/*
* QEMU e1000 emulation
*
* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
* Copyright (c) 2008 Qumranet
* Based on work done by:
* Copyright (c) 2007 Dan Aloni
* Copyright (c) 2004 Antony T Curtis
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see .
*/
#include "hw.h"
#include "pci.h"
#include "net.h"
#include "net/checksum.h"
#include "loader.h"
#include "e1000_hw.h"
#define DEBUG
#ifdef DEBUG
enum {
DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT,
DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM,
DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR,
DEBUG_RXFILTER, DEBUG_NOTYET,
};
#define DBGBIT(x) (1<>2)
enum {
defreg(CTRL), defreg(EECD), defreg(EERD), defreg(GPRC),
defreg(GPTC), defreg(ICR), defreg(ICS), defreg(IMC),
defreg(IMS), defreg(LEDCTL), defreg(MANC), defreg(MDIC),
defreg(MPC), defreg(PBA), defreg(RCTL), defreg(RDBAH),
defreg(RDBAL), defreg(RDH), defreg(RDLEN), defreg(RDT),
defreg(STATUS), defreg(SWSM), defreg(TCTL), defreg(TDBAH),
defreg(TDBAL), defreg(TDH), defreg(TDLEN), defreg(TDT),
defreg(TORH), defreg(TORL), defreg(TOTH), defreg(TOTL),
defreg(TPR), defreg(TPT), defreg(TXDCTL), defreg(WUFC),
defreg(RA), defreg(MTA), defreg(CRCERRS),defreg(VFTA),
defreg(VET),
};
enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
static const char phy_regcap[0x20] = {
[PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
[PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW,
[PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW,
[PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R,
[PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R,
[PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R
};
static void
ioport_map(PCIDevice *pci_dev, int region_num, pcibus_t addr,
pcibus_t size, int type)
{
DBGOUT(IO, "e1000_ioport_map addr=0x%04"FMT_PCIBUS
" size=0x%08"FMT_PCIBUS"\n", addr, size);
}
static void
set_interrupt_cause(E1000State *s, int index, uint32_t val)
{
if (val)
val |= E1000_ICR_INT_ASSERTED;
s->mac_reg[ICR] = val;
s->mac_reg[ICS] = val;
qemu_set_irq(s->dev.irq[0], (s->mac_reg[IMS] & s->mac_reg[ICR]) != 0);
}
static void
set_ics(E1000State *s, int index, uint32_t val)
{
DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
s->mac_reg[IMS]);
set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
}
static int
rxbufsize(uint32_t v)
{
v &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
switch (v) {
case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
return 16384;
case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
return 8192;
case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
return 4096;
case E1000_RCTL_SZ_1024:
return 1024;
case E1000_RCTL_SZ_512:
return 512;
case E1000_RCTL_SZ_256:
return 256;
}
return 2048;
}
static void
set_ctrl(E1000State *s, int index, uint32_t val)
{
/* RST is self clearing */
s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
}
static void
set_rx_control(E1000State *s, int index, uint32_t val)
{
s->mac_reg[RCTL] = val;
s->rxbuf_size = rxbufsize(val);
s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
s->mac_reg[RCTL]);
}
static void
set_mdic(E1000State *s, int index, uint32_t val)
{
uint32_t data = val & E1000_MDIC_DATA_MASK;
uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
else if (val & E1000_MDIC_OP_READ) {
DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
if (!(phy_regcap[addr] & PHY_R)) {
DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
val |= E1000_MDIC_ERROR;
} else
val = (val ^ data) | s->phy_reg[addr];
} else if (val & E1000_MDIC_OP_WRITE) {
DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
if (!(phy_regcap[addr] & PHY_W)) {
DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
val |= E1000_MDIC_ERROR;
} else
s->phy_reg[addr] = data;
}
s->mac_reg[MDIC] = val | E1000_MDIC_READY;
set_ics(s, 0, E1000_ICR_MDAC);
}
static uint32_t
get_eecd(E1000State *s, int index)
{
uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
s->eecd_state.bitnum_out, s->eecd_state.reading);
if (!s->eecd_state.reading ||
((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
ret |= E1000_EECD_DO;
return ret;
}
static void
set_eecd(E1000State *s, int index, uint32_t val)
{
uint32_t oldval = s->eecd_state.old_eecd;
s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
if (!(E1000_EECD_SK & (val ^ oldval))) // no clock edge
return;
if (!(E1000_EECD_SK & val)) { // falling edge
s->eecd_state.bitnum_out++;
return;
}
if (!(val & E1000_EECD_CS)) { // rising, no CS (EEPROM reset)
memset(&s->eecd_state, 0, sizeof s->eecd_state);
/*
* restore old_eecd's E1000_EECD_SK (known to be on)
* to avoid false detection of a clock edge
*/
s->eecd_state.old_eecd = E1000_EECD_SK;
return;
}
s->eecd_state.val_in <<= 1;
if (val & E1000_EECD_DI)
s->eecd_state.val_in |= 1;
if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
EEPROM_READ_OPCODE_MICROWIRE);
}
DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
s->eecd_state.reading);
}
static uint32_t
flash_eerd_read(E1000State *s, int x)
{
unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
return (s->mac_reg[EERD]);
if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
return (E1000_EEPROM_RW_REG_DONE | r);
return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
E1000_EEPROM_RW_REG_DONE | r);
}
static void
putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
{
uint32_t sum;
if (cse && cse < n)
n = cse + 1;
if (sloc < n-1) {
sum = net_checksum_add(n-css, data+css);
cpu_to_be16wu((uint16_t *)(data + sloc),
net_checksum_finish(sum));
}
}
static inline int
vlan_enabled(E1000State *s)
{
return ((s->mac_reg[CTRL] & E1000_CTRL_VME) != 0);
}
static inline int
vlan_rx_filter_enabled(E1000State *s)
{
return ((s->mac_reg[RCTL] & E1000_RCTL_VFE) != 0);
}
static inline int
is_vlan_packet(E1000State *s, const uint8_t *buf)
{
return (be16_to_cpup((uint16_t *)(buf + 12)) ==
le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
}
static inline int
is_vlan_txd(uint32_t txd_lower)
{
return ((txd_lower & E1000_TXD_CMD_VLE) != 0);
}
static void
xmit_seg(E1000State *s)
{
uint16_t len, *sp;
unsigned int frames = s->tx.tso_frames, css, sofar, n;
struct e1000_tx *tp = &s->tx;
if (tp->tse && tp->cptse) {
css = tp->ipcss;
DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
frames, tp->size, css);
if (tp->ip) { // IPv4
cpu_to_be16wu((uint16_t *)(tp->data+css+2),
tp->size - css);
cpu_to_be16wu((uint16_t *)(tp->data+css+4),
be16_to_cpup((uint16_t *)(tp->data+css+4))+frames);
} else // IPv6
cpu_to_be16wu((uint16_t *)(tp->data+css+4),
tp->size - css);
css = tp->tucss;
len = tp->size - css;
DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->tcp, css, len);
if (tp->tcp) {
sofar = frames * tp->mss;
cpu_to_be32wu((uint32_t *)(tp->data+css+4), // seq
be32_to_cpupu((uint32_t *)(tp->data+css+4))+sofar);
if (tp->paylen - sofar > tp->mss)
tp->data[css + 13] &= ~9; // PSH, FIN
} else // UDP
cpu_to_be16wu((uint16_t *)(tp->data+css+4), len);
if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
// add pseudo-header length before checksum calculation
sp = (uint16_t *)(tp->data + tp->tucso);
cpu_to_be16wu(sp, be16_to_cpup(sp) + len);
}
tp->tso_frames++;
}
if (tp->sum_needed & E1000_TXD_POPTS_TXSM)
putsum(tp->data, tp->size, tp->tucso, tp->tucss, tp->tucse);
if (tp->sum_needed & E1000_TXD_POPTS_IXSM)
putsum(tp->data, tp->size, tp->ipcso, tp->ipcss, tp->ipcse);
if (tp->vlan_needed) {
memmove(tp->vlan, tp->data, 4);
memmove(tp->data, tp->data + 4, 8);
memcpy(tp->data + 8, tp->vlan_header, 4);
qemu_send_packet(&s->nic->nc, tp->vlan, tp->size + 4);
} else
qemu_send_packet(&s->nic->nc, tp->data, tp->size);
s->mac_reg[TPT]++;
s->mac_reg[GPTC]++;
n = s->mac_reg[TOTL];
if ((s->mac_reg[TOTL] += s->tx.size) < n)
s->mac_reg[TOTH]++;
}
static void
process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
{
uint32_t txd_lower = le32_to_cpu(dp->lower.data);
uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
unsigned int split_size = txd_lower & 0xffff, bytes, sz, op;
unsigned int msh = 0xfffff, hdr = 0;
uint64_t addr;
struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
struct e1000_tx *tp = &s->tx;
if (dtype == E1000_TXD_CMD_DEXT) { // context descriptor
op = le32_to_cpu(xp->cmd_and_length);
tp->ipcss = xp->lower_setup.ip_fields.ipcss;
tp->ipcso = xp->lower_setup.ip_fields.ipcso;
tp->ipcse = le16_to_cpu(xp->lower_setup.ip_fields.ipcse);
tp->tucss = xp->upper_setup.tcp_fields.tucss;
tp->tucso = xp->upper_setup.tcp_fields.tucso;
tp->tucse = le16_to_cpu(xp->upper_setup.tcp_fields.tucse);
tp->paylen = op & 0xfffff;
tp->hdr_len = xp->tcp_seg_setup.fields.hdr_len;
tp->mss = le16_to_cpu(xp->tcp_seg_setup.fields.mss);
tp->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
tp->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
tp->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
tp->tso_frames = 0;
if (tp->tucso == 0) { // this is probably wrong
DBGOUT(TXSUM, "TCP/UDP: cso 0!\n");
tp->tucso = tp->tucss + (tp->tcp ? 16 : 6);
}
return;
} else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
// data descriptor
tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
tp->cptse = ( txd_lower & E1000_TXD_CMD_TSE ) ? 1 : 0;
} else
// legacy descriptor
tp->cptse = 0;
if (vlan_enabled(s) && is_vlan_txd(txd_lower) &&
(tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) {
tp->vlan_needed = 1;
cpu_to_be16wu((uint16_t *)(tp->vlan_header),
le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
cpu_to_be16wu((uint16_t *)(tp->vlan_header + 2),
le16_to_cpu(dp->upper.fields.special));
}
addr = le64_to_cpu(dp->buffer_addr);
if (tp->tse && tp->cptse) {
hdr = tp->hdr_len;
msh = hdr + tp->mss;
do {
bytes = split_size;
if (tp->size + bytes > msh)
bytes = msh - tp->size;
cpu_physical_memory_read(addr, tp->data + tp->size, bytes);
if ((sz = tp->size + bytes) >= hdr && tp->size < hdr)
memmove(tp->header, tp->data, hdr);
tp->size = sz;
addr += bytes;
if (sz == msh) {
xmit_seg(s);
memmove(tp->data, tp->header, hdr);
tp->size = hdr;
}
} while (split_size -= bytes);
} else if (!tp->tse && tp->cptse) {
// context descriptor TSE is not set, while data descriptor TSE is set
DBGOUT(TXERR, "TCP segmentaion Error\n");
} else {
cpu_physical_memory_read(addr, tp->data + tp->size, split_size);
tp->size += split_size;
}
if (!(txd_lower & E1000_TXD_CMD_EOP))
return;
if (!(tp->tse && tp->cptse && tp->size < hdr))
xmit_seg(s);
tp->tso_frames = 0;
tp->sum_needed = 0;
tp->vlan_needed = 0;
tp->size = 0;
tp->cptse = 0;
}
static uint32_t
txdesc_writeback(target_phys_addr_t base, struct e1000_tx_desc *dp)
{
uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
return 0;
txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
dp->upper.data = cpu_to_le32(txd_upper);
cpu_physical_memory_write(base + ((char *)&dp->upper - (char *)dp),
(void *)&dp->upper, sizeof(dp->upper));
return E1000_ICR_TXDW;
}
static void
start_xmit(E1000State *s)
{
target_phys_addr_t base;
struct e1000_tx_desc desc;
uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
DBGOUT(TX, "tx disabled\n");
return;
}
while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
base = ((uint64_t)s->mac_reg[TDBAH] << 32) + s->mac_reg[TDBAL] +
sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
cpu_physical_memory_read(base, (void *)&desc, sizeof(desc));
DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
(void *)(intptr_t)desc.buffer_addr, desc.lower.data,
desc.upper.data);
process_tx_desc(s, &desc);
cause |= txdesc_writeback(base, &desc);
if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
s->mac_reg[TDH] = 0;
/*
* the following could happen only if guest sw assigns
* bogus values to TDT/TDLEN.
* there's nothing too intelligent we could do about this.
*/
if (s->mac_reg[TDH] == tdh_start) {
DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
break;
}
}
set_ics(s, 0, cause);
}
static int
receive_filter(E1000State *s, const uint8_t *buf, int size)
{
static uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
static int mta_shift[] = {4, 3, 2, 0};
uint32_t f, rctl = s->mac_reg[RCTL], ra[2], *rp;
if (is_vlan_packet(s, buf) && vlan_rx_filter_enabled(s)) {
uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14));
uint32_t vfta = le32_to_cpup((uint32_t *)(s->mac_reg + VFTA) +
((vid >> 5) & 0x7f));
if ((vfta & (1 << (vid & 0x1f))) == 0)
return 0;
}
if (rctl & E1000_RCTL_UPE) // promiscuous
return 1;
if ((buf[0] & 1) && (rctl & E1000_RCTL_MPE)) // promiscuous mcast
return 1;
if ((rctl & E1000_RCTL_BAM) && !memcmp(buf, bcast, sizeof bcast))
return 1;
for (rp = s->mac_reg + RA; rp < s->mac_reg + RA + 32; rp += 2) {
if (!(rp[1] & E1000_RAH_AV))
continue;
ra[0] = cpu_to_le32(rp[0]);
ra[1] = cpu_to_le32(rp[1]);
if (!memcmp(buf, (uint8_t *)ra, 6)) {
DBGOUT(RXFILTER,
"unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n",
(int)(rp - s->mac_reg - RA)/2,
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
return 1;
}
}
DBGOUT(RXFILTER, "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x\n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
if (s->mac_reg[MTA + (f >> 5)] & (1 << (f & 0x1f)))
return 1;
DBGOUT(RXFILTER,
"dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x\n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
(rctl >> E1000_RCTL_MO_SHIFT) & 3, f >> 5,
s->mac_reg[MTA + (f >> 5)]);
return 0;
}
static void
e1000_set_link_status(VLANClientState *nc)
{
E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
uint32_t old_status = s->mac_reg[STATUS];
if (nc->link_down)
s->mac_reg[STATUS] &= ~E1000_STATUS_LU;
else
s->mac_reg[STATUS] |= E1000_STATUS_LU;
if (s->mac_reg[STATUS] != old_status)
set_ics(s, 0, E1000_ICR_LSC);
}
static int
e1000_can_receive(VLANClientState *nc)
{
E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
return (s->mac_reg[RCTL] & E1000_RCTL_EN);
}
static ssize_t
e1000_receive(VLANClientState *nc, const uint8_t *buf, size_t size)
{
E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
struct e1000_rx_desc desc;
target_phys_addr_t base;
unsigned int n, rdt;
uint32_t rdh_start;
uint16_t vlan_special = 0;
uint8_t vlan_status = 0, vlan_offset = 0;
if (!(s->mac_reg[RCTL] & E1000_RCTL_EN))
return -1;
if (size > s->rxbuf_size) {
DBGOUT(RX, "packet too large for buffers (%lu > %d)\n",
(unsigned long)size, s->rxbuf_size);
return -1;
}
if (!receive_filter(s, buf, size))
return size;
if (vlan_enabled(s) && is_vlan_packet(s, buf)) {
vlan_special = cpu_to_le16(be16_to_cpup((uint16_t *)(buf + 14)));
memmove((void *)(buf + 4), buf, 12);
vlan_status = E1000_RXD_STAT_VP;
vlan_offset = 4;
size -= 4;
}
rdh_start = s->mac_reg[RDH];
size += 4; // for the header
do {
if (s->mac_reg[RDH] == s->mac_reg[RDT] && s->check_rxov) {
set_ics(s, 0, E1000_ICS_RXO);
return -1;
}
base = ((uint64_t)s->mac_reg[RDBAH] << 32) + s->mac_reg[RDBAL] +
sizeof(desc) * s->mac_reg[RDH];
cpu_physical_memory_read(base, (void *)&desc, sizeof(desc));
desc.special = vlan_special;
desc.status |= (vlan_status | E1000_RXD_STAT_DD);
if (desc.buffer_addr) {
cpu_physical_memory_write(le64_to_cpu(desc.buffer_addr),
(void *)(buf + vlan_offset), size);
desc.length = cpu_to_le16(size);
desc.status |= E1000_RXD_STAT_EOP|E1000_RXD_STAT_IXSM;
} else // as per intel docs; skip descriptors with null buf addr
DBGOUT(RX, "Null RX descriptor!!\n");
cpu_physical_memory_write(base, (void *)&desc, sizeof(desc));
if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
s->mac_reg[RDH] = 0;
s->check_rxov = 1;
/* see comment in start_xmit; same here */
if (s->mac_reg[RDH] == rdh_start) {
DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
set_ics(s, 0, E1000_ICS_RXO);
return -1;
}
} while (desc.buffer_addr == 0);
s->mac_reg[GPRC]++;
s->mac_reg[TPR]++;
n = s->mac_reg[TORL];
if ((s->mac_reg[TORL] += size) < n)
s->mac_reg[TORH]++;
n = E1000_ICS_RXT0;
if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
rdt += s->mac_reg[RDLEN] / sizeof(desc);
if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
s->rxbuf_min_shift)
n |= E1000_ICS_RXDMT0;
set_ics(s, 0, n);
return size;
}
static uint32_t
mac_readreg(E1000State *s, int index)
{
return s->mac_reg[index];
}
static uint32_t
mac_icr_read(E1000State *s, int index)
{
uint32_t ret = s->mac_reg[ICR];
DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
set_interrupt_cause(s, 0, 0);
return ret;
}
static uint32_t
mac_read_clr4(E1000State *s, int index)
{
uint32_t ret = s->mac_reg[index];
s->mac_reg[index] = 0;
return ret;
}
static uint32_t
mac_read_clr8(E1000State *s, int index)
{
uint32_t ret = s->mac_reg[index];
s->mac_reg[index] = 0;
s->mac_reg[index-1] = 0;
return ret;
}
static void
mac_writereg(E1000State *s, int index, uint32_t val)
{
s->mac_reg[index] = val;
}
static void
set_rdt(E1000State *s, int index, uint32_t val)
{
s->check_rxov = 0;
s->mac_reg[index] = val & 0xffff;
}
static void
set_16bit(E1000State *s, int index, uint32_t val)
{
s->mac_reg[index] = val & 0xffff;
}
static void
set_dlen(E1000State *s, int index, uint32_t val)
{
s->mac_reg[index] = val & 0xfff80;
}
static void
set_tctl(E1000State *s, int index, uint32_t val)
{
s->mac_reg[index] = val;
s->mac_reg[TDT] &= 0xffff;
start_xmit(s);
}
static void
set_icr(E1000State *s, int index, uint32_t val)
{
DBGOUT(INTERRUPT, "set_icr %x\n", val);
set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
}
static void
set_imc(E1000State *s, int index, uint32_t val)
{
s->mac_reg[IMS] &= ~val;
set_ics(s, 0, 0);
}
static void
set_ims(E1000State *s, int index, uint32_t val)
{
s->mac_reg[IMS] |= val;
set_ics(s, 0, 0);
}
#define getreg(x) [x] = mac_readreg
static uint32_t (*macreg_readops[])(E1000State *, int) = {
getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL),
getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL),
getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS),
getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL),
getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS),
getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL),
getreg(TDLEN), getreg(RDLEN),
[TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, [GPRC] = mac_read_clr4,
[GPTC] = mac_read_clr4, [TPR] = mac_read_clr4, [TPT] = mac_read_clr4,
[ICR] = mac_icr_read, [EECD] = get_eecd, [EERD] = flash_eerd_read,
[CRCERRS ... MPC] = &mac_readreg,
[RA ... RA+31] = &mac_readreg,
[MTA ... MTA+127] = &mac_readreg,
[VFTA ... VFTA+127] = &mac_readreg,
};
enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
#define putreg(x) [x] = mac_writereg
static void (*macreg_writeops[])(E1000State *, int, uint32_t) = {
putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC),
putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH),
putreg(RDBAL), putreg(LEDCTL), putreg(VET),
[TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl,
[TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics,
[TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt,
[IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr,
[EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl,
[RA ... RA+31] = &mac_writereg,
[MTA ... MTA+127] = &mac_writereg,
[VFTA ... VFTA+127] = &mac_writereg,
};
enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
static void
e1000_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
E1000State *s = opaque;
unsigned int index = (addr & 0x1ffff) >> 2;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
if (index < NWRITEOPS && macreg_writeops[index])
macreg_writeops[index](s, index, val);
else if (index < NREADOPS && macreg_readops[index])
DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04x\n", index<<2, val);
else
DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08x\n",
index<<2, val);
}
static void
e1000_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
// emulate hw without byte enables: no RMW
e1000_mmio_writel(opaque, addr & ~3,
(val & 0xffff) << (8*(addr & 3)));
}
static void
e1000_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
// emulate hw without byte enables: no RMW
e1000_mmio_writel(opaque, addr & ~3,
(val & 0xff) << (8*(addr & 3)));
}
static uint32_t
e1000_mmio_readl(void *opaque, target_phys_addr_t addr)
{
E1000State *s = opaque;
unsigned int index = (addr & 0x1ffff) >> 2;
if (index < NREADOPS && macreg_readops[index])
{
uint32_t val = macreg_readops[index](s, index);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
return val;
}
DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
return 0;
}
static uint32_t
e1000_mmio_readb(void *opaque, target_phys_addr_t addr)
{
return ((e1000_mmio_readl(opaque, addr & ~3)) >>
(8 * (addr & 3))) & 0xff;
}
static uint32_t
e1000_mmio_readw(void *opaque, target_phys_addr_t addr)
{
return ((e1000_mmio_readl(opaque, addr & ~3)) >>
(8 * (addr & 3))) & 0xffff;
}
static bool is_version_1(void *opaque, int version_id)
{
return version_id == 1;
}
static const VMStateDescription vmstate_e1000 = {
.name = "e1000",
.version_id = 2,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_PCI_DEVICE(dev, E1000State),
VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
VMSTATE_UNUSED(4), /* Was mmio_base. */
VMSTATE_UINT32(rxbuf_size, E1000State),
VMSTATE_UINT32(rxbuf_min_shift, E1000State),
VMSTATE_UINT32(eecd_state.val_in, E1000State),
VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
VMSTATE_UINT16(eecd_state.reading, E1000State),
VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
VMSTATE_UINT8(tx.ipcss, E1000State),
VMSTATE_UINT8(tx.ipcso, E1000State),
VMSTATE_UINT16(tx.ipcse, E1000State),
VMSTATE_UINT8(tx.tucss, E1000State),
VMSTATE_UINT8(tx.tucso, E1000State),
VMSTATE_UINT16(tx.tucse, E1000State),
VMSTATE_UINT32(tx.paylen, E1000State),
VMSTATE_UINT8(tx.hdr_len, E1000State),
VMSTATE_UINT16(tx.mss, E1000State),
VMSTATE_UINT16(tx.size, E1000State),
VMSTATE_UINT16(tx.tso_frames, E1000State),
VMSTATE_UINT8(tx.sum_needed, E1000State),
VMSTATE_INT8(tx.ip, E1000State),
VMSTATE_INT8(tx.tcp, E1000State),
VMSTATE_BUFFER(tx.header, E1000State),
VMSTATE_BUFFER(tx.data, E1000State),
VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
VMSTATE_UINT32(mac_reg[CTRL], E1000State),
VMSTATE_UINT32(mac_reg[EECD], E1000State),
VMSTATE_UINT32(mac_reg[EERD], E1000State),
VMSTATE_UINT32(mac_reg[GPRC], E1000State),
VMSTATE_UINT32(mac_reg[GPTC], E1000State),
VMSTATE_UINT32(mac_reg[ICR], E1000State),
VMSTATE_UINT32(mac_reg[ICS], E1000State),
VMSTATE_UINT32(mac_reg[IMC], E1000State),
VMSTATE_UINT32(mac_reg[IMS], E1000State),
VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
VMSTATE_UINT32(mac_reg[MANC], E1000State),
VMSTATE_UINT32(mac_reg[MDIC], E1000State),
VMSTATE_UINT32(mac_reg[MPC], E1000State),
VMSTATE_UINT32(mac_reg[PBA], E1000State),
VMSTATE_UINT32(mac_reg[RCTL], E1000State),
VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
VMSTATE_UINT32(mac_reg[RDH], E1000State),
VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
VMSTATE_UINT32(mac_reg[RDT], E1000State),
VMSTATE_UINT32(mac_reg[STATUS], E1000State),
VMSTATE_UINT32(mac_reg[SWSM], E1000State),
VMSTATE_UINT32(mac_reg[TCTL], E1000State),
VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
VMSTATE_UINT32(mac_reg[TDH], E1000State),
VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
VMSTATE_UINT32(mac_reg[TDT], E1000State),
VMSTATE_UINT32(mac_reg[TORH], E1000State),
VMSTATE_UINT32(mac_reg[TORL], E1000State),
VMSTATE_UINT32(mac_reg[TOTH], E1000State),
VMSTATE_UINT32(mac_reg[TOTL], E1000State),
VMSTATE_UINT32(mac_reg[TPR], E1000State),
VMSTATE_UINT32(mac_reg[TPT], E1000State),
VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
VMSTATE_UINT32(mac_reg[WUFC], E1000State),
VMSTATE_UINT32(mac_reg[VET], E1000State),
VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128),
VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128),
VMSTATE_END_OF_LIST()
}
};
static const uint16_t e1000_eeprom_template[64] = {
0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
0x3000, 0x1000, 0x6403, E1000_DEVID, 0x8086, E1000_DEVID, 0x8086, 0x3040,
0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
};
static const uint16_t phy_reg_init[] = {
[PHY_CTRL] = 0x1140, [PHY_STATUS] = 0x796d, // link initially up
[PHY_ID1] = 0x141, [PHY_ID2] = PHY_ID2_INIT,
[PHY_1000T_CTRL] = 0x0e00, [M88E1000_PHY_SPEC_CTRL] = 0x360,
[M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, [PHY_AUTONEG_ADV] = 0xde1,
[PHY_LP_ABILITY] = 0x1e0, [PHY_1000T_STATUS] = 0x3c00,
[M88E1000_PHY_SPEC_STATUS] = 0xac00,
};
static const uint32_t mac_reg_init[] = {
[PBA] = 0x00100030,
[LEDCTL] = 0x602,
[CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
[STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
E1000_STATUS_LU,
[MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
E1000_MANC_RMCP_EN,
};
/* PCI interface */
static CPUWriteMemoryFunc * const e1000_mmio_write[] = {
e1000_mmio_writeb, e1000_mmio_writew, e1000_mmio_writel
};
static CPUReadMemoryFunc * const e1000_mmio_read[] = {
e1000_mmio_readb, e1000_mmio_readw, e1000_mmio_readl
};
static void
e1000_mmio_map(PCIDevice *pci_dev, int region_num,
pcibus_t addr, pcibus_t size, int type)
{
E1000State *d = DO_UPCAST(E1000State, dev, pci_dev);
int i;
const uint32_t excluded_regs[] = {
E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
};
DBGOUT(MMIO, "e1000_mmio_map addr=0x%08"FMT_PCIBUS" 0x%08"FMT_PCIBUS"\n",
addr, size);
cpu_register_physical_memory(addr, PNPMMIO_SIZE, d->mmio_index);
qemu_register_coalesced_mmio(addr, excluded_regs[0]);
for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
qemu_register_coalesced_mmio(addr + excluded_regs[i] + 4,
excluded_regs[i + 1] -
excluded_regs[i] - 4);
}
static void
e1000_cleanup(VLANClientState *nc)
{
E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
s->nic = NULL;
}
static int
pci_e1000_uninit(PCIDevice *dev)
{
E1000State *d = DO_UPCAST(E1000State, dev, dev);
cpu_unregister_io_memory(d->mmio_index);
qemu_del_vlan_client(&d->nic->nc);
return 0;
}
static void e1000_reset(void *opaque)
{
E1000State *d = opaque;
memset(d->phy_reg, 0, sizeof d->phy_reg);
memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
memset(d->mac_reg, 0, sizeof d->mac_reg);
memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
d->rxbuf_min_shift = 1;
memset(&d->tx, 0, sizeof d->tx);
}
static NetClientInfo net_e1000_info = {
.type = NET_CLIENT_TYPE_NIC,
.size = sizeof(NICState),
.can_receive = e1000_can_receive,
.receive = e1000_receive,
.cleanup = e1000_cleanup,
.link_status_changed = e1000_set_link_status,
};
static int pci_e1000_init(PCIDevice *pci_dev)
{
E1000State *d = DO_UPCAST(E1000State, dev, pci_dev);
uint8_t *pci_conf;
uint16_t checksum = 0;
int i;
uint8_t *macaddr;
pci_conf = d->dev.config;
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
pci_config_set_device_id(pci_conf, E1000_DEVID);
*(uint16_t *)(pci_conf+0x04) = cpu_to_le16(0x0407);
*(uint16_t *)(pci_conf+0x06) = cpu_to_le16(0x0010);
pci_conf[0x08] = 0x03;
pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
pci_conf[0x0c] = 0x10;
pci_conf[0x3d] = 1; // interrupt pin 0
d->mmio_index = cpu_register_io_memory(e1000_mmio_read,
e1000_mmio_write, d);
pci_register_bar((PCIDevice *)d, 0, PNPMMIO_SIZE,
PCI_BASE_ADDRESS_SPACE_MEMORY, e1000_mmio_map);
pci_register_bar((PCIDevice *)d, 1, IOPORT_SIZE,
PCI_BASE_ADDRESS_SPACE_IO, ioport_map);
memmove(d->eeprom_data, e1000_eeprom_template,
sizeof e1000_eeprom_template);
qemu_macaddr_default_if_unset(&d->conf.macaddr);
macaddr = d->conf.macaddr.a;
for (i = 0; i < 3; i++)
d->eeprom_data[i] = (macaddr[2*i+1]<<8) | macaddr[2*i];
for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
checksum += d->eeprom_data[i];
checksum = (uint16_t) EEPROM_SUM - checksum;
d->eeprom_data[EEPROM_CHECKSUM_REG] = checksum;
d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
d->dev.qdev.info->name, d->dev.qdev.id, d);
qemu_format_nic_info_str(&d->nic->nc, macaddr);
return 0;
}
static void qdev_e1000_reset(DeviceState *dev)
{
E1000State *d = DO_UPCAST(E1000State, dev.qdev, dev);
e1000_reset(d);
}
static PCIDeviceInfo e1000_info = {
.qdev.name = "e1000",
.qdev.desc = "Intel Gigabit Ethernet",
.qdev.size = sizeof(E1000State),
.qdev.reset = qdev_e1000_reset,
.qdev.vmsd = &vmstate_e1000,
.init = pci_e1000_init,
.exit = pci_e1000_uninit,
.romfile = "pxe-e1000.bin",
.qdev.props = (Property[]) {
DEFINE_NIC_PROPERTIES(E1000State, conf),
DEFINE_PROP_END_OF_LIST(),
}
};
static void e1000_register_devices(void)
{
pci_qdev_register(&e1000_info);
}
device_init(e1000_register_devices)