/* * QEMU NS SONIC DP8393x netcard * * Copyright (c) 2008-2009 Herve Poussineau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "hw.h" #include "qemu-timer.h" #include "net.h" #include "mips.h" //#define DEBUG_SONIC /* Calculate CRCs properly on Rx packets */ #define SONIC_CALCULATE_RXCRC #if defined(SONIC_CALCULATE_RXCRC) /* For crc32 */ #include #endif #ifdef DEBUG_SONIC #define DPRINTF(fmt, ...) \ do { printf("sonic: " fmt , ## __VA_ARGS__); } while (0) static const char* reg_names[] = { "CR", "DCR", "RCR", "TCR", "IMR", "ISR", "UTDA", "CTDA", "TPS", "TFC", "TSA0", "TSA1", "TFS", "URDA", "CRDA", "CRBA0", "CRBA1", "RBWC0", "RBWC1", "EOBC", "URRA", "RSA", "REA", "RRP", "RWP", "TRBA0", "TRBA1", "0x1b", "0x1c", "0x1d", "0x1e", "LLFA", "TTDA", "CEP", "CAP2", "CAP1", "CAP0", "CE", "CDP", "CDC", "SR", "WT0", "WT1", "RSC", "CRCT", "FAET", "MPT", "MDT", "0x30", "0x31", "0x32", "0x33", "0x34", "0x35", "0x36", "0x37", "0x38", "0x39", "0x3a", "0x3b", "0x3c", "0x3d", "0x3e", "DCR2" }; #else #define DPRINTF(fmt, ...) do {} while (0) #endif #define SONIC_ERROR(fmt, ...) \ do { printf("sonic ERROR: %s: " fmt, __func__ , ## __VA_ARGS__); } while (0) #define SONIC_CR 0x00 #define SONIC_DCR 0x01 #define SONIC_RCR 0x02 #define SONIC_TCR 0x03 #define SONIC_IMR 0x04 #define SONIC_ISR 0x05 #define SONIC_UTDA 0x06 #define SONIC_CTDA 0x07 #define SONIC_TPS 0x08 #define SONIC_TFC 0x09 #define SONIC_TSA0 0x0a #define SONIC_TSA1 0x0b #define SONIC_TFS 0x0c #define SONIC_URDA 0x0d #define SONIC_CRDA 0x0e #define SONIC_CRBA0 0x0f #define SONIC_CRBA1 0x10 #define SONIC_RBWC0 0x11 #define SONIC_RBWC1 0x12 #define SONIC_EOBC 0x13 #define SONIC_URRA 0x14 #define SONIC_RSA 0x15 #define SONIC_REA 0x16 #define SONIC_RRP 0x17 #define SONIC_RWP 0x18 #define SONIC_TRBA0 0x19 #define SONIC_TRBA1 0x1a #define SONIC_LLFA 0x1f #define SONIC_TTDA 0x20 #define SONIC_CEP 0x21 #define SONIC_CAP2 0x22 #define SONIC_CAP1 0x23 #define SONIC_CAP0 0x24 #define SONIC_CE 0x25 #define SONIC_CDP 0x26 #define SONIC_CDC 0x27 #define SONIC_SR 0x28 #define SONIC_WT0 0x29 #define SONIC_WT1 0x2a #define SONIC_RSC 0x2b #define SONIC_CRCT 0x2c #define SONIC_FAET 0x2d #define SONIC_MPT 0x2e #define SONIC_MDT 0x2f #define SONIC_DCR2 0x3f #define SONIC_CR_HTX 0x0001 #define SONIC_CR_TXP 0x0002 #define SONIC_CR_RXDIS 0x0004 #define SONIC_CR_RXEN 0x0008 #define SONIC_CR_STP 0x0010 #define SONIC_CR_ST 0x0020 #define SONIC_CR_RST 0x0080 #define SONIC_CR_RRRA 0x0100 #define SONIC_CR_LCAM 0x0200 #define SONIC_CR_MASK 0x03bf #define SONIC_DCR_DW 0x0020 #define SONIC_DCR_LBR 0x2000 #define SONIC_DCR_EXBUS 0x8000 #define SONIC_RCR_PRX 0x0001 #define SONIC_RCR_LBK 0x0002 #define SONIC_RCR_FAER 0x0004 #define SONIC_RCR_CRCR 0x0008 #define SONIC_RCR_CRS 0x0020 #define SONIC_RCR_LPKT 0x0040 #define SONIC_RCR_BC 0x0080 #define SONIC_RCR_MC 0x0100 #define SONIC_RCR_LB0 0x0200 #define SONIC_RCR_LB1 0x0400 #define SONIC_RCR_AMC 0x0800 #define SONIC_RCR_PRO 0x1000 #define SONIC_RCR_BRD 0x2000 #define SONIC_RCR_RNT 0x4000 #define SONIC_TCR_PTX 0x0001 #define SONIC_TCR_BCM 0x0002 #define SONIC_TCR_FU 0x0004 #define SONIC_TCR_EXC 0x0040 #define SONIC_TCR_CRSL 0x0080 #define SONIC_TCR_NCRS 0x0100 #define SONIC_TCR_EXD 0x0400 #define SONIC_TCR_CRCI 0x2000 #define SONIC_TCR_PINT 0x8000 #define SONIC_ISR_RBE 0x0020 #define SONIC_ISR_RDE 0x0040 #define SONIC_ISR_TC 0x0080 #define SONIC_ISR_TXDN 0x0200 #define SONIC_ISR_PKTRX 0x0400 #define SONIC_ISR_PINT 0x0800 #define SONIC_ISR_LCD 0x1000 typedef struct dp8393xState { /* Hardware */ int it_shift; qemu_irq irq; #ifdef DEBUG_SONIC int irq_level; #endif QEMUTimer *watchdog; int64_t wt_last_update; VLANClientState *vc; int mmio_index; /* Registers */ uint8_t cam[16][6]; uint16_t regs[0x40]; /* Temporaries */ uint8_t tx_buffer[0x10000]; int loopback_packet; /* Memory access */ void (*memory_rw)(void *opaque, target_phys_addr_t addr, uint8_t *buf, int len, int is_write); void* mem_opaque; } dp8393xState; static void dp8393x_update_irq(dp8393xState *s) { int level = (s->regs[SONIC_IMR] & s->regs[SONIC_ISR]) ? 1 : 0; #ifdef DEBUG_SONIC if (level != s->irq_level) { s->irq_level = level; if (level) { DPRINTF("raise irq, isr is 0x%04x\n", s->regs[SONIC_ISR]); } else { DPRINTF("lower irq\n"); } } #endif qemu_set_irq(s->irq, level); } static void do_load_cam(dp8393xState *s) { uint16_t data[8]; int width, size; uint16_t index = 0; width = (s->regs[SONIC_DCR] & SONIC_DCR_DW) ? 2 : 1; size = sizeof(uint16_t) * 4 * width; while (s->regs[SONIC_CDC] & 0x1f) { /* Fill current entry */ s->memory_rw(s->mem_opaque, (s->regs[SONIC_URRA] << 16) | s->regs[SONIC_CDP], (uint8_t *)data, size, 0); s->cam[index][0] = data[1 * width] & 0xff; s->cam[index][1] = data[1 * width] >> 8; s->cam[index][2] = data[2 * width] & 0xff; s->cam[index][3] = data[2 * width] >> 8; s->cam[index][4] = data[3 * width] & 0xff; s->cam[index][5] = data[3 * width] >> 8; DPRINTF("load cam[%d] with %02x%02x%02x%02x%02x%02x\n", index, s->cam[index][0], s->cam[index][1], s->cam[index][2], s->cam[index][3], s->cam[index][4], s->cam[index][5]); /* Move to next entry */ s->regs[SONIC_CDC]--; s->regs[SONIC_CDP] += size; index++; } /* Read CAM enable */ s->memory_rw(s->mem_opaque, (s->regs[SONIC_URRA] << 16) | s->regs[SONIC_CDP], (uint8_t *)data, size, 0); s->regs[SONIC_CE] = data[0 * width]; DPRINTF("load cam done. cam enable mask 0x%04x\n", s->regs[SONIC_CE]); /* Done */ s->regs[SONIC_CR] &= ~SONIC_CR_LCAM; s->regs[SONIC_ISR] |= SONIC_ISR_LCD; dp8393x_update_irq(s); } static void do_read_rra(dp8393xState *s) { uint16_t data[8]; int width, size; /* Read memory */ width = (s->regs[SONIC_DCR] & SONIC_DCR_DW) ? 2 : 1; size = sizeof(uint16_t) * 4 * width; s->memory_rw(s->mem_opaque, (s->regs[SONIC_URRA] << 16) | s->regs[SONIC_RRP], (uint8_t *)data, size, 0); /* Update SONIC registers */ s->regs[SONIC_CRBA0] = data[0 * width]; s->regs[SONIC_CRBA1] = data[1 * width]; s->regs[SONIC_RBWC0] = data[2 * width]; s->regs[SONIC_RBWC1] = data[3 * width]; DPRINTF("CRBA0/1: 0x%04x/0x%04x, RBWC0/1: 0x%04x/0x%04x\n", s->regs[SONIC_CRBA0], s->regs[SONIC_CRBA1], s->regs[SONIC_RBWC0], s->regs[SONIC_RBWC1]); /* Go to next entry */ s->regs[SONIC_RRP] += size; /* Handle wrap */ if (s->regs[SONIC_RRP] == s->regs[SONIC_REA]) { s->regs[SONIC_RRP] = s->regs[SONIC_RSA]; } /* Check resource exhaustion */ if (s->regs[SONIC_RRP] == s->regs[SONIC_RWP]) { s->regs[SONIC_ISR] |= SONIC_ISR_RBE; dp8393x_update_irq(s); } /* Done */ s->regs[SONIC_CR] &= ~SONIC_CR_RRRA; } static void do_software_reset(dp8393xState *s) { qemu_del_timer(s->watchdog); s->regs[SONIC_CR] &= ~(SONIC_CR_LCAM | SONIC_CR_RRRA | SONIC_CR_TXP | SONIC_CR_HTX); s->regs[SONIC_CR] |= SONIC_CR_RST | SONIC_CR_RXDIS; } static void set_next_tick(dp8393xState *s) { uint32_t ticks; int64_t delay; if (s->regs[SONIC_CR] & SONIC_CR_STP) { qemu_del_timer(s->watchdog); return; } ticks = s->regs[SONIC_WT1] << 16 | s->regs[SONIC_WT0]; s->wt_last_update = qemu_get_clock(vm_clock); delay = ticks_per_sec * ticks / 5000000; qemu_mod_timer(s->watchdog, s->wt_last_update + delay); } static void update_wt_regs(dp8393xState *s) { int64_t elapsed; uint32_t val; if (s->regs[SONIC_CR] & SONIC_CR_STP) { qemu_del_timer(s->watchdog); return; } elapsed = s->wt_last_update - qemu_get_clock(vm_clock); val = s->regs[SONIC_WT1] << 16 | s->regs[SONIC_WT0]; val -= elapsed / 5000000; s->regs[SONIC_WT1] = (val >> 16) & 0xffff; s->regs[SONIC_WT0] = (val >> 0) & 0xffff; set_next_tick(s); } static void do_start_timer(dp8393xState *s) { s->regs[SONIC_CR] &= ~SONIC_CR_STP; set_next_tick(s); } static void do_stop_timer(dp8393xState *s) { s->regs[SONIC_CR] &= ~SONIC_CR_ST; update_wt_regs(s); } static void do_receiver_enable(dp8393xState *s) { s->regs[SONIC_CR] &= ~SONIC_CR_RXDIS; } static void do_receiver_disable(dp8393xState *s) { s->regs[SONIC_CR] &= ~SONIC_CR_RXEN; } static void do_transmit_packets(dp8393xState *s) { uint16_t data[12]; int width, size; int tx_len, len; uint16_t i; width = (s->regs[SONIC_DCR] & SONIC_DCR_DW) ? 2 : 1; while (1) { /* Read memory */ DPRINTF("Transmit packet at %08x\n", (s->regs[SONIC_UTDA] << 16) | s->regs[SONIC_CTDA]); size = sizeof(uint16_t) * 6 * width; s->regs[SONIC_TTDA] = s->regs[SONIC_CTDA]; s->memory_rw(s->mem_opaque, ((s->regs[SONIC_UTDA] << 16) | s->regs[SONIC_TTDA]) + sizeof(uint16_t) * width, (uint8_t *)data, size, 0); tx_len = 0; /* Update registers */ s->regs[SONIC_TCR] = data[0 * width] & 0xf000; s->regs[SONIC_TPS] = data[1 * width]; s->regs[SONIC_TFC] = data[2 * width]; s->regs[SONIC_TSA0] = data[3 * width]; s->regs[SONIC_TSA1] = data[4 * width]; s->regs[SONIC_TFS] = data[5 * width]; /* Handle programmable interrupt */ if (s->regs[SONIC_TCR] & SONIC_TCR_PINT) { s->regs[SONIC_ISR] |= SONIC_ISR_PINT; } else { s->regs[SONIC_ISR] &= ~SONIC_ISR_PINT; } for (i = 0; i < s->regs[SONIC_TFC]; ) { /* Append fragment */ len = s->regs[SONIC_TFS]; if (tx_len + len > sizeof(s->tx_buffer)) { len = sizeof(s->tx_buffer) - tx_len; } s->memory_rw(s->mem_opaque, (s->regs[SONIC_TSA1] << 16) | s->regs[SONIC_TSA0], &s->tx_buffer[tx_len], len, 0); tx_len += len; i++; if (i != s->regs[SONIC_TFC]) { /* Read next fragment details */ size = sizeof(uint16_t) * 3 * width; s->memory_rw(s->mem_opaque, ((s->regs[SONIC_UTDA] << 16) | s->regs[SONIC_TTDA]) + sizeof(uint16_t) * (4 + 3 * i) * width, (uint8_t *)data, size, 0); s->regs[SONIC_TSA0] = data[0 * width]; s->regs[SONIC_TSA1] = data[1 * width]; s->regs[SONIC_TFS] = data[2 * width]; } } /* Handle Ethernet checksum */ if (!(s->regs[SONIC_TCR] & SONIC_TCR_CRCI)) { /* Don't append FCS there, to look like slirp packets * which don't have one */ } else { /* Remove existing FCS */ tx_len -= 4; } if (s->regs[SONIC_RCR] & (SONIC_RCR_LB1 | SONIC_RCR_LB0)) { /* Loopback */ s->regs[SONIC_TCR] |= SONIC_TCR_CRSL; if (s->vc->fd_can_read(s)) { s->loopback_packet = 1; s->vc->fd_read(s, s->tx_buffer, tx_len); } } else { /* Transmit packet */ qemu_send_packet(s->vc, s->tx_buffer, tx_len); } s->regs[SONIC_TCR] |= SONIC_TCR_PTX; /* Write status */ data[0 * width] = s->regs[SONIC_TCR] & 0x0fff; /* status */ size = sizeof(uint16_t) * width; s->memory_rw(s->mem_opaque, (s->regs[SONIC_UTDA] << 16) | s->regs[SONIC_TTDA], (uint8_t *)data, size, 1); if (!(s->regs[SONIC_CR] & SONIC_CR_HTX)) { /* Read footer of packet */ size = sizeof(uint16_t) * width; s->memory_rw(s->mem_opaque, ((s->regs[SONIC_UTDA] << 16) | s->regs[SONIC_TTDA]) + sizeof(uint16_t) * (4 + 3 * s->regs[SONIC_TFC]) * width, (uint8_t *)data, size, 0); s->regs[SONIC_CTDA] = data[0 * width] & ~0x1; if (data[0 * width] & 0x1) { /* EOL detected */ break; } } } /* Done */ s->regs[SONIC_CR] &= ~SONIC_CR_TXP; s->regs[SONIC_ISR] |= SONIC_ISR_TXDN; dp8393x_update_irq(s); } static void do_halt_transmission(dp8393xState *s) { /* Nothing to do */ } static void do_command(dp8393xState *s, uint16_t command) { if ((s->regs[SONIC_CR] & SONIC_CR_RST) && !(command & SONIC_CR_RST)) { s->regs[SONIC_CR] &= ~SONIC_CR_RST; return; } s->regs[SONIC_CR] |= (command & SONIC_CR_MASK); if (command & SONIC_CR_HTX) do_halt_transmission(s); if (command & SONIC_CR_TXP) do_transmit_packets(s); if (command & SONIC_CR_RXDIS) do_receiver_disable(s); if (command & SONIC_CR_RXEN) do_receiver_enable(s); if (command & SONIC_CR_STP) do_stop_timer(s); if (command & SONIC_CR_ST) do_start_timer(s); if (command & SONIC_CR_RST) do_software_reset(s); if (command & SONIC_CR_RRRA) do_read_rra(s); if (command & SONIC_CR_LCAM) do_load_cam(s); } static uint16_t read_register(dp8393xState *s, int reg) { uint16_t val = 0; switch (reg) { /* Update data before reading it */ case SONIC_WT0: case SONIC_WT1: update_wt_regs(s); val = s->regs[reg]; break; /* Accept read to some registers only when in reset mode */ case SONIC_CAP2: case SONIC_CAP1: case SONIC_CAP0: if (s->regs[SONIC_CR] & SONIC_CR_RST) { val = s->cam[s->regs[SONIC_CEP] & 0xf][2* (SONIC_CAP0 - reg) + 1] << 8; val |= s->cam[s->regs[SONIC_CEP] & 0xf][2* (SONIC_CAP0 - reg)]; } break; /* All other registers have no special contrainst */ default: val = s->regs[reg]; } DPRINTF("read 0x%04x from reg %s\n", val, reg_names[reg]); return val; } static void write_register(dp8393xState *s, int reg, uint16_t val) { DPRINTF("write 0x%04x to reg %s\n", val, reg_names[reg]); switch (reg) { /* Command register */ case SONIC_CR: do_command(s, val);; break; /* Prevent write to read-only registers */ case SONIC_CAP2: case SONIC_CAP1: case SONIC_CAP0: case SONIC_SR: case SONIC_MDT: DPRINTF("writing to reg %d invalid\n", reg); break; /* Accept write to some registers only when in reset mode */ case SONIC_DCR: if (s->regs[SONIC_CR] & SONIC_CR_RST) { s->regs[reg] = val & 0xbfff; } else { DPRINTF("writing to DCR invalid\n"); } break; case SONIC_DCR2: if (s->regs[SONIC_CR] & SONIC_CR_RST) { s->regs[reg] = val & 0xf017; } else { DPRINTF("writing to DCR2 invalid\n"); } break; /* 12 lower bytes are Read Only */ case SONIC_TCR: s->regs[reg] = val & 0xf000; break; /* 9 lower bytes are Read Only */ case SONIC_RCR: s->regs[reg] = val & 0xffe0; break; /* Ignore most significant bit */ case SONIC_IMR: s->regs[reg] = val & 0x7fff; dp8393x_update_irq(s); break; /* Clear bits by writing 1 to them */ case SONIC_ISR: val &= s->regs[reg]; s->regs[reg] &= ~val; if (val & SONIC_ISR_RBE) { do_read_rra(s); } dp8393x_update_irq(s); break; /* Ignore least significant bit */ case SONIC_RSA: case SONIC_REA: case SONIC_RRP: case SONIC_RWP: s->regs[reg] = val & 0xfffe; break; /* Invert written value for some registers */ case SONIC_CRCT: case SONIC_FAET: case SONIC_MPT: s->regs[reg] = val ^ 0xffff; break; /* All other registers have no special contrainst */ default: s->regs[reg] = val; } if (reg == SONIC_WT0 || reg == SONIC_WT1) { set_next_tick(s); } } static void dp8393x_watchdog(void *opaque) { dp8393xState *s = opaque; if (s->regs[SONIC_CR] & SONIC_CR_STP) { return; } s->regs[SONIC_WT1] = 0xffff; s->regs[SONIC_WT0] = 0xffff; set_next_tick(s); /* Signal underflow */ s->regs[SONIC_ISR] |= SONIC_ISR_TC; dp8393x_update_irq(s); } static uint32_t dp8393x_readw(void *opaque, target_phys_addr_t addr) { dp8393xState *s = opaque; int reg; if ((addr & ((1 << s->it_shift) - 1)) != 0) { return 0; } reg = addr >> s->it_shift; return read_register(s, reg); } static uint32_t dp8393x_readb(void *opaque, target_phys_addr_t addr) { uint16_t v = dp8393x_readw(opaque, addr & ~0x1); return (v >> (8 * (addr & 0x1))) & 0xff; } static uint32_t dp8393x_readl(void *opaque, target_phys_addr_t addr) { uint32_t v; v = dp8393x_readw(opaque, addr); v |= dp8393x_readw(opaque, addr + 2) << 16; return v; } static void dp8393x_writew(void *opaque, target_phys_addr_t addr, uint32_t val) { dp8393xState *s = opaque; int reg; if ((addr & ((1 << s->it_shift) - 1)) != 0) { return; } reg = addr >> s->it_shift; write_register(s, reg, (uint16_t)val); } static void dp8393x_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { uint16_t old_val = dp8393x_readw(opaque, addr & ~0x1); switch (addr & 3) { case 0: val = val | (old_val & 0xff00); break; case 1: val = (val << 8) | (old_val & 0x00ff); break; } dp8393x_writew(opaque, addr & ~0x1, val); } static void dp8393x_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { dp8393x_writew(opaque, addr, val & 0xffff); dp8393x_writew(opaque, addr + 2, (val >> 16) & 0xffff); } static CPUReadMemoryFunc *dp8393x_read[3] = { dp8393x_readb, dp8393x_readw, dp8393x_readl, }; static CPUWriteMemoryFunc *dp8393x_write[3] = { dp8393x_writeb, dp8393x_writew, dp8393x_writel, }; static int nic_can_receive(void *opaque) { dp8393xState *s = opaque; if (!(s->regs[SONIC_CR] & SONIC_CR_RXEN)) return 0; if (s->regs[SONIC_ISR] & SONIC_ISR_RBE) return 0; return 1; } static int receive_filter(dp8393xState *s, const uint8_t * buf, int size) { static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; int i; /* Check for runt packet (remember that checksum is not there) */ if (size < 64 - 4) { return (s->regs[SONIC_RCR] & SONIC_RCR_RNT) ? 0 : -1; } /* Check promiscuous mode */ if ((s->regs[SONIC_RCR] & SONIC_RCR_PRO) && (buf[0] & 1) == 0) { return 0; } /* Check multicast packets */ if ((s->regs[SONIC_RCR] & SONIC_RCR_AMC) && (buf[0] & 1) == 1) { return SONIC_RCR_MC; } /* Check broadcast */ if ((s->regs[SONIC_RCR] & SONIC_RCR_BRD) && !memcmp(buf, bcast, sizeof(bcast))) { return SONIC_RCR_BC; } /* Check CAM */ for (i = 0; i < 16; i++) { if (s->regs[SONIC_CE] & (1 << i)) { /* Entry enabled */ if (!memcmp(buf, s->cam[i], sizeof(s->cam[i]))) { return 0; } } } return -1; } static void nic_receive(void *opaque, const uint8_t * buf, int size) { uint16_t data[10]; dp8393xState *s = opaque; int packet_type; uint32_t available, address; int width, rx_len = size; uint32_t checksum; width = (s->regs[SONIC_DCR] & SONIC_DCR_DW) ? 2 : 1; s->regs[SONIC_RCR] &= ~(SONIC_RCR_PRX | SONIC_RCR_LBK | SONIC_RCR_FAER | SONIC_RCR_CRCR | SONIC_RCR_LPKT | SONIC_RCR_BC | SONIC_RCR_MC); packet_type = receive_filter(s, buf, size); if (packet_type < 0) { DPRINTF("packet not for netcard\n"); return; } /* XXX: Check byte ordering */ /* Check for EOL */ if (s->regs[SONIC_LLFA] & 0x1) { /* Are we still in resource exhaustion? */ size = sizeof(uint16_t) * 1 * width; address = ((s->regs[SONIC_URDA] << 16) | s->regs[SONIC_CRDA]) + sizeof(uint16_t) * 5 * width; s->memory_rw(s->mem_opaque, address, (uint8_t*)data, size, 0); if (data[0 * width] & 0x1) { /* Still EOL ; stop reception */ return; } else { s->regs[SONIC_CRDA] = s->regs[SONIC_LLFA]; } } /* Save current position */ s->regs[SONIC_TRBA1] = s->regs[SONIC_CRBA1]; s->regs[SONIC_TRBA0] = s->regs[SONIC_CRBA0]; /* Calculate the ethernet checksum */ #ifdef SONIC_CALCULATE_RXCRC checksum = cpu_to_le32(crc32(0, buf, rx_len)); #else checksum = 0; #endif /* Put packet into RBA */ DPRINTF("Receive packet at %08x\n", (s->regs[SONIC_CRBA1] << 16) | s->regs[SONIC_CRBA0]); address = (s->regs[SONIC_CRBA1] << 16) | s->regs[SONIC_CRBA0]; s->memory_rw(s->mem_opaque, address, (uint8_t*)buf, rx_len, 1); address += rx_len; s->memory_rw(s->mem_opaque, address, (uint8_t*)&checksum, 4, 1); rx_len += 4; s->regs[SONIC_CRBA1] = address >> 16; s->regs[SONIC_CRBA0] = address & 0xffff; available = (s->regs[SONIC_RBWC1] << 16) | s->regs[SONIC_RBWC0]; available -= rx_len / 2; s->regs[SONIC_RBWC1] = available >> 16; s->regs[SONIC_RBWC0] = available & 0xffff; /* Update status */ if (((s->regs[SONIC_RBWC1] << 16) | s->regs[SONIC_RBWC0]) < s->regs[SONIC_EOBC]) { s->regs[SONIC_RCR] |= SONIC_RCR_LPKT; } s->regs[SONIC_RCR] |= packet_type; s->regs[SONIC_RCR] |= SONIC_RCR_PRX; if (s->loopback_packet) { s->regs[SONIC_RCR] |= SONIC_RCR_LBK; s->loopback_packet = 0; } /* Write status to memory */ DPRINTF("Write status at %08x\n", (s->regs[SONIC_URDA] << 16) | s->regs[SONIC_CRDA]); data[0 * width] = s->regs[SONIC_RCR]; /* status */ data[1 * width] = rx_len; /* byte count */ data[2 * width] = s->regs[SONIC_TRBA0]; /* pkt_ptr0 */ data[3 * width] = s->regs[SONIC_TRBA1]; /* pkt_ptr1 */ data[4 * width] = s->regs[SONIC_RSC]; /* seq_no */ size = sizeof(uint16_t) * 5 * width; s->memory_rw(s->mem_opaque, (s->regs[SONIC_URDA] << 16) | s->regs[SONIC_CRDA], (uint8_t *)data, size, 1); /* Move to next descriptor */ size = sizeof(uint16_t) * width; s->memory_rw(s->mem_opaque, ((s->regs[SONIC_URDA] << 16) | s->regs[SONIC_CRDA]) + sizeof(uint16_t) * 5 * width, (uint8_t *)data, size, 0); s->regs[SONIC_LLFA] = data[0 * width]; if (s->regs[SONIC_LLFA] & 0x1) { /* EOL detected */ s->regs[SONIC_ISR] |= SONIC_ISR_RDE; } else { data[0 * width] = 0; /* in_use */ s->memory_rw(s->mem_opaque, ((s->regs[SONIC_URDA] << 16) | s->regs[SONIC_CRDA]) + sizeof(uint16_t) * 6 * width, (uint8_t *)data, size, 1); s->regs[SONIC_CRDA] = s->regs[SONIC_LLFA]; s->regs[SONIC_ISR] |= SONIC_ISR_PKTRX; s->regs[SONIC_RSC] = (s->regs[SONIC_RSC] & 0xff00) | (((s->regs[SONIC_RSC] & 0x00ff) + 1) & 0x00ff); if (s->regs[SONIC_RCR] & SONIC_RCR_LPKT) { /* Read next RRA */ do_read_rra(s); } } /* Done */ dp8393x_update_irq(s); } static void nic_reset(void *opaque) { dp8393xState *s = opaque; qemu_del_timer(s->watchdog); s->regs[SONIC_CR] = SONIC_CR_RST | SONIC_CR_STP | SONIC_CR_RXDIS; s->regs[SONIC_DCR] &= ~(SONIC_DCR_EXBUS | SONIC_DCR_LBR); s->regs[SONIC_RCR] &= ~(SONIC_RCR_LB0 | SONIC_RCR_LB1 | SONIC_RCR_BRD | SONIC_RCR_RNT); s->regs[SONIC_TCR] |= SONIC_TCR_NCRS | SONIC_TCR_PTX; s->regs[SONIC_TCR] &= ~SONIC_TCR_BCM; s->regs[SONIC_IMR] = 0; s->regs[SONIC_ISR] = 0; s->regs[SONIC_DCR2] = 0; s->regs[SONIC_EOBC] = 0x02F8; s->regs[SONIC_RSC] = 0; s->regs[SONIC_CE] = 0; s->regs[SONIC_RSC] = 0; /* Network cable is connected */ s->regs[SONIC_RCR] |= SONIC_RCR_CRS; dp8393x_update_irq(s); } static void nic_cleanup(VLANClientState *vc) { dp8393xState *s = vc->opaque; cpu_unregister_io_memory(s->mmio_index); qemu_del_timer(s->watchdog); qemu_free_timer(s->watchdog); qemu_free(s); } void dp83932_init(NICInfo *nd, target_phys_addr_t base, int it_shift, qemu_irq irq, void* mem_opaque, void (*memory_rw)(void *opaque, target_phys_addr_t addr, uint8_t *buf, int len, int is_write)) { dp8393xState *s; qemu_check_nic_model(nd, "dp83932"); s = qemu_mallocz(sizeof(dp8393xState)); s->mem_opaque = mem_opaque; s->memory_rw = memory_rw; s->it_shift = it_shift; s->irq = irq; s->watchdog = qemu_new_timer(vm_clock, dp8393x_watchdog, s); s->regs[SONIC_SR] = 0x0004; /* only revision recognized by Linux */ s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name, nic_can_receive, nic_receive, NULL, nic_cleanup, s); qemu_format_nic_info_str(s->vc, nd->macaddr); qemu_register_reset(nic_reset, 0, s); nic_reset(s); s->mmio_index = cpu_register_io_memory(0, dp8393x_read, dp8393x_write, s); cpu_register_physical_memory(base, 0x40 << it_shift, s->mmio_index); }