = e100_read_reg2(s, addr);
}
switch (addr) {
case SCBStatus:
case SCBCmd:
TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
break;
case SCBeeprom:
val = eepro100_read_eeprom(s);
TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
break;
case SCBCtrlMDI:
case SCBCtrlMDI + 2:
val = (uint16_t)(eepro100_read_mdi(s) >> (8 * (addr & 3)));
TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
break;
default:
logout("addr=%s val=0x%04x\n", regname(addr), val);
missing("unknown word read");
}
return val;
}
static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
{
uint32_t val = 0;
if (addr <= sizeof(s->mem) - sizeof(val)) {
val = e100_read_reg4(s, addr);
}
switch (addr) {
case SCBStatus:
TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
break;
case SCBPointer:
TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
break;
case SCBPort:
val = eepro100_read_port(s);
TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
break;
case SCBflash:
val = eepro100_read_eeprom(s);
TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
break;
case SCBCtrlMDI:
val = eepro100_read_mdi(s);
break;
default:
logout("addr=%s val=0x%08x\n", regname(addr), val);
missing("unknown longword read");
}
return val;
}
static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
{
/* SCBStatus is readonly. */
if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
s->mem[addr] = val;
}
switch (addr) {
case SCBStatus:
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
break;
case SCBAck:
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
eepro100_acknowledge(s);
break;
case SCBCmd:
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
eepro100_write_command(s, val);
break;
case SCBIntmask:
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
if (val & BIT(1)) {
eepro100_swi_interrupt(s);
}
eepro100_interrupt(s, 0);
break;
case SCBPointer:
case SCBPointer + 1:
case SCBPointer + 2:
case SCBPointer + 3:
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
break;
case SCBPort:
case SCBPort + 1:
case SCBPort + 2:
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
break;
case SCBPort + 3:
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
eepro100_write_port(s);
break;
case SCBFlow: /* does not exist on 82557 */
case SCBFlow + 1:
case SCBFlow + 2:
case SCBpmdr: /* does not exist on 82557 */
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
break;
case SCBeeprom:
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
eepro100_write_eeprom(s->eeprom, val);
break;
case SCBCtrlMDI:
case SCBCtrlMDI + 1:
case SCBCtrlMDI + 2:
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
break;
case SCBCtrlMDI + 3:
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
eepro100_write_mdi(s);
break;
default:
logout("addr=%s val=0x%02x\n", regname(addr), val);
missing("unknown byte write");
}
}
static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
{
/* SCBStatus is readonly. */
if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
e100_write_reg2(s, addr, val);
}
switch (addr) {
case SCBStatus:
TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
s->mem[SCBAck] = (val >> 8);
eepro100_acknowledge(s);
break;
case SCBCmd:
TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
eepro100_write_command(s, val);
eepro100_write1(s, SCBIntmask, val >> 8);
break;
case SCBPointer:
case SCBPointer + 2:
TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
break;
case SCBPort:
TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
break;
case SCBPort + 2:
TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
eepro100_write_port(s);
break;
case SCBeeprom:
TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
eepro100_write_eeprom(s->eeprom, val);
break;
case SCBCtrlMDI:
TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
break;
case SCBCtrlMDI + 2:
TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
eepro100_write_mdi(s);
break;
default:
logout("addr=%s val=0x%04x\n", regname(addr), val);
missing("unknown word write");
}
}
static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
{
if (addr <= sizeof(s->mem) - sizeof(val)) {
e100_write_reg4(s, addr, val);
}
switch (addr) {
case SCBPointer:
TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
break;
case SCBPort:
TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
eepro100_write_port(s);
break;
case SCBflash:
TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
val = val >> 16;
eepro100_write_eeprom(s->eeprom, val);
break;
case SCBCtrlMDI:
TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
eepro100_write_mdi(s);
break;
default:
logout("addr=%s val=0x%08x\n", regname(addr), val);
missing("unknown longword write");
}
}
/*****************************************************************************
*
* Port mapped I/O.
*
****************************************************************************/
static uint32_t ioport_read1(void *opaque, uint32_t addr)
{
EEPRO100State *s = opaque;
#if 0
logout("addr=%s\n", regname(addr));
#endif
return eepro100_read1(s, addr - s->region1);
}
static uint32_t ioport_read2(void *opaque, uint32_t addr)
{
EEPRO100State *s = opaque;
return eepro100_read2(s, addr - s->region1);
}
static uint32_t ioport_read4(void *opaque, uint32_t addr)
{
EEPRO100State *s = opaque;
return eepro100_read4(s, addr - s->region1);
}
static void ioport_write1(void *opaque, uint32_t addr, uint32_t val)
{
EEPRO100State *s = opaque;
#if 0
logout("addr=%s val=0x%02x\n", regname(addr), val);
#endif
eepro100_write1(s, addr - s->region1, val);
}
static void ioport_write2(void *opaque, uint32_t addr, uint32_t val)
{
EEPRO100State *s = opaque;
eepro100_write2(s, addr - s->region1, val);
}
static void ioport_write4(void *opaque, uint32_t addr, uint32_t val)
{
EEPRO100State *s = opaque;
eepro100_write4(s, addr - s->region1, val);
}
/***********************************************************/
/* PCI EEPRO100 definitions */
static void pci_map(PCIDevice * pci_dev, int region_num,
pcibus_t addr, pcibus_t size, int type)
{
EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
TRACE(OTHER, logout("region %d, addr=0x%08"FMT_PCIBUS", "
"size=0x%08"FMT_PCIBUS", type=%d\n",
region_num, addr, size, type));
assert(region_num == 1);
register_ioport_write(addr, size, 1, ioport_write1, s);
register_ioport_read(addr, size, 1, ioport_read1, s);
register_ioport_write(addr, size, 2, ioport_write2, s);
register_ioport_read(addr, size, 2, ioport_read2, s);
register_ioport_write(addr, size, 4, ioport_write4, s);
register_ioport_read(addr, size, 4, ioport_read4, s);
s->region1 = addr;
}
/*****************************************************************************
*
* Memory mapped I/O.
*
****************************************************************************/
static void pci_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
EEPRO100State *s = opaque;
#if 0
logout("addr=%s val=0x%02x\n", regname(addr), val);
#endif
eepro100_write1(s, addr, val);
}
static void pci_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
EEPRO100State *s = opaque;
#if 0
logout("addr=%s val=0x%02x\n", regname(addr), val);
#endif
eepro100_write2(s, addr, val);
}
static void pci_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
EEPRO100State *s = opaque;
#if 0
logout("addr=%s val=0x%02x\n", regname(addr), val);
#endif
eepro100_write4(s, addr, val);
}
static uint32_t pci_mmio_readb(void *opaque, target_phys_addr_t addr)
{
EEPRO100State *s = opaque;
#if 0
logout("addr=%s\n", regname(addr));
#endif
return eepro100_read1(s, addr);
}
static uint32_t pci_mmio_readw(void *opaque, target_phys_addr_t addr)
{
EEPRO100State *s = opaque;
#if 0
logout("addr=%s\n", regname(addr));
#endif
return eepro100_read2(s, addr);
}
static uint32_t pci_mmio_readl(void *opaque, target_phys_addr_t addr)
{
EEPRO100State *s = opaque;
#if 0
logout("addr=%s\n", regname(addr));
#endif
return eepro100_read4(s, addr);
}
static CPUWriteMemoryFunc * const pci_mmio_write[] = {
pci_mmio_writeb,
pci_mmio_writew,
pci_mmio_writel
};
static CPUReadMemoryFunc * const pci_mmio_read[] = {
pci_mmio_readb,
pci_mmio_readw,
pci_mmio_readl
};
static int nic_can_receive(VLANClientState *nc)
{
EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
TRACE(RXTX, logout("%p\n", s));
return get_ru_state(s) == ru_ready;
#if 0
return !eepro100_buffer_full(s);
#endif
}
static ssize_t nic_receive(VLANClientState *nc, const uint8_t * buf, size_t size)
{
/* TODO:
* - Magic packets should set bit 30 in power management driver register.
* - Interesting packets should set bit 29 in power management driver register.
*/
EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
uint16_t rfd_status = 0xa000;
#if defined(CONFIG_PAD_RECEIVED_FRAMES)
uint8_t min_buf[60];
#endif
static const uint8_t broadcast_macaddr[6] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
#if defined(CONFIG_PAD_RECEIVED_FRAMES)
/* Pad to minimum Ethernet frame length */
if (size < sizeof(min_buf)) {
memcpy(min_buf, buf, size);
memset(&min_buf[size], 0, sizeof(min_buf) - size);
buf = min_buf;
size = sizeof(min_buf);
}
#endif
if (s->configuration[8] & 0x80) {
/* CSMA is disabled. */
logout("%p received while CSMA is disabled\n", s);
return -1;
#if !defined(CONFIG_PAD_RECEIVED_FRAMES)
} else if (size < 64 && (s->configuration[7] & BIT(0))) {
/* Short frame and configuration byte 7/0 (discard short receive) set:
* Short frame is discarded */
logout("%p received short frame (%zu byte)\n", s, size);
s->statistics.rx_short_frame_errors++;
return -1;
#endif
} else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & BIT(3))) {
/* Long frame and configuration byte 18/3 (long receive ok) not set:
* Long frames are discarded. */
logout("%p received long frame (%zu byte), ignored\n", s, size);
return -1;
} else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { /* !!! */
/* Frame matches individual address. */
/* TODO: check configuration byte 15/4 (ignore U/L). */
TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size));
} else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
/* Broadcast frame. */
TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size));
rfd_status |= 0x0002;
} else if (buf[0] & 0x01) {
/* Multicast frame. */
TRACE(RXTX, logout("%p received multicast, len=%zu,%s\n", s, size, nic_dump(buf, size)));
if (s->configuration[21] & BIT(3)) {
/* Multicast all bit is set, receive all multicast frames. */
} else {
unsigned mcast_idx = compute_mcast_idx(buf);
assert(mcast_idx < 64);
if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
/* Multicast frame is allowed in hash table. */
} else if (s->configuration[15] & BIT(0)) {
/* Promiscuous: receive all. */
rfd_status |= 0x0004;
} else {
TRACE(RXTX, logout("%p multicast ignored\n", s));
return -1;
}
}
/* TODO: Next not for promiscuous mode? */
rfd_status |= 0x0002;
} else if (s->configuration[15] & BIT(0)) {
/* Promiscuous: receive all. */
TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size));
rfd_status |= 0x0004;
} else if (s->configuration[20] & BIT(6)) {
/* Multiple IA bit set. */
unsigned mcast_idx = compute_mcast_idx(buf);
assert(mcast_idx < 64);
if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
TRACE(RXTX, logout("%p accepted, multiple IA bit set\n", s));
} else {
TRACE(RXTX, logout("%p frame ignored, multiple IA bit set\n", s));
return -1;
}
} else {
TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size,
nic_dump(buf, size)));
return size;
}
if (get_ru_state(s) != ru_ready) {
/* No resources available. */
logout("no resources, state=%u\n", get_ru_state(s));
/* TODO: RNR interrupt only at first failed frame? */
eepro100_rnr_interrupt(s);
s->statistics.rx_resource_errors++;
#if 0
assert(!"no resources");
#endif
return -1;
}
/* !!! */
eepro100_rx_t rx;
cpu_physical_memory_read(s->ru_base + s->ru_offset, &rx,
sizeof(eepro100_rx_t));
uint16_t rfd_command = le16_to_cpu(rx.command);
uint16_t rfd_size = le16_to_cpu(rx.size);
if (size > rfd_size) {
logout("Receive buffer (%" PRId16 " bytes) too small for data "
"(%zu bytes); data truncated\n", rfd_size, size);
size = rfd_size;
}
#if !defined(CONFIG_PAD_RECEIVED_FRAMES)
if (size < 64) {
rfd_status |= 0x0080;
}
#endif
TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n",
rfd_command, rx.link, rx.rx_buf_addr, rfd_size));
e100_stw_le_phys(s->ru_base + s->ru_offset +
offsetof(eepro100_rx_t, status), rfd_status);
e100_stw_le_phys(s->ru_base + s->ru_offset +
offsetof(eepro100_rx_t, count), size);
/* Early receive interrupt not supported. */
#if 0
eepro100_er_interrupt(s);
#endif
/* Receive CRC Transfer not supported. */
if (s->configuration[18] & BIT(2)) {
missing("Receive CRC Transfer");
return -1;
}
/* TODO: check stripping enable bit. */
#if 0
assert(!(s->configuration[17] & BIT(0)));
#endif
cpu_physical_memory_write(s->ru_base + s->ru_offset +
sizeof(eepro100_rx_t), buf, size);
s->statistics.rx_good_frames++;
eepro100_fr_interrupt(s);
s->ru_offset = le32_to_cpu(rx.link);
if (rfd_command & COMMAND_EL) {
/* EL bit is set, so this was the last frame. */
logout("receive: Running out of frames\n");
set_ru_state(s, ru_suspended);
}
if (rfd_command & COMMAND_S) {
/* S bit is set. */
set_ru_state(s, ru_suspended);
}
return size;
}
static const VMStateDescription vmstate_eepro100 = {
.version_id = 3,
.minimum_version_id = 2,
.minimum_version_id_old = 2,
.fields = (VMStateField []) {
VMSTATE_PCI_DEVICE(dev, EEPRO100State),
VMSTATE_UNUSED(32),
VMSTATE_BUFFER(mult, EEPRO100State),
VMSTATE_BUFFER(mem, EEPRO100State),
/* Save all members of struct between scb_stat and mem. */
VMSTATE_UINT8(scb_stat, EEPRO100State),
VMSTATE_UINT8(int_stat, EEPRO100State),
VMSTATE_UNUSED(3*4),
VMSTATE_MACADDR(conf.macaddr, EEPRO100State),
VMSTATE_UNUSED(19*4),
VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32),
/* The eeprom should be saved and restored by its own routines. */
VMSTATE_UINT32(device, EEPRO100State),
/* TODO check device. */
VMSTATE_UINT32(cu_base, EEPRO100State),
VMSTATE_UINT32(cu_offset, EEPRO100State),
VMSTATE_UINT32(ru_base, EEPRO100State),
VMSTATE_UINT32(ru_offset, EEPRO100State),
VMSTATE_UINT32(statsaddr, EEPRO100State),
/* Save eepro100_stats_t statistics. */
VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State),
VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State),
VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State),
VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State),
VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State),
VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State),
VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State),
VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State),
VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State),
VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State),
VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State),
VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State),
VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State),
VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State),
VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State),
VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State),
VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State),
VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State),
VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State),
VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State),
VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State),
/* Configuration bytes. */
VMSTATE_BUFFER(configuration, EEPRO100State),
VMSTATE_END_OF_LIST()
}
};
static void nic_cleanup(VLANClientState *nc)
{
EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
s->nic = NULL;
}
static int pci_nic_uninit(PCIDevice *pci_dev)
{
EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
cpu_unregister_io_memory(s->mmio_index);
vmstate_unregister(&pci_dev->qdev, s->vmstate, s);
eeprom93xx_free(&pci_dev->qdev, s->eeprom);
qemu_del_vlan_client(&s->nic->nc);
return 0;
}
static NetClientInfo net_eepro100_info = {
.type = NET_CLIENT_TYPE_NIC,
.size = sizeof(NICState),
.can_receive = nic_can_receive,
.receive = nic_receive,
.cleanup = nic_cleanup,
};
static int e100_nic_init(PCIDevice *pci_dev)
{
EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
E100PCIDeviceInfo *e100_device = DO_UPCAST(E100PCIDeviceInfo, pci.qdev,
pci_dev->qdev.info);
TRACE(OTHER, logout("\n"));
s->device = e100_device->device;
e100_pci_reset(s, e100_device);
/* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
* i82559 and later support 64 or 256 word EEPROM. */
s->eeprom = eeprom93xx_new(&pci_dev->qdev, EEPROM_SIZE);
/* Handler for memory-mapped I/O */
s->mmio_index =
cpu_register_io_memory(pci_mmio_read, pci_mmio_write, s,
DEVICE_LITTLE_ENDIAN);
pci_register_bar_simple(&s->dev, 0, PCI_MEM_SIZE,
PCI_BASE_ADDRESS_MEM_PREFETCH, s->mmio_index);
pci_register_bar(&s->dev, 1, PCI_IO_SIZE, PCI_BASE_ADDRESS_SPACE_IO,
pci_map);
pci_register_bar_simple(&s->dev, 2, PCI_FLASH_SIZE, 0, s->mmio_index);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6));
assert(s->region1 == 0);
nic_reset(s);
s->nic = qemu_new_nic(&net_eepro100_info, &s->conf,
pci_dev->qdev.info->name, pci_dev->qdev.id, s);
qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
TRACE(OTHER, logout("%s\n", s->nic->nc.info_str));
qemu_register_reset(nic_reset, s);
s->vmstate = qemu_malloc(sizeof(vmstate_eepro100));
memcpy(s->vmstate, &vmstate_eepro100, sizeof(vmstate_eepro100));
s->vmstate->name = s->nic->nc.model;
vmstate_register(&pci_dev->qdev, -1, s->vmstate, s);
add_boot_device_path(s->conf.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
return 0;
}
static E100PCIDeviceInfo e100_devices[] = {
{
.pci.qdev.name = "i82550",
.pci.qdev.desc = "Intel i82550 Ethernet",
.device = i82550,
/* TODO: check device id. */
.pci.device_id = PCI_DEVICE_ID_INTEL_82551IT,
/* Revision ID: 0x0c, 0x0d, 0x0e. */
.pci.revision = 0x0e,
/* TODO: check size of statistical counters. */
.stats_size = 80,
/* TODO: check extended tcb support. */
.has_extended_tcb_support = true,
.power_management = true,
},{
.pci.qdev.name = "i82551",
.pci.qdev.desc = "Intel i82551 Ethernet",
.device = i82551,
.pci.device_id = PCI_DEVICE_ID_INTEL_82551IT,
/* Revision ID: 0x0f, 0x10. */
.pci.revision = 0x0f,
/* TODO: check size of statistical counters. */
.stats_size = 80,
.has_extended_tcb_support = true,
.power_management = true,
},{
.pci.qdev.name = "i82557a",
.pci.qdev.desc = "Intel i82557A Ethernet",
.device = i82557A,
.pci.device_id = PCI_DEVICE_ID_INTEL_82557,
.pci.revision = 0x01,
.power_management = false,
},{
.pci.qdev.name = "i82557b",
.pci.qdev.desc = "Intel i82557B Ethernet",
.device = i82557B,
.pci.device_id = PCI_DEVICE_ID_INTEL_82557,
.pci.revision = 0x02,
.power_management = false,
},{
.pci.qdev.name = "i82557c",
.pci.qdev.desc = "Intel i82557C Ethernet",
.device = i82557C,
.pci.device_id = PCI_DEVICE_ID_INTEL_82557,
.pci.revision = 0x03,
.power_management = false,
},{
.pci.qdev.name = "i82558a",
.pci.qdev.desc = "Intel i82558A Ethernet",
.device = i82558A,
.pci.device_id = PCI_DEVICE_ID_INTEL_82557,
.pci.revision = 0x04,
.stats_size = 76,
.has_extended_tcb_support = true,
.power_management = true,
},{
.pci.qdev.name = "i82558b",
.pci.qdev.desc = "Intel i82558B Ethernet",
.device = i82558B,
.pci.device_id = PCI_DEVICE_ID_INTEL_82557,
.pci.revision = 0x05,
.stats_size = 76,
.has_extended_tcb_support = true,
.power_management = true,
},{
.pci.qdev.name = "i82559a",
.pci.qdev.desc = "Intel i82559A Ethernet",
.device = i82559A,
.pci.device_id = PCI_DEVICE_ID_INTEL_82557,
.pci.revision = 0x06,
.stats_size = 80,
.has_extended_tcb_support = true,
.power_management = true,
},{
.pci.qdev.name = "i82559b",
.pci.qdev.desc = "Intel i82559B Ethernet",
.device = i82559B,
.pci.device_id = PCI_DEVICE_ID_INTEL_82557,
.pci.revision = 0x07,
.stats_size = 80,
.has_extended_tcb_support = true,
.power_management = true,
},{
.pci.qdev.name = "i82559c",
.pci.qdev.desc = "Intel i82559C Ethernet",
.device = i82559C,
.pci.device_id = PCI_DEVICE_ID_INTEL_82557,
#if 0
.pci.revision = 0x08,
#endif
/* TODO: Windows wants revision id 0x0c. */
.pci.revision = 0x0c,
#if EEPROM_SIZE > 0
.pci.subsystem_vendor_id = PCI_VENDOR_ID_INTEL,
.pci.subsystem_id = 0x0040,
#endif
.stats_size = 80,
.has_extended_tcb_support = true,
.power_management = true,
},{
.pci.qdev.name = "i82559er",
.pci.qdev.desc = "Intel i82559ER Ethernet",
.device = i82559ER,
.pci.device_id = PCI_DEVICE_ID_INTEL_82551IT,
.pci.revision = 0x09,
.stats_size = 80,
.has_extended_tcb_support = true,
.power_management = true,
},{
.pci.qdev.name = "i82562",
.pci.qdev.desc = "Intel i82562 Ethernet",
.device = i82562,
/* TODO: check device id. */
.pci.device_id = PCI_DEVICE_ID_INTEL_82551IT,
/* TODO: wrong revision id. */
.pci.revision = 0x0e,
.stats_size = 80,
.has_extended_tcb_support = true,
.power_management = true,
},{
/* Toshiba Tecra 8200. */
.pci.qdev.name = "i82801",
.pci.qdev.desc = "Intel i82801 Ethernet",
.device = i82801,
.pci.device_id = 0x2449,
.pci.revision = 0x03,
.stats_size = 80,
.has_extended_tcb_support = true,
.power_management = true,
}
};
static Property e100_properties[] = {
DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
DEFINE_PROP_END_OF_LIST(),
};
static void eepro100_register_devices(void)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(e100_devices); i++) {
PCIDeviceInfo *pci_dev = &e100_devices[i].pci;
/* We use the same rom file for all device ids.
QEMU fixes the device id during rom load. */
pci_dev->vendor_id = PCI_VENDOR_ID_INTEL;
pci_dev->class_id = PCI_CLASS_NETWORK_ETHERNET;
pci_dev->romfile = "pxe-eepro100.rom";
pci_dev->init = e100_nic_init;
pci_dev->exit = pci_nic_uninit;
pci_dev->qdev.props = e100_properties;
pci_dev->qdev.size = sizeof(EEPRO100State);
pci_qdev_register(pci_dev);
}
}
device_init(eepro100_register_devices)