/* * QEMU i8255x (PRO100) emulation * * Copyright (c) 2006-2007 Stefan Weil * * Portions of the code are copies from grub / etherboot eepro100.c * and linux e100.c. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Tested features (i82559): * PXE boot (i386) no valid link * Linux networking (i386) ok * * Untested: * non-i386 platforms * Windows networking * * References: * * Intel 8255x 10/100 Mbps Ethernet Controller Family * Open Source Software Developer Manual */ #if defined(TARGET_I386) # warning "PXE boot still not working!" #endif #include <assert.h> #include <stddef.h> /* offsetof */ #include "hw.h" #include "pci.h" #include "net.h" #include "eeprom93xx.h" /* Common declarations for all PCI devices. */ #define PCI_CONFIG_8(offset, value) \ (pci_conf[offset] = (value)) #define PCI_CONFIG_16(offset, value) \ (*(uint16_t *)&pci_conf[offset] = cpu_to_le16(value)) #define PCI_CONFIG_32(offset, value) \ (*(uint32_t *)&pci_conf[offset] = cpu_to_le32(value)) #define KiB 1024 /* debug EEPRO100 card */ //~ #define DEBUG_EEPRO100 #ifdef DEBUG_EEPRO100 #define logout(fmt, args...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ##args) #else #define logout(fmt, args...) ((void)0) #endif /* Set flags to 0 to disable debug output. */ #define MDI 0 #define TRACE(flag, command) ((flag) ? (command) : (void)0) #define missing(text) assert(!"feature is missing in this emulation: " text) #define MAX_ETH_FRAME_SIZE 1514 /* This driver supports several different devices which are declared here. */ #define i82551 0x82551 #define i82557B 0x82557b #define i82557C 0x82557c #define i82558B 0x82558b #define i82559C 0x82559c #define i82559ER 0x82559e #define i82562 0x82562 #define EEPROM_SIZE 64 #define PCI_MEM_SIZE (4 * KiB) #define PCI_IO_SIZE 64 #define PCI_FLASH_SIZE (128 * KiB) #define BIT(n) (1 << (n)) #define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m) /* The SCB accepts the following controls for the Tx and Rx units: */ #define CU_NOP 0x0000 /* No operation. */ #define CU_START 0x0010 /* CU start. */ #define CU_RESUME 0x0020 /* CU resume. */ #define CU_STATSADDR 0x0040 /* Load dump counters address. */ #define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */ #define CU_CMD_BASE 0x0060 /* Load CU base address. */ #define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */ #define CU_SRESUME 0x00a0 /* CU static resume. */ #define RU_NOP 0x0000 #define RX_START 0x0001 #define RX_RESUME 0x0002 #define RX_ABORT 0x0004 #define RX_ADDR_LOAD 0x0006 #define RX_RESUMENR 0x0007 #define INT_MASK 0x0100 #define DRVR_INT 0x0200 /* Driver generated interrupt. */ typedef unsigned char bool; /* Offsets to the various registers. All accesses need not be longword aligned. */ enum speedo_offsets { SCBStatus = 0, SCBAck = 1, SCBCmd = 2, /* Rx/Command Unit command and status. */ SCBIntmask = 3, SCBPointer = 4, /* General purpose pointer. */ SCBPort = 8, /* Misc. commands and operands. */ SCBflash = 12, SCBeeprom = 14, /* EEPROM and flash memory control. */ SCBCtrlMDI = 16, /* MDI interface control. */ SCBEarlyRx = 20, /* Early receive byte count. */ SCBFlow = 24, }; /* A speedo3 transmit buffer descriptor with two buffers... */ typedef struct { uint16_t status; uint16_t command; uint32_t link; /* void * */ uint32_t tx_desc_addr; /* transmit buffer decsriptor array address. */ uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */ uint8_t tx_threshold; /* transmit threshold */ uint8_t tbd_count; /* TBD number */ //~ /* This constitutes two "TBD" entries: hdr and data */ //~ uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */ //~ int32_t tx_buf_size0; /* Length of Tx hdr. */ //~ uint32_t tx_buf_addr1; /* void *, data to be transmitted. */ //~ int32_t tx_buf_size1; /* Length of Tx data. */ } eepro100_tx_t; /* Receive frame descriptor. */ typedef struct { int16_t status; uint16_t command; uint32_t link; /* struct RxFD * */ uint32_t rx_buf_addr; /* void * */ uint16_t count; uint16_t size; char packet[MAX_ETH_FRAME_SIZE + 4]; } eepro100_rx_t; typedef struct { uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions, tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, tx_multiple_collisions, tx_total_collisions; uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors, rx_resource_errors, rx_overrun_errors, rx_cdt_errors, rx_short_frame_errors; uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; uint16_t xmt_tco_frames, rcv_tco_frames; uint32_t complete; } eepro100_stats_t; typedef enum { cu_idle = 0, cu_suspended = 1, cu_active = 2, cu_lpq_active = 2, cu_hqp_active = 3 } cu_state_t; typedef enum { ru_idle = 0, ru_suspended = 1, ru_no_resources = 2, ru_ready = 4 } ru_state_t; typedef struct { #if 1 uint8_t cmd; uint32_t start; uint32_t stop; uint8_t boundary; uint8_t tsr; uint8_t tpsr; uint16_t tcnt; uint16_t rcnt; uint32_t rsar; uint8_t rsr; uint8_t rxcr; uint8_t isr; uint8_t dcfg; uint8_t imr; uint8_t phys[6]; /* mac address */ uint8_t curpag; uint8_t mult[8]; /* multicast mask array */ int mmio_index; PCIDevice *pci_dev; VLANClientState *vc; #endif uint8_t scb_stat; /* SCB stat/ack byte */ uint8_t int_stat; /* PCI interrupt status */ uint32_t region[3]; /* PCI region addresses */ uint8_t macaddr[6]; uint32_t statcounter[19]; uint16_t mdimem[32]; eeprom_t *eeprom; uint32_t device; /* device variant */ uint32_t pointer; /* (cu_base + cu_offset) address the next command block in the command block list. */ uint32_t cu_base; /* CU base address */ uint32_t cu_offset; /* CU address offset */ /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */ uint32_t ru_base; /* RU base address */ uint32_t ru_offset; /* RU address offset */ uint32_t statsaddr; /* pointer to eepro100_stats_t */ eepro100_stats_t statistics; /* statistical counters */ #if 0 uint16_t status; #endif /* Configuration bytes. */ uint8_t configuration[22]; /* Data in mem is always in the byte order of the controller (le). */ uint8_t mem[PCI_MEM_SIZE]; } EEPRO100State; /* Default values for MDI (PHY) registers */ static const uint16_t eepro100_mdi_default[] = { /* MDI Registers 0 - 6, 7 */ 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000, /* MDI Registers 8 - 15 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* MDI Registers 16 - 31 */ 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, }; /* Readonly mask for MDI (PHY) registers */ static const uint16_t eepro100_mdi_mask[] = { 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, }; #define POLYNOMIAL 0x04c11db6 /* From FreeBSD */ /* XXX: optimize */ static int compute_mcast_idx(const uint8_t * ep) { uint32_t crc; int carry, i, j; uint8_t b; crc = 0xffffffff; for (i = 0; i < 6; i++) { b = *ep++; for (j = 0; j < 8; j++) { carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01); crc <<= 1; b >>= 1; if (carry) crc = ((crc ^ POLYNOMIAL) | carry); } } return (crc >> 26); } #if defined(DEBUG_EEPRO100) static const char *nic_dump(const uint8_t * buf, unsigned size) { static char dump[3 * 16 + 1]; char *p = &dump[0]; if (size > 16) size = 16; while (size-- > 0) { p += sprintf(p, " %02x", *buf++); } return dump; } #endif /* DEBUG_EEPRO100 */ enum scb_stat_ack { stat_ack_not_ours = 0x00, stat_ack_sw_gen = 0x04, stat_ack_rnr = 0x10, stat_ack_cu_idle = 0x20, stat_ack_frame_rx = 0x40, stat_ack_cu_cmd_done = 0x80, stat_ack_not_present = 0xFF, stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), }; static void disable_interrupt(EEPRO100State * s) { if (s->int_stat) { logout("interrupt disabled\n"); qemu_irq_lower(s->pci_dev->irq[0]); s->int_stat = 0; } } static void enable_interrupt(EEPRO100State * s) { if (!s->int_stat) { logout("interrupt enabled\n"); qemu_irq_raise(s->pci_dev->irq[0]); s->int_stat = 1; } } static void eepro100_acknowledge(EEPRO100State * s) { s->scb_stat &= ~s->mem[SCBAck]; s->mem[SCBAck] = s->scb_stat; if (s->scb_stat == 0) { disable_interrupt(s); } } static void eepro100_interrupt(EEPRO100State * s, uint8_t stat) { uint8_t mask = ~s->mem[SCBIntmask]; s->mem[SCBAck] |= stat; stat = s->scb_stat = s->mem[SCBAck]; stat &= (mask | 0x0f); //~ stat &= (~s->mem[SCBIntmask] | 0x0xf); if (stat && (mask & 0x01)) { /* SCB mask and SCB Bit M do not disable interrupt. */ enable_interrupt(s); } else if (s->int_stat) { disable_interrupt(s); } } static void eepro100_cx_interrupt(EEPRO100State * s) { /* CU completed action command. */ /* Transmit not ok (82557 only, not in emulation). */ eepro100_interrupt(s, 0x80); } static void eepro100_cna_interrupt(EEPRO100State * s) { /* CU left the active state. */ eepro100_interrupt(s, 0x20); } static void eepro100_fr_interrupt(EEPRO100State * s) { /* RU received a complete frame. */ eepro100_interrupt(s, 0x40); } #if 0 static void eepro100_rnr_interrupt(EEPRO100State * s) { /* RU is not ready. */ eepro100_interrupt(s, 0x10); } #endif static void eepro100_mdi_interrupt(EEPRO100State * s) { /* MDI completed read or write cycle. */ eepro100_interrupt(s, 0x08); } static void eepro100_swi_interrupt(EEPRO100State * s) { /* Software has requested an interrupt. */ eepro100_interrupt(s, 0x04); } #if 0 static void eepro100_fcp_interrupt(EEPRO100State * s) { /* Flow control pause interrupt (82558 and later). */ eepro100_interrupt(s, 0x01); } #endif static void pci_reset(EEPRO100State * s) { uint32_t device = s->device; uint8_t *pci_conf = s->pci_dev->config; logout("%p\n", s); /* PCI Vendor ID */ pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); /* PCI Device ID */ pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT); /* PCI Command */ PCI_CONFIG_16(PCI_COMMAND, 0x0000); /* PCI Status */ PCI_CONFIG_16(PCI_STATUS, 0x2800); /* PCI Revision ID */ PCI_CONFIG_8(PCI_REVISION_ID, 0x08); /* PCI Class Code */ PCI_CONFIG_8(0x09, 0x00); pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET); /* PCI Cache Line Size */ /* check cache line size!!! */ //~ PCI_CONFIG_8(0x0c, 0x00); /* PCI Latency Timer */ PCI_CONFIG_8(0x0d, 0x20); // latency timer = 32 clocks /* PCI Header Type */ /* BIST (built-in self test) */ #if defined(TARGET_I386) // !!! workaround for buggy bios //~ #define PCI_ADDRESS_SPACE_MEM_PREFETCH 0 #endif #if 0 /* PCI Base Address Registers */ /* CSR Memory Mapped Base Address */ PCI_CONFIG_32(PCI_BASE_ADDRESS_0, PCI_ADDRESS_SPACE_MEM | PCI_ADDRESS_SPACE_MEM_PREFETCH); /* CSR I/O Mapped Base Address */ PCI_CONFIG_32(PCI_BASE_ADDRESS_1, PCI_ADDRESS_SPACE_IO); #if 0 /* Flash Memory Mapped Base Address */ PCI_CONFIG_32(PCI_BASE_ADDRESS_2, 0xfffe0000 | PCI_ADDRESS_SPACE_MEM); #endif #endif /* Expansion ROM Base Address (depends on boot disable!!!) */ PCI_CONFIG_32(0x30, 0x00000000); /* Capability Pointer */ PCI_CONFIG_8(0x34, 0xdc); /* Interrupt Pin */ PCI_CONFIG_8(0x3d, 1); // interrupt pin 0 /* Minimum Grant */ PCI_CONFIG_8(0x3e, 0x08); /* Maximum Latency */ PCI_CONFIG_8(0x3f, 0x18); /* Power Management Capabilities / Next Item Pointer / Capability ID */ PCI_CONFIG_32(0xdc, 0x7e210001); switch (device) { case i82551: //~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1209); PCI_CONFIG_8(PCI_REVISION_ID, 0x0f); break; case i82557B: PCI_CONFIG_16(PCI_DEVICE_ID, 0x1229); PCI_CONFIG_8(PCI_REVISION_ID, 0x02); break; case i82557C: PCI_CONFIG_16(PCI_DEVICE_ID, 0x1229); PCI_CONFIG_8(PCI_REVISION_ID, 0x03); break; case i82558B: PCI_CONFIG_16(PCI_DEVICE_ID, 0x1229); PCI_CONFIG_16(PCI_STATUS, 0x2810); PCI_CONFIG_8(PCI_REVISION_ID, 0x05); break; case i82559C: PCI_CONFIG_16(PCI_DEVICE_ID, 0x1229); PCI_CONFIG_16(PCI_STATUS, 0x2810); //~ PCI_CONFIG_8(PCI_REVISION_ID, 0x08); break; case i82559ER: //~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1209); PCI_CONFIG_16(PCI_STATUS, 0x2810); PCI_CONFIG_8(PCI_REVISION_ID, 0x09); break; //~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1029); //~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1030); /* 82559 InBusiness 10/100 */ default: logout("Device %X is undefined!\n", device); } if (device == i82557C || device == i82558B || device == i82559C) { logout("Get device id and revision from EEPROM!!!\n"); } } static void nic_selective_reset(EEPRO100State * s) { size_t i; uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom); //~ eeprom93xx_reset(s->eeprom); memcpy(eeprom_contents, s->macaddr, 6); eeprom_contents[0xa] = 0x4000; uint16_t sum = 0; for (i = 0; i < EEPROM_SIZE - 1; i++) { sum += eeprom_contents[i]; } eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum; memset(s->mem, 0, sizeof(s->mem)); uint32_t val = BIT(21); memcpy(&s->mem[SCBCtrlMDI], &val, sizeof(val)); assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default)); memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem)); } static void nic_reset(void *opaque) { EEPRO100State *s = (EEPRO100State *) opaque; logout("%p\n", s); static int first; if (!first) { first = 1; } nic_selective_reset(s); } #if defined(DEBUG_EEPRO100) static const char *reg[PCI_IO_SIZE / 4] = { "Command/Status", "General Pointer", "Port", "EEPROM/Flash Control", "MDI Control", "Receive DMA Byte Count", "Flow control register", "General Status/Control" }; static char *regname(uint32_t addr) { static char buf[16]; if (addr < PCI_IO_SIZE) { const char *r = reg[addr / 4]; if (r != 0) { sprintf(buf, "%s+%u", r, addr % 4); } else { sprintf(buf, "0x%02x", addr); } } else { sprintf(buf, "??? 0x%08x", addr); } return buf; } #endif /* DEBUG_EEPRO100 */ #if 0 static uint16_t eepro100_read_status(EEPRO100State * s) { uint16_t val = s->status; logout("val=0x%04x\n", val); return val; } static void eepro100_write_status(EEPRO100State * s, uint16_t val) { logout("val=0x%04x\n", val); s->status = val; } #endif /***************************************************************************** * * Command emulation. * ****************************************************************************/ #if 0 static uint16_t eepro100_read_command(EEPRO100State * s) { uint16_t val = 0xffff; //~ logout("val=0x%04x\n", val); return val; } #endif /* Commands that can be put in a command list entry. */ enum commands { CmdNOp = 0, CmdIASetup = 1, CmdConfigure = 2, CmdMulticastList = 3, CmdTx = 4, CmdTDR = 5, /* load microcode */ CmdDump = 6, CmdDiagnose = 7, /* And some extra flags: */ CmdSuspend = 0x4000, /* Suspend after completion. */ CmdIntr = 0x2000, /* Interrupt after completion. */ CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */ }; static cu_state_t get_cu_state(EEPRO100State * s) { return ((s->mem[SCBStatus] >> 6) & 0x03); } static void set_cu_state(EEPRO100State * s, cu_state_t state) { s->mem[SCBStatus] = (s->mem[SCBStatus] & 0x3f) + (state << 6); } static ru_state_t get_ru_state(EEPRO100State * s) { return ((s->mem[SCBStatus] >> 2) & 0x0f); } static void set_ru_state(EEPRO100State * s, ru_state_t state) { s->mem[SCBStatus] = (s->mem[SCBStatus] & 0xc3) + (state << 2); } static void dump_statistics(EEPRO100State * s) { /* Dump statistical data. Most data is never changed by the emulation * and always 0, so we first just copy the whole block and then those * values which really matter. * Number of data should check configuration!!! */ cpu_physical_memory_write(s->statsaddr, (uint8_t *) & s->statistics, 64); stl_phys(s->statsaddr + 0, s->statistics.tx_good_frames); stl_phys(s->statsaddr + 36, s->statistics.rx_good_frames); stl_phys(s->statsaddr + 48, s->statistics.rx_resource_errors); stl_phys(s->statsaddr + 60, s->statistics.rx_short_frame_errors); //~ stw_phys(s->statsaddr + 76, s->statistics.xmt_tco_frames); //~ stw_phys(s->statsaddr + 78, s->statistics.rcv_tco_frames); //~ missing("CU dump statistical counters"); } static void eepro100_cu_command(EEPRO100State * s, uint8_t val) { eepro100_tx_t tx; uint32_t cb_address; switch (val) { case CU_NOP: /* No operation. */ break; case CU_START: if (get_cu_state(s) != cu_idle) { /* Intel documentation says that CU must be idle for the CU * start command. Intel driver for Linux also starts the CU * from suspended state. */ logout("CU state is %u, should be %u\n", get_cu_state(s), cu_idle); //~ assert(!"wrong CU state"); } set_cu_state(s, cu_active); s->cu_offset = s->pointer; next_command: cb_address = s->cu_base + s->cu_offset; cpu_physical_memory_read(cb_address, (uint8_t *) & tx, sizeof(tx)); uint16_t status = le16_to_cpu(tx.status); uint16_t command = le16_to_cpu(tx.command); logout ("val=0x%02x (cu start), status=0x%04x, command=0x%04x, link=0x%08x\n", val, status, command, tx.link); bool bit_el = ((command & 0x8000) != 0); bool bit_s = ((command & 0x4000) != 0); bool bit_i = ((command & 0x2000) != 0); bool bit_nc = ((command & 0x0010) != 0); //~ bool bit_sf = ((command & 0x0008) != 0); uint16_t cmd = command & 0x0007; s->cu_offset = le32_to_cpu(tx.link); switch (cmd) { case CmdNOp: /* Do nothing. */ break; case CmdIASetup: cpu_physical_memory_read(cb_address + 8, &s->macaddr[0], 6); logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6)); break; case CmdConfigure: cpu_physical_memory_read(cb_address + 8, &s->configuration[0], sizeof(s->configuration)); logout("configuration: %s\n", nic_dump(&s->configuration[0], 16)); break; case CmdMulticastList: //~ missing("multicast list"); break; case CmdTx: (void)0; uint32_t tbd_array = le32_to_cpu(tx.tx_desc_addr); uint16_t tcb_bytes = (le16_to_cpu(tx.tcb_bytes) & 0x3fff); logout ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n", tbd_array, tcb_bytes, tx.tbd_count); assert(!bit_nc); //~ assert(!bit_sf); assert(tcb_bytes <= 2600); /* Next assertion fails for local configuration. */ //~ assert((tcb_bytes > 0) || (tbd_array != 0xffffffff)); if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) { logout ("illegal values of TBD array address and TCB byte count!\n"); } uint8_t buf[MAX_ETH_FRAME_SIZE + 4]; uint16_t size = 0; uint32_t tbd_address = cb_address + 0x10; assert(tcb_bytes <= sizeof(buf)); while (size < tcb_bytes) { uint32_t tx_buffer_address = ldl_phys(tbd_address); uint16_t tx_buffer_size = lduw_phys(tbd_address + 4); //~ uint16_t tx_buffer_el = lduw_phys(tbd_address + 6); tbd_address += 8; logout ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n", tx_buffer_address, tx_buffer_size); cpu_physical_memory_read(tx_buffer_address, &buf[size], tx_buffer_size); size += tx_buffer_size; } if (tbd_array == 0xffffffff) { /* Simplified mode. Was already handled by code above. */ } else { /* Flexible mode. */ uint8_t tbd_count = 0; if (!(s->configuration[6] & BIT(4))) { /* Extended TCB. */ assert(tcb_bytes == 0); for (; tbd_count < 2; tbd_count++) { uint32_t tx_buffer_address = ldl_phys(tbd_address); uint16_t tx_buffer_size = lduw_phys(tbd_address + 4); uint16_t tx_buffer_el = lduw_phys(tbd_address + 6); tbd_address += 8; logout ("TBD (extended mode): buffer address 0x%08x, size 0x%04x\n", tx_buffer_address, tx_buffer_size); cpu_physical_memory_read(tx_buffer_address, &buf[size], tx_buffer_size); size += tx_buffer_size; if (tx_buffer_el & 1) { break; } } } tbd_address = tbd_array; for (; tbd_count < tx.tbd_count; tbd_count++) { uint32_t tx_buffer_address = ldl_phys(tbd_address); uint16_t tx_buffer_size = lduw_phys(tbd_address + 4); uint16_t tx_buffer_el = lduw_phys(tbd_address + 6); tbd_address += 8; logout ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n", tx_buffer_address, tx_buffer_size); cpu_physical_memory_read(tx_buffer_address, &buf[size], tx_buffer_size); size += tx_buffer_size; if (tx_buffer_el & 1) { break; } } } qemu_send_packet(s->vc, buf, size); s->statistics.tx_good_frames++; /* Transmit with bad status would raise an CX/TNO interrupt. * (82557 only). Emulation never has bad status. */ //~ eepro100_cx_interrupt(s); break; case CmdTDR: logout("load microcode\n"); /* Starting with offset 8, the command contains * 64 dwords microcode which we just ignore here. */ break; default: missing("undefined command"); } /* Write new status (success). */ stw_phys(cb_address, status | 0x8000 | 0x2000); if (bit_i) { /* CU completed action. */ eepro100_cx_interrupt(s); } if (bit_el) { /* CU becomes idle. */ set_cu_state(s, cu_idle); eepro100_cna_interrupt(s); } else if (bit_s) { /* CU becomes suspended. */ set_cu_state(s, cu_suspended); eepro100_cna_interrupt(s); } else { /* More entries in list. */ logout("CU list with at least one more entry\n"); goto next_command; } logout("CU list empty\n"); /* List is empty. Now CU is idle or suspended. */ break; case CU_RESUME: if (get_cu_state(s) != cu_suspended) { logout("bad CU resume from CU state %u\n", get_cu_state(s)); /* Workaround for bad Linux eepro100 driver which resumes * from idle state. */ //~ missing("cu resume"); set_cu_state(s, cu_suspended); } if (get_cu_state(s) == cu_suspended) { logout("CU resuming\n"); set_cu_state(s, cu_active); goto next_command; } break; case CU_STATSADDR: /* Load dump counters address. */ s->statsaddr = s->pointer; logout("val=0x%02x (status address)\n", val); break; case CU_SHOWSTATS: /* Dump statistical counters. */ dump_statistics(s); break; case CU_CMD_BASE: /* Load CU base. */ logout("val=0x%02x (CU base address)\n", val); s->cu_base = s->pointer; break; case CU_DUMPSTATS: /* Dump and reset statistical counters. */ dump_statistics(s); memset(&s->statistics, 0, sizeof(s->statistics)); break; case CU_SRESUME: /* CU static resume. */ missing("CU static resume"); break; default: missing("Undefined CU command"); } } static void eepro100_ru_command(EEPRO100State * s, uint8_t val) { switch (val) { case RU_NOP: /* No operation. */ break; case RX_START: /* RU start. */ if (get_ru_state(s) != ru_idle) { logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle); //~ assert(!"wrong RU state"); } set_ru_state(s, ru_ready); s->ru_offset = s->pointer; logout("val=0x%02x (rx start)\n", val); break; case RX_RESUME: /* Restart RU. */ if (get_ru_state(s) != ru_suspended) { logout("RU state is %u, should be %u\n", get_ru_state(s), ru_suspended); //~ assert(!"wrong RU state"); } set_ru_state(s, ru_ready); break; case RX_ADDR_LOAD: /* Load RU base. */ logout("val=0x%02x (RU base address)\n", val); s->ru_base = s->pointer; break; default: logout("val=0x%02x (undefined RU command)\n", val); missing("Undefined SU command"); } } static void eepro100_write_command(EEPRO100State * s, uint8_t val) { eepro100_ru_command(s, val & 0x0f); eepro100_cu_command(s, val & 0xf0); if ((val) == 0) { logout("val=0x%02x\n", val); } /* Clear command byte after command was accepted. */ s->mem[SCBCmd] = 0; } /***************************************************************************** * * EEPROM emulation. * ****************************************************************************/ #define EEPROM_CS 0x02 #define EEPROM_SK 0x01 #define EEPROM_DI 0x04 #define EEPROM_DO 0x08 static uint16_t eepro100_read_eeprom(EEPRO100State * s) { uint16_t val; memcpy(&val, &s->mem[SCBeeprom], sizeof(val)); if (eeprom93xx_read(s->eeprom)) { val |= EEPROM_DO; } else { val &= ~EEPROM_DO; } return val; } static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val) { logout("write val=0x%02x\n", val); /* mask unwriteable bits */ //~ val = SET_MASKED(val, 0x31, eeprom->value); int eecs = ((val & EEPROM_CS) != 0); int eesk = ((val & EEPROM_SK) != 0); int eedi = ((val & EEPROM_DI) != 0); eeprom93xx_write(eeprom, eecs, eesk, eedi); } static void eepro100_write_pointer(EEPRO100State * s, uint32_t val) { s->pointer = le32_to_cpu(val); logout("val=0x%08x\n", val); } /***************************************************************************** * * MDI emulation. * ****************************************************************************/ #if defined(DEBUG_EEPRO100) static const char *mdi_op_name[] = { "opcode 0", "write", "read", "opcode 3" }; static const char *mdi_reg_name[] = { "Control", "Status", "PHY Identification (Word 1)", "PHY Identification (Word 2)", "Auto-Negotiation Advertisement", "Auto-Negotiation Link Partner Ability", "Auto-Negotiation Expansion" }; #endif /* DEBUG_EEPRO100 */ static uint32_t eepro100_read_mdi(EEPRO100State * s) { uint32_t val; memcpy(&val, &s->mem[0x10], sizeof(val)); #ifdef DEBUG_EEPRO100 uint8_t raiseint = (val & BIT(29)) >> 29; uint8_t opcode = (val & BITS(27, 26)) >> 26; uint8_t phy = (val & BITS(25, 21)) >> 21; uint8_t reg = (val & BITS(20, 16)) >> 16; uint16_t data = (val & BITS(15, 0)); #endif /* Emulation takes no time to finish MDI transaction. */ val |= BIT(28); TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", val, raiseint, mdi_op_name[opcode], phy, mdi_reg_name[reg], data)); return val; } //~ #define BITS(val, upper, lower) (val & ???) static void eepro100_write_mdi(EEPRO100State * s, uint32_t val) { uint8_t raiseint = (val & BIT(29)) >> 29; uint8_t opcode = (val & BITS(27, 26)) >> 26; uint8_t phy = (val & BITS(25, 21)) >> 21; uint8_t reg = (val & BITS(20, 16)) >> 16; uint16_t data = (val & BITS(15, 0)); if (phy != 1) { /* Unsupported PHY address. */ //~ logout("phy must be 1 but is %u\n", phy); data = 0; } else if (opcode != 1 && opcode != 2) { /* Unsupported opcode. */ logout("opcode must be 1 or 2 but is %u\n", opcode); data = 0; } else if (reg > 6) { /* Unsupported register. */ logout("register must be 0...6 but is %u\n", reg); data = 0; } else { TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", val, raiseint, mdi_op_name[opcode], phy, mdi_reg_name[reg], data)); if (opcode == 1) { /* MDI write */ switch (reg) { case 0: /* Control Register */ if (data & 0x8000) { /* Reset status and control registers to default. */ s->mdimem[0] = eepro100_mdi_default[0]; s->mdimem[1] = eepro100_mdi_default[1]; data = s->mdimem[reg]; } else { /* Restart Auto Configuration = Normal Operation */ data &= ~0x0200; } break; case 1: /* Status Register */ missing("not writable"); data = s->mdimem[reg]; break; case 2: /* PHY Identification Register (Word 1) */ case 3: /* PHY Identification Register (Word 2) */ missing("not implemented"); break; case 4: /* Auto-Negotiation Advertisement Register */ case 5: /* Auto-Negotiation Link Partner Ability Register */ break; case 6: /* Auto-Negotiation Expansion Register */ default: missing("not implemented"); } s->mdimem[reg] = data; } else if (opcode == 2) { /* MDI read */ switch (reg) { case 0: /* Control Register */ if (data & 0x8000) { /* Reset status and control registers to default. */ s->mdimem[0] = eepro100_mdi_default[0]; s->mdimem[1] = eepro100_mdi_default[1]; } break; case 1: /* Status Register */ s->mdimem[reg] |= 0x0020; break; case 2: /* PHY Identification Register (Word 1) */ case 3: /* PHY Identification Register (Word 2) */ case 4: /* Auto-Negotiation Advertisement Register */ break; case 5: /* Auto-Negotiation Link Partner Ability Register */ s->mdimem[reg] = 0x41fe; break; case 6: /* Auto-Negotiation Expansion Register */ s->mdimem[reg] = 0x0001; break; } data = s->mdimem[reg]; } /* Emulation takes no time to finish MDI transaction. * Set MDI bit in SCB status register. */ s->mem[SCBAck] |= 0x08; val |= BIT(28); if (raiseint) { eepro100_mdi_interrupt(s); } } val = (val & 0xffff0000) + data; memcpy(&s->mem[0x10], &val, sizeof(val)); } /***************************************************************************** * * Port emulation. * ****************************************************************************/ #define PORT_SOFTWARE_RESET 0 #define PORT_SELFTEST 1 #define PORT_SELECTIVE_RESET 2 #define PORT_DUMP 3 #define PORT_SELECTION_MASK 3 typedef struct { uint32_t st_sign; /* Self Test Signature */ uint32_t st_result; /* Self Test Results */ } eepro100_selftest_t; static uint32_t eepro100_read_port(EEPRO100State * s) { return 0; } static void eepro100_write_port(EEPRO100State * s, uint32_t val) { val = le32_to_cpu(val); uint32_t address = (val & ~PORT_SELECTION_MASK); uint8_t selection = (val & PORT_SELECTION_MASK); switch (selection) { case PORT_SOFTWARE_RESET: nic_reset(s); break; case PORT_SELFTEST: logout("selftest address=0x%08x\n", address); eepro100_selftest_t data; cpu_physical_memory_read(address, (uint8_t *) & data, sizeof(data)); data.st_sign = 0xffffffff; data.st_result = 0; cpu_physical_memory_write(address, (uint8_t *) & data, sizeof(data)); break; case PORT_SELECTIVE_RESET: logout("selective reset, selftest address=0x%08x\n", address); nic_selective_reset(s); break; default: logout("val=0x%08x\n", val); missing("unknown port selection"); } } /***************************************************************************** * * General hardware emulation. * ****************************************************************************/ static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr) { uint8_t val; if (addr <= sizeof(s->mem) - sizeof(val)) { memcpy(&val, &s->mem[addr], sizeof(val)); } switch (addr) { case SCBStatus: //~ val = eepro100_read_status(s); logout("addr=%s val=0x%02x\n", regname(addr), val); break; case SCBAck: //~ val = eepro100_read_status(s); logout("addr=%s val=0x%02x\n", regname(addr), val); break; case SCBCmd: logout("addr=%s val=0x%02x\n", regname(addr), val); //~ val = eepro100_read_command(s); break; case SCBIntmask: logout("addr=%s val=0x%02x\n", regname(addr), val); break; case SCBPort + 3: logout("addr=%s val=0x%02x\n", regname(addr), val); break; case SCBeeprom: val = eepro100_read_eeprom(s); break; case 0x1b: /* PMDR (power management driver register) */ val = 0; logout("addr=%s val=0x%02x\n", regname(addr), val); break; case 0x1d: /* general status register */ /* 100 Mbps full duplex, valid link */ val = 0x07; logout("addr=General Status val=%02x\n", val); break; default: logout("addr=%s val=0x%02x\n", regname(addr), val); missing("unknown byte read"); } return val; } static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr) { uint16_t val; if (addr <= sizeof(s->mem) - sizeof(val)) { memcpy(&val, &s->mem[addr], sizeof(val)); } logout("addr=%s val=0x%04x\n", regname(addr), val); switch (addr) { case SCBStatus: //~ val = eepro100_read_status(s); break; case SCBeeprom: val = eepro100_read_eeprom(s); break; default: logout("addr=%s val=0x%04x\n", regname(addr), val); missing("unknown word read"); } return val; } static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr) { uint32_t val; if (addr <= sizeof(s->mem) - sizeof(val)) { memcpy(&val, &s->mem[addr], sizeof(val)); } switch (addr) { case SCBStatus: //~ val = eepro100_read_status(s); logout("addr=%s val=0x%08x\n", regname(addr), val); break; case SCBPointer: //~ val = eepro100_read_pointer(s); logout("addr=%s val=0x%08x\n", regname(addr), val); break; case SCBPort: val = eepro100_read_port(s); logout("addr=%s val=0x%08x\n", regname(addr), val); break; case SCBCtrlMDI: val = eepro100_read_mdi(s); break; default: logout("addr=%s val=0x%08x\n", regname(addr), val); missing("unknown longword read"); } return val; } static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val) { if (addr <= sizeof(s->mem) - sizeof(val)) { memcpy(&s->mem[addr], &val, sizeof(val)); } logout("addr=%s val=0x%02x\n", regname(addr), val); switch (addr) { case SCBStatus: //~ eepro100_write_status(s, val); break; case SCBAck: eepro100_acknowledge(s); break; case SCBCmd: eepro100_write_command(s, val); break; case SCBIntmask: if (val & BIT(1)) { eepro100_swi_interrupt(s); } eepro100_interrupt(s, 0); break; case SCBPort + 3: case SCBFlow: case SCBFlow + 1: case SCBFlow + 2: case SCBFlow + 3: logout("addr=%s val=0x%02x\n", regname(addr), val); break; case SCBeeprom: eepro100_write_eeprom(s->eeprom, val); break; default: logout("addr=%s val=0x%02x\n", regname(addr), val); missing("unknown byte write"); } } static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val) { if (addr <= sizeof(s->mem) - sizeof(val)) { memcpy(&s->mem[addr], &val, sizeof(val)); } logout("addr=%s val=0x%04x\n", regname(addr), val); switch (addr) { case SCBStatus: //~ eepro100_write_status(s, val); eepro100_acknowledge(s); break; case SCBCmd: eepro100_write_command(s, val); eepro100_write1(s, SCBIntmask, val >> 8); break; case SCBeeprom: eepro100_write_eeprom(s->eeprom, val); break; default: logout("addr=%s val=0x%04x\n", regname(addr), val); missing("unknown word write"); } } static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val) { if (addr <= sizeof(s->mem) - sizeof(val)) { memcpy(&s->mem[addr], &val, sizeof(val)); } switch (addr) { case SCBPointer: eepro100_write_pointer(s, val); break; case SCBPort: logout("addr=%s val=0x%08x\n", regname(addr), val); eepro100_write_port(s, val); break; case SCBCtrlMDI: eepro100_write_mdi(s, val); break; default: logout("addr=%s val=0x%08x\n", regname(addr), val); missing("unknown longword write"); } } static uint32_t ioport_read1(void *opaque, uint32_t addr) { EEPRO100State *s = opaque; //~ logout("addr=%s\n", regname(addr)); return eepro100_read1(s, addr - s->region[1]); } static uint32_t ioport_read2(void *opaque, uint32_t addr) { EEPRO100State *s = opaque; return eepro100_read2(s, addr - s->region[1]); } static uint32_t ioport_read4(void *opaque, uint32_t addr) { EEPRO100State *s = opaque; return eepro100_read4(s, addr - s->region[1]); } static void ioport_write1(void *opaque, uint32_t addr, uint32_t val) { EEPRO100State *s = opaque; //~ logout("addr=%s val=0x%02x\n", regname(addr), val); eepro100_write1(s, addr - s->region[1], val); } static void ioport_write2(void *opaque, uint32_t addr, uint32_t val) { EEPRO100State *s = opaque; eepro100_write2(s, addr - s->region[1], val); } static void ioport_write4(void *opaque, uint32_t addr, uint32_t val) { EEPRO100State *s = opaque; eepro100_write4(s, addr - s->region[1], val); } /***********************************************************/ /* PCI EEPRO100 definitions */ typedef struct PCIEEPRO100State { PCIDevice dev; EEPRO100State eepro100; } PCIEEPRO100State; static void pci_map(PCIDevice * pci_dev, int region_num, uint32_t addr, uint32_t size, int type) { PCIEEPRO100State *d = (PCIEEPRO100State *) pci_dev; EEPRO100State *s = &d->eepro100; logout("region %d, addr=0x%08x, size=0x%08x, type=%d\n", region_num, addr, size, type); assert(region_num == 1); register_ioport_write(addr, size, 1, ioport_write1, s); register_ioport_read(addr, size, 1, ioport_read1, s); register_ioport_write(addr, size, 2, ioport_write2, s); register_ioport_read(addr, size, 2, ioport_read2, s); register_ioport_write(addr, size, 4, ioport_write4, s); register_ioport_read(addr, size, 4, ioport_read4, s); s->region[region_num] = addr; } static void pci_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { EEPRO100State *s = opaque; //~ logout("addr=%s val=0x%02x\n", regname(addr), val); eepro100_write1(s, addr, val); } static void pci_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val) { EEPRO100State *s = opaque; //~ logout("addr=%s val=0x%02x\n", regname(addr), val); eepro100_write2(s, addr, val); } static void pci_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { EEPRO100State *s = opaque; //~ logout("addr=%s val=0x%02x\n", regname(addr), val); eepro100_write4(s, addr, val); } static uint32_t pci_mmio_readb(void *opaque, target_phys_addr_t addr) { EEPRO100State *s = opaque; //~ logout("addr=%s\n", regname(addr)); return eepro100_read1(s, addr); } static uint32_t pci_mmio_readw(void *opaque, target_phys_addr_t addr) { EEPRO100State *s = opaque; //~ logout("addr=%s\n", regname(addr)); return eepro100_read2(s, addr); } static uint32_t pci_mmio_readl(void *opaque, target_phys_addr_t addr) { EEPRO100State *s = opaque; //~ logout("addr=%s\n", regname(addr)); return eepro100_read4(s, addr); } static CPUWriteMemoryFunc *pci_mmio_write[] = { pci_mmio_writeb, pci_mmio_writew, pci_mmio_writel }; static CPUReadMemoryFunc *pci_mmio_read[] = { pci_mmio_readb, pci_mmio_readw, pci_mmio_readl }; static void pci_mmio_map(PCIDevice * pci_dev, int region_num, uint32_t addr, uint32_t size, int type) { PCIEEPRO100State *d = (PCIEEPRO100State *) pci_dev; logout("region %d, addr=0x%08x, size=0x%08x, type=%d\n", region_num, addr, size, type); if (region_num == 0) { /* Map control / status registers. */ cpu_register_physical_memory(addr, size, d->eepro100.mmio_index); d->eepro100.region[region_num] = addr; } } static int nic_can_receive(void *opaque) { EEPRO100State *s = opaque; logout("%p\n", s); return get_ru_state(s) == ru_ready; //~ return !eepro100_buffer_full(s); } static void nic_receive(void *opaque, const uint8_t * buf, int size) { /* TODO: * - Magic packets should set bit 30 in power management driver register. * - Interesting packets should set bit 29 in power management driver register. */ EEPRO100State *s = opaque; uint16_t rfd_status = 0xa000; static const uint8_t broadcast_macaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; /* TODO: check multiple IA bit. */ assert(!(s->configuration[20] & BIT(6))); if (s->configuration[8] & 0x80) { /* CSMA is disabled. */ logout("%p received while CSMA is disabled\n", s); return; } else if (size < 64 && (s->configuration[7] & 1)) { /* Short frame and configuration byte 7/0 (discard short receive) set: * Short frame is discarded */ logout("%p received short frame (%d byte)\n", s, size); s->statistics.rx_short_frame_errors++; //~ return; } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & 8)) { /* Long frame and configuration byte 18/3 (long receive ok) not set: * Long frames are discarded. */ logout("%p received long frame (%d byte), ignored\n", s, size); return; } else if (memcmp(buf, s->macaddr, 6) == 0) { // !!! /* Frame matches individual address. */ /* TODO: check configuration byte 15/4 (ignore U/L). */ logout("%p received frame for me, len=%d\n", s, size); } else if (memcmp(buf, broadcast_macaddr, 6) == 0) { /* Broadcast frame. */ logout("%p received broadcast, len=%d\n", s, size); rfd_status |= 0x0002; } else if (buf[0] & 0x01) { // !!! /* Multicast frame. */ logout("%p received multicast, len=%d\n", s, size); /* TODO: check multicast all bit. */ assert(!(s->configuration[21] & BIT(3))); int mcast_idx = compute_mcast_idx(buf); if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) { return; } rfd_status |= 0x0002; } else if (s->configuration[15] & 1) { /* Promiscuous: receive all. */ logout("%p received frame in promiscuous mode, len=%d\n", s, size); rfd_status |= 0x0004; } else { logout("%p received frame, ignored, len=%d,%s\n", s, size, nic_dump(buf, size)); return; } if (get_ru_state(s) != ru_ready) { /* No ressources available. */ logout("no ressources, state=%u\n", get_ru_state(s)); s->statistics.rx_resource_errors++; //~ assert(!"no ressources"); return; } //~ !!! //~ $3 = {status = 0x0, command = 0xc000, link = 0x2d220, rx_buf_addr = 0x207dc, count = 0x0, size = 0x5f8, packet = {0x0 <repeats 1518 times>}} eepro100_rx_t rx; cpu_physical_memory_read(s->ru_base + s->ru_offset, (uint8_t *) & rx, offsetof(eepro100_rx_t, packet)); uint16_t rfd_command = le16_to_cpu(rx.command); uint16_t rfd_size = le16_to_cpu(rx.size); assert(size <= rfd_size); if (size < 64) { rfd_status |= 0x0080; } logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n", rfd_command, rx.link, rx.rx_buf_addr, rfd_size); stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, status), rfd_status); stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, count), size); /* Early receive interrupt not supported. */ //~ eepro100_er_interrupt(s); /* Receive CRC Transfer not supported. */ assert(!(s->configuration[18] & 4)); /* TODO: check stripping enable bit. */ //~ assert(!(s->configuration[17] & 1)); cpu_physical_memory_write(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, packet), buf, size); s->statistics.rx_good_frames++; eepro100_fr_interrupt(s); s->ru_offset = le32_to_cpu(rx.link); if (rfd_command & 0x8000) { /* EL bit is set, so this was the last frame. */ assert(0); } if (rfd_command & 0x4000) { /* S bit is set. */ set_ru_state(s, ru_suspended); } } static int nic_load(QEMUFile * f, void *opaque, int version_id) { EEPRO100State *s = (EEPRO100State *) opaque; int i; int ret; if (version_id > 3) return -EINVAL; if (s->pci_dev && version_id >= 3) { ret = pci_device_load(s->pci_dev, f); if (ret < 0) return ret; } if (version_id >= 2) { qemu_get_8s(f, &s->rxcr); } else { s->rxcr = 0x0c; } qemu_get_8s(f, &s->cmd); qemu_get_be32s(f, &s->start); qemu_get_be32s(f, &s->stop); qemu_get_8s(f, &s->boundary); qemu_get_8s(f, &s->tsr); qemu_get_8s(f, &s->tpsr); qemu_get_be16s(f, &s->tcnt); qemu_get_be16s(f, &s->rcnt); qemu_get_be32s(f, &s->rsar); qemu_get_8s(f, &s->rsr); qemu_get_8s(f, &s->isr); qemu_get_8s(f, &s->dcfg); qemu_get_8s(f, &s->imr); qemu_get_buffer(f, s->phys, 6); qemu_get_8s(f, &s->curpag); qemu_get_buffer(f, s->mult, 8); qemu_get_buffer(f, s->mem, sizeof(s->mem)); /* Restore all members of struct between scv_stat and mem */ qemu_get_8s(f, &s->scb_stat); qemu_get_8s(f, &s->int_stat); for (i = 0; i < 3; i++) qemu_get_be32s(f, &s->region[i]); qemu_get_buffer(f, s->macaddr, 6); for (i = 0; i < 19; i++) qemu_get_be32s(f, &s->statcounter[i]); for (i = 0; i < 32; i++) qemu_get_be16s(f, &s->mdimem[i]); /* The eeprom should be saved and restored by its own routines */ qemu_get_be32s(f, &s->device); qemu_get_be32s(f, &s->pointer); qemu_get_be32s(f, &s->cu_base); qemu_get_be32s(f, &s->cu_offset); qemu_get_be32s(f, &s->ru_base); qemu_get_be32s(f, &s->ru_offset); qemu_get_be32s(f, &s->statsaddr); /* Restore epro100_stats_t statistics */ qemu_get_be32s(f, &s->statistics.tx_good_frames); qemu_get_be32s(f, &s->statistics.tx_max_collisions); qemu_get_be32s(f, &s->statistics.tx_late_collisions); qemu_get_be32s(f, &s->statistics.tx_underruns); qemu_get_be32s(f, &s->statistics.tx_lost_crs); qemu_get_be32s(f, &s->statistics.tx_deferred); qemu_get_be32s(f, &s->statistics.tx_single_collisions); qemu_get_be32s(f, &s->statistics.tx_multiple_collisions); qemu_get_be32s(f, &s->statistics.tx_total_collisions); qemu_get_be32s(f, &s->statistics.rx_good_frames); qemu_get_be32s(f, &s->statistics.rx_crc_errors); qemu_get_be32s(f, &s->statistics.rx_alignment_errors); qemu_get_be32s(f, &s->statistics.rx_resource_errors); qemu_get_be32s(f, &s->statistics.rx_overrun_errors); qemu_get_be32s(f, &s->statistics.rx_cdt_errors); qemu_get_be32s(f, &s->statistics.rx_short_frame_errors); qemu_get_be32s(f, &s->statistics.fc_xmt_pause); qemu_get_be32s(f, &s->statistics.fc_rcv_pause); qemu_get_be32s(f, &s->statistics.fc_rcv_unsupported); qemu_get_be16s(f, &s->statistics.xmt_tco_frames); qemu_get_be16s(f, &s->statistics.rcv_tco_frames); qemu_get_be32s(f, &s->statistics.complete); #if 0 qemu_get_be16s(f, &s->status); #endif /* Configuration bytes. */ qemu_get_buffer(f, s->configuration, sizeof(s->configuration)); return 0; } static void nic_save(QEMUFile * f, void *opaque) { EEPRO100State *s = (EEPRO100State *) opaque; int i; if (s->pci_dev) pci_device_save(s->pci_dev, f); qemu_put_8s(f, &s->rxcr); qemu_put_8s(f, &s->cmd); qemu_put_be32s(f, &s->start); qemu_put_be32s(f, &s->stop); qemu_put_8s(f, &s->boundary); qemu_put_8s(f, &s->tsr); qemu_put_8s(f, &s->tpsr); qemu_put_be16s(f, &s->tcnt); qemu_put_be16s(f, &s->rcnt); qemu_put_be32s(f, &s->rsar); qemu_put_8s(f, &s->rsr); qemu_put_8s(f, &s->isr); qemu_put_8s(f, &s->dcfg); qemu_put_8s(f, &s->imr); qemu_put_buffer(f, s->phys, 6); qemu_put_8s(f, &s->curpag); qemu_put_buffer(f, s->mult, 8); qemu_put_buffer(f, s->mem, sizeof(s->mem)); /* Save all members of struct between scv_stat and mem */ qemu_put_8s(f, &s->scb_stat); qemu_put_8s(f, &s->int_stat); for (i = 0; i < 3; i++) qemu_put_be32s(f, &s->region[i]); qemu_put_buffer(f, s->macaddr, 6); for (i = 0; i < 19; i++) qemu_put_be32s(f, &s->statcounter[i]); for (i = 0; i < 32; i++) qemu_put_be16s(f, &s->mdimem[i]); /* The eeprom should be saved and restored by its own routines */ qemu_put_be32s(f, &s->device); qemu_put_be32s(f, &s->pointer); qemu_put_be32s(f, &s->cu_base); qemu_put_be32s(f, &s->cu_offset); qemu_put_be32s(f, &s->ru_base); qemu_put_be32s(f, &s->ru_offset); qemu_put_be32s(f, &s->statsaddr); /* Save epro100_stats_t statistics */ qemu_put_be32s(f, &s->statistics.tx_good_frames); qemu_put_be32s(f, &s->statistics.tx_max_collisions); qemu_put_be32s(f, &s->statistics.tx_late_collisions); qemu_put_be32s(f, &s->statistics.tx_underruns); qemu_put_be32s(f, &s->statistics.tx_lost_crs); qemu_put_be32s(f, &s->statistics.tx_deferred); qemu_put_be32s(f, &s->statistics.tx_single_collisions); qemu_put_be32s(f, &s->statistics.tx_multiple_collisions); qemu_put_be32s(f, &s->statistics.tx_total_collisions); qemu_put_be32s(f, &s->statistics.rx_good_frames); qemu_put_be32s(f, &s->statistics.rx_crc_errors); qemu_put_be32s(f, &s->statistics.rx_alignment_errors); qemu_put_be32s(f, &s->statistics.rx_resource_errors); qemu_put_be32s(f, &s->statistics.rx_overrun_errors); qemu_put_be32s(f, &s->statistics.rx_cdt_errors); qemu_put_be32s(f, &s->statistics.rx_short_frame_errors); qemu_put_be32s(f, &s->statistics.fc_xmt_pause); qemu_put_be32s(f, &s->statistics.fc_rcv_pause); qemu_put_be32s(f, &s->statistics.fc_rcv_unsupported); qemu_put_be16s(f, &s->statistics.xmt_tco_frames); qemu_put_be16s(f, &s->statistics.rcv_tco_frames); qemu_put_be32s(f, &s->statistics.complete); #if 0 qemu_put_be16s(f, &s->status); #endif /* Configuration bytes. */ qemu_put_buffer(f, s->configuration, sizeof(s->configuration)); } static void nic_cleanup(VLANClientState *vc) { EEPRO100State *s = vc->opaque; unregister_savevm(vc->model, s); eeprom93xx_free(s->eeprom); } static int pci_nic_uninit(PCIDevice *dev) { PCIEEPRO100State *d = (PCIEEPRO100State *) dev; EEPRO100State *s = &d->eepro100; cpu_unregister_io_memory(s->mmio_index); return 0; } static PCIDevice *nic_init(PCIBus * bus, NICInfo * nd, uint32_t device) { PCIEEPRO100State *d; EEPRO100State *s; logout("\n"); d = (PCIEEPRO100State *) pci_register_device(bus, nd->model, sizeof(PCIEEPRO100State), -1, NULL, NULL); if (!d) return NULL; d->dev.unregister = pci_nic_uninit; s = &d->eepro100; s->device = device; s->pci_dev = &d->dev; pci_reset(s); /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM, * i82559 and later support 64 or 256 word EEPROM. */ s->eeprom = eeprom93xx_new(EEPROM_SIZE); /* Handler for memory-mapped I/O */ d->eepro100.mmio_index = cpu_register_io_memory(0, pci_mmio_read, pci_mmio_write, s); pci_register_io_region(&d->dev, 0, PCI_MEM_SIZE, PCI_ADDRESS_SPACE_MEM | PCI_ADDRESS_SPACE_MEM_PREFETCH, pci_mmio_map); pci_register_io_region(&d->dev, 1, PCI_IO_SIZE, PCI_ADDRESS_SPACE_IO, pci_map); pci_register_io_region(&d->dev, 2, PCI_FLASH_SIZE, PCI_ADDRESS_SPACE_MEM, pci_mmio_map); memcpy(s->macaddr, nd->macaddr, 6); logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6)); assert(s->region[1] == 0); nic_reset(s); s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name, nic_receive, nic_can_receive, nic_cleanup, s); qemu_format_nic_info_str(s->vc, s->macaddr); qemu_register_reset(nic_reset, s); register_savevm(s->vc->model, -1, 3, nic_save, nic_load, s); return (PCIDevice *)d; } PCIDevice *pci_i82551_init(PCIBus * bus, NICInfo * nd, int devfn) { return nic_init(bus, nd, i82551); } PCIDevice *pci_i82557b_init(PCIBus * bus, NICInfo * nd, int devfn) { return nic_init(bus, nd, i82557B); } PCIDevice *pci_i82559er_init(PCIBus * bus, NICInfo * nd, int devfn) { return nic_init(bus, nd, i82559ER); } /* eof */