/* * Xilinx Display Port * * Copyright (C) 2015 : GreenSocs Ltd * http://www.greensocs.com/ , email: info@greensocs.com * * Developed by : * Frederic Konrad * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option)any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "qemu/log.h" #include "qemu/module.h" #include "hw/display/xlnx_dp.h" #include "hw/irq.h" #include "migration/vmstate.h" #ifndef DEBUG_DP #define DEBUG_DP 0 #endif #define DPRINTF(fmt, ...) do { \ if (DEBUG_DP) { \ qemu_log("xlnx_dp: " fmt , ## __VA_ARGS__); \ } \ } while (0) /* * Register offset for DP. */ #define DP_LINK_BW_SET (0x0000 >> 2) #define DP_LANE_COUNT_SET (0x0004 >> 2) #define DP_ENHANCED_FRAME_EN (0x0008 >> 2) #define DP_TRAINING_PATTERN_SET (0x000C >> 2) #define DP_LINK_QUAL_PATTERN_SET (0x0010 >> 2) #define DP_SCRAMBLING_DISABLE (0x0014 >> 2) #define DP_DOWNSPREAD_CTRL (0x0018 >> 2) #define DP_SOFTWARE_RESET (0x001C >> 2) #define DP_TRANSMITTER_ENABLE (0x0080 >> 2) #define DP_MAIN_STREAM_ENABLE (0x0084 >> 2) #define DP_FORCE_SCRAMBLER_RESET (0x00C0 >> 2) #define DP_VERSION_REGISTER (0x00F8 >> 2) #define DP_CORE_ID (0x00FC >> 2) #define DP_AUX_COMMAND_REGISTER (0x0100 >> 2) #define AUX_ADDR_ONLY_MASK (0x1000) #define AUX_COMMAND_MASK (0x0F00) #define AUX_COMMAND_SHIFT (8) #define AUX_COMMAND_NBYTES (0x000F) #define DP_AUX_WRITE_FIFO (0x0104 >> 2) #define DP_AUX_ADDRESS (0x0108 >> 2) #define DP_AUX_CLOCK_DIVIDER (0x010C >> 2) #define DP_TX_USER_FIFO_OVERFLOW (0x0110 >> 2) #define DP_INTERRUPT_SIGNAL_STATE (0x0130 >> 2) #define DP_AUX_REPLY_DATA (0x0134 >> 2) #define DP_AUX_REPLY_CODE (0x0138 >> 2) #define DP_AUX_REPLY_COUNT (0x013C >> 2) #define DP_REPLY_DATA_COUNT (0x0148 >> 2) #define DP_REPLY_STATUS (0x014C >> 2) #define DP_HPD_DURATION (0x0150 >> 2) #define DP_MAIN_STREAM_HTOTAL (0x0180 >> 2) #define DP_MAIN_STREAM_VTOTAL (0x0184 >> 2) #define DP_MAIN_STREAM_POLARITY (0x0188 >> 2) #define DP_MAIN_STREAM_HSWIDTH (0x018C >> 2) #define DP_MAIN_STREAM_VSWIDTH (0x0190 >> 2) #define DP_MAIN_STREAM_HRES (0x0194 >> 2) #define DP_MAIN_STREAM_VRES (0x0198 >> 2) #define DP_MAIN_STREAM_HSTART (0x019C >> 2) #define DP_MAIN_STREAM_VSTART (0x01A0 >> 2) #define DP_MAIN_STREAM_MISC0 (0x01A4 >> 2) #define DP_MAIN_STREAM_MISC1 (0x01A8 >> 2) #define DP_MAIN_STREAM_M_VID (0x01AC >> 2) #define DP_MSA_TRANSFER_UNIT_SIZE (0x01B0 >> 2) #define DP_MAIN_STREAM_N_VID (0x01B4 >> 2) #define DP_USER_DATA_COUNT_PER_LANE (0x01BC >> 2) #define DP_MIN_BYTES_PER_TU (0x01C4 >> 2) #define DP_FRAC_BYTES_PER_TU (0x01C8 >> 2) #define DP_INIT_WAIT (0x01CC >> 2) #define DP_PHY_RESET (0x0200 >> 2) #define DP_PHY_VOLTAGE_DIFF_LANE_0 (0x0220 >> 2) #define DP_PHY_VOLTAGE_DIFF_LANE_1 (0x0224 >> 2) #define DP_TRANSMIT_PRBS7 (0x0230 >> 2) #define DP_PHY_CLOCK_SELECT (0x0234 >> 2) #define DP_TX_PHY_POWER_DOWN (0x0238 >> 2) #define DP_PHY_PRECURSOR_LANE_0 (0x023C >> 2) #define DP_PHY_PRECURSOR_LANE_1 (0x0240 >> 2) #define DP_PHY_POSTCURSOR_LANE_0 (0x024C >> 2) #define DP_PHY_POSTCURSOR_LANE_1 (0x0250 >> 2) #define DP_PHY_STATUS (0x0280 >> 2) #define DP_TX_AUDIO_CONTROL (0x0300 >> 2) #define DP_TX_AUD_CTRL (1) #define DP_TX_AUDIO_CHANNELS (0x0304 >> 2) #define DP_TX_AUDIO_INFO_DATA(n) ((0x0308 + 4 * n) >> 2) #define DP_TX_M_AUD (0x0328 >> 2) #define DP_TX_N_AUD (0x032C >> 2) #define DP_TX_AUDIO_EXT_DATA(n) ((0x0330 + 4 * n) >> 2) #define DP_INT_STATUS (0x03A0 >> 2) #define DP_INT_VBLNK_START (1 << 13) #define DP_INT_MASK (0x03A4 >> 2) #define DP_INT_EN (0x03A8 >> 2) #define DP_INT_DS (0x03AC >> 2) /* * Registers offset for Audio Video Buffer configuration. */ #define V_BLEND_OFFSET (0xA000) #define V_BLEND_BG_CLR_0 (0x0000 >> 2) #define V_BLEND_BG_CLR_1 (0x0004 >> 2) #define V_BLEND_BG_CLR_2 (0x0008 >> 2) #define V_BLEND_SET_GLOBAL_ALPHA_REG (0x000C >> 2) #define V_BLEND_OUTPUT_VID_FORMAT (0x0014 >> 2) #define V_BLEND_LAYER0_CONTROL (0x0018 >> 2) #define V_BLEND_LAYER1_CONTROL (0x001C >> 2) #define V_BLEND_RGB2YCBCR_COEFF(n) ((0x0020 + 4 * n) >> 2) #define V_BLEND_IN1CSC_COEFF(n) ((0x0044 + 4 * n) >> 2) #define V_BLEND_LUMA_IN1CSC_OFFSET (0x0068 >> 2) #define V_BLEND_CR_IN1CSC_OFFSET (0x006C >> 2) #define V_BLEND_CB_IN1CSC_OFFSET (0x0070 >> 2) #define V_BLEND_LUMA_OUTCSC_OFFSET (0x0074 >> 2) #define V_BLEND_CR_OUTCSC_OFFSET (0x0078 >> 2) #define V_BLEND_CB_OUTCSC_OFFSET (0x007C >> 2) #define V_BLEND_IN2CSC_COEFF(n) ((0x0080 + 4 * n) >> 2) #define V_BLEND_LUMA_IN2CSC_OFFSET (0x00A4 >> 2) #define V_BLEND_CR_IN2CSC_OFFSET (0x00A8 >> 2) #define V_BLEND_CB_IN2CSC_OFFSET (0x00AC >> 2) #define V_BLEND_CHROMA_KEY_ENABLE (0x01D0 >> 2) #define V_BLEND_CHROMA_KEY_COMP1 (0x01D4 >> 2) #define V_BLEND_CHROMA_KEY_COMP2 (0x01D8 >> 2) #define V_BLEND_CHROMA_KEY_COMP3 (0x01DC >> 2) /* * Registers offset for Audio Video Buffer configuration. */ #define AV_BUF_MANAGER_OFFSET (0xB000) #define AV_BUF_FORMAT (0x0000 >> 2) #define AV_BUF_NON_LIVE_LATENCY (0x0008 >> 2) #define AV_CHBUF0 (0x0010 >> 2) #define AV_CHBUF1 (0x0014 >> 2) #define AV_CHBUF2 (0x0018 >> 2) #define AV_CHBUF3 (0x001C >> 2) #define AV_CHBUF4 (0x0020 >> 2) #define AV_CHBUF5 (0x0024 >> 2) #define AV_BUF_STC_CONTROL (0x002C >> 2) #define AV_BUF_STC_INIT_VALUE0 (0x0030 >> 2) #define AV_BUF_STC_INIT_VALUE1 (0x0034 >> 2) #define AV_BUF_STC_ADJ (0x0038 >> 2) #define AV_BUF_STC_VIDEO_VSYNC_TS_REG0 (0x003C >> 2) #define AV_BUF_STC_VIDEO_VSYNC_TS_REG1 (0x0040 >> 2) #define AV_BUF_STC_EXT_VSYNC_TS_REG0 (0x0044 >> 2) #define AV_BUF_STC_EXT_VSYNC_TS_REG1 (0x0048 >> 2) #define AV_BUF_STC_CUSTOM_EVENT_TS_REG0 (0x004C >> 2) #define AV_BUF_STC_CUSTOM_EVENT_TS_REG1 (0x0050 >> 2) #define AV_BUF_STC_CUSTOM_EVENT2_TS_REG0 (0x0054 >> 2) #define AV_BUF_STC_CUSTOM_EVENT2_TS_REG1 (0x0058 >> 2) #define AV_BUF_STC_SNAPSHOT0 (0x0060 >> 2) #define AV_BUF_STC_SNAPSHOT1 (0x0064 >> 2) #define AV_BUF_OUTPUT_AUDIO_VIDEO_SELECT (0x0070 >> 2) #define AV_BUF_HCOUNT_VCOUNT_INT0 (0x0074 >> 2) #define AV_BUF_HCOUNT_VCOUNT_INT1 (0x0078 >> 2) #define AV_BUF_DITHER_CONFIG (0x007C >> 2) #define AV_BUF_DITHER_CONFIG_MAX (0x008C >> 2) #define AV_BUF_DITHER_CONFIG_MIN (0x0090 >> 2) #define AV_BUF_PATTERN_GEN_SELECT (0x0100 >> 2) #define AV_BUF_AUD_VID_CLK_SOURCE (0x0120 >> 2) #define AV_BUF_SRST_REG (0x0124 >> 2) #define AV_BUF_AUDIO_RDY_INTERVAL (0x0128 >> 2) #define AV_BUF_AUDIO_CH_CONFIG (0x012C >> 2) #define AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(n)((0x0200 + 4 * n) >> 2) #define AV_BUF_VIDEO_COMP_SCALE_FACTOR(n) ((0x020C + 4 * n) >> 2) #define AV_BUF_LIVE_VIDEO_COMP_SF(n) ((0x0218 + 4 * n) >> 2) #define AV_BUF_LIVE_VID_CONFIG (0x0224 >> 2) #define AV_BUF_LIVE_GFX_COMP_SF(n) ((0x0228 + 4 * n) >> 2) #define AV_BUF_LIVE_GFX_CONFIG (0x0234 >> 2) #define AUDIO_MIXER_REGISTER_OFFSET (0xC000) #define AUDIO_MIXER_VOLUME_CONTROL (0x0000 >> 2) #define AUDIO_MIXER_META_DATA (0x0004 >> 2) #define AUD_CH_STATUS_REG(n) ((0x0008 + 4 * n) >> 2) #define AUD_CH_A_DATA_REG(n) ((0x0020 + 4 * n) >> 2) #define AUD_CH_B_DATA_REG(n) ((0x0038 + 4 * n) >> 2) #define DP_AUDIO_DMA_CHANNEL(n) (4 + n) #define DP_GRAPHIC_DMA_CHANNEL (3) #define DP_VIDEO_DMA_CHANNEL (0) enum DPGraphicFmt { DP_GRAPHIC_RGBA8888 = 0 << 8, DP_GRAPHIC_ABGR8888 = 1 << 8, DP_GRAPHIC_RGB888 = 2 << 8, DP_GRAPHIC_BGR888 = 3 << 8, DP_GRAPHIC_RGBA5551 = 4 << 8, DP_GRAPHIC_RGBA4444 = 5 << 8, DP_GRAPHIC_RGB565 = 6 << 8, DP_GRAPHIC_8BPP = 7 << 8, DP_GRAPHIC_4BPP = 8 << 8, DP_GRAPHIC_2BPP = 9 << 8, DP_GRAPHIC_1BPP = 10 << 8, DP_GRAPHIC_MASK = 0xF << 8 }; enum DPVideoFmt { DP_NL_VID_CB_Y0_CR_Y1 = 0, DP_NL_VID_CR_Y0_CB_Y1 = 1, DP_NL_VID_Y0_CR_Y1_CB = 2, DP_NL_VID_Y0_CB_Y1_CR = 3, DP_NL_VID_YV16 = 4, DP_NL_VID_YV24 = 5, DP_NL_VID_YV16CL = 6, DP_NL_VID_MONO = 7, DP_NL_VID_YV16CL2 = 8, DP_NL_VID_YUV444 = 9, DP_NL_VID_RGB888 = 10, DP_NL_VID_RGBA8880 = 11, DP_NL_VID_RGB888_10BPC = 12, DP_NL_VID_YUV444_10BPC = 13, DP_NL_VID_YV16CL2_10BPC = 14, DP_NL_VID_YV16CL_10BPC = 15, DP_NL_VID_YV16_10BPC = 16, DP_NL_VID_YV24_10BPC = 17, DP_NL_VID_Y_ONLY_10BPC = 18, DP_NL_VID_YV16_420 = 19, DP_NL_VID_YV16CL_420 = 20, DP_NL_VID_YV16CL2_420 = 21, DP_NL_VID_YV16_420_10BPC = 22, DP_NL_VID_YV16CL_420_10BPC = 23, DP_NL_VID_YV16CL2_420_10BPC = 24, DP_NL_VID_FMT_MASK = 0x1F }; typedef enum DPGraphicFmt DPGraphicFmt; typedef enum DPVideoFmt DPVideoFmt; static const VMStateDescription vmstate_dp = { .name = TYPE_XLNX_DP, .version_id = 2, .fields = (const VMStateField[]){ VMSTATE_UINT32_ARRAY(core_registers, XlnxDPState, DP_CORE_REG_ARRAY_SIZE), VMSTATE_UINT32_ARRAY(avbufm_registers, XlnxDPState, DP_AVBUF_REG_ARRAY_SIZE), VMSTATE_UINT32_ARRAY(vblend_registers, XlnxDPState, DP_VBLEND_REG_ARRAY_SIZE), VMSTATE_UINT32_ARRAY(audio_registers, XlnxDPState, DP_AUDIO_REG_ARRAY_SIZE), VMSTATE_PTIMER(vblank, XlnxDPState), VMSTATE_END_OF_LIST() } }; #define DP_VBLANK_PTIMER_POLICY (PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD | \ PTIMER_POLICY_CONTINUOUS_TRIGGER | \ PTIMER_POLICY_NO_IMMEDIATE_TRIGGER) static void xlnx_dp_update_irq(XlnxDPState *s); static uint64_t xlnx_dp_audio_read(void *opaque, hwaddr offset, unsigned size) { XlnxDPState *s = XLNX_DP(opaque); offset = offset >> 2; return s->audio_registers[offset]; } static void xlnx_dp_audio_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { XlnxDPState *s = XLNX_DP(opaque); offset = offset >> 2; switch (offset) { case AUDIO_MIXER_META_DATA: s->audio_registers[offset] = value & 0x00000001; break; default: s->audio_registers[offset] = value; break; } } static const MemoryRegionOps audio_ops = { .read = xlnx_dp_audio_read, .write = xlnx_dp_audio_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static inline uint32_t xlnx_dp_audio_get_volume(XlnxDPState *s, uint8_t channel) { switch (channel) { case 0: return extract32(s->audio_registers[AUDIO_MIXER_VOLUME_CONTROL], 0, 16); case 1: return extract32(s->audio_registers[AUDIO_MIXER_VOLUME_CONTROL], 16, 16); default: return 0; } } static inline void xlnx_dp_audio_activate(XlnxDPState *s) { bool activated = ((s->core_registers[DP_TX_AUDIO_CONTROL] & DP_TX_AUD_CTRL) != 0); AUD_set_active_out(s->amixer_output_stream, activated); xlnx_dpdma_set_host_data_location(s->dpdma, DP_AUDIO_DMA_CHANNEL(0), &s->audio_buffer_0); xlnx_dpdma_set_host_data_location(s->dpdma, DP_AUDIO_DMA_CHANNEL(1), &s->audio_buffer_1); } static inline void xlnx_dp_audio_mix_buffer(XlnxDPState *s) { /* * Audio packets are signed and have this shape: * | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | * | R3 | L3 | R2 | L2 | R1 | L1 | R0 | L0 | * * Output audio is 16bits saturated. */ int i; if ((s->audio_data_available[0]) && (xlnx_dp_audio_get_volume(s, 0))) { for (i = 0; i < s->audio_data_available[0] / 2; i++) { s->temp_buffer[i] = (int64_t)(s->audio_buffer_0[i]) * xlnx_dp_audio_get_volume(s, 0) / 8192; } s->byte_left = s->audio_data_available[0]; } else { memset(s->temp_buffer, 0, s->audio_data_available[1] / 2); } if ((s->audio_data_available[1]) && (xlnx_dp_audio_get_volume(s, 1))) { if ((s->audio_data_available[0] == 0) || (s->audio_data_available[1] == s->audio_data_available[0])) { for (i = 0; i < s->audio_data_available[1] / 2; i++) { s->temp_buffer[i] += (int64_t)(s->audio_buffer_1[i]) * xlnx_dp_audio_get_volume(s, 1) / 8192; } s->byte_left = s->audio_data_available[1]; } } for (i = 0; i < s->byte_left / 2; i++) { s->out_buffer[i] = MAX(-32767, MIN(s->temp_buffer[i], 32767)); } s->data_ptr = 0; } static void xlnx_dp_audio_callback(void *opaque, int avail) { /* * Get the individual left and right audio streams from the DPDMA, * and fill the output buffer with the combined stereo audio data * adjusted by the volume controls. * QEMU's audio subsystem will call this callback repeatedly; * we return the data from the output buffer until it is emptied, * and then we will read data from the DPDMA again. */ XlnxDPState *s = XLNX_DP(opaque); size_t written = 0; if (s->byte_left == 0) { s->audio_data_available[0] = xlnx_dpdma_start_operation(s->dpdma, 4, true); s->audio_data_available[1] = xlnx_dpdma_start_operation(s->dpdma, 5, true); xlnx_dp_audio_mix_buffer(s); } /* Send the buffer through the audio. */ if (s->byte_left <= MAX_QEMU_BUFFER_SIZE) { if (s->byte_left != 0) { written = AUD_write(s->amixer_output_stream, &s->out_buffer[s->data_ptr], s->byte_left); } else { int len_to_copy; /* * There is nothing to play.. We don't have any data! Fill the * buffer with zero's and send it. */ written = 0; while (avail) { len_to_copy = MIN(AUD_CHBUF_MAX_DEPTH, avail); memset(s->out_buffer, 0, len_to_copy); avail -= AUD_write(s->amixer_output_stream, s->out_buffer, len_to_copy); } } } else { written = AUD_write(s->amixer_output_stream, &s->out_buffer[s->data_ptr], MAX_QEMU_BUFFER_SIZE); } s->byte_left -= written; s->data_ptr += written; } /* * AUX channel related function. */ static void xlnx_dp_aux_clear_rx_fifo(XlnxDPState *s) { fifo8_reset(&s->rx_fifo); } static void xlnx_dp_aux_push_rx_fifo(XlnxDPState *s, uint8_t *buf, size_t len) { DPRINTF("Push %u data in rx_fifo\n", (unsigned)len); fifo8_push_all(&s->rx_fifo, buf, len); } static uint8_t xlnx_dp_aux_pop_rx_fifo(XlnxDPState *s) { uint8_t ret; if (fifo8_is_empty(&s->rx_fifo)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Reading empty RX_FIFO\n", __func__); /* * The datasheet is not clear about the reset value, it seems * to be unspecified. We choose to return '0'. */ ret = 0; } else { ret = fifo8_pop(&s->rx_fifo); DPRINTF("pop 0x%" PRIX8 " from rx_fifo.\n", ret); } return ret; } static void xlnx_dp_aux_clear_tx_fifo(XlnxDPState *s) { fifo8_reset(&s->tx_fifo); } static void xlnx_dp_aux_push_tx_fifo(XlnxDPState *s, uint8_t *buf, size_t len) { DPRINTF("Push %u data in tx_fifo\n", (unsigned)len); fifo8_push_all(&s->tx_fifo, buf, len); } static uint8_t xlnx_dp_aux_pop_tx_fifo(XlnxDPState *s) { uint8_t ret; if (fifo8_is_empty(&s->tx_fifo)) { error_report("%s: TX_FIFO underflow", __func__); abort(); } ret = fifo8_pop(&s->tx_fifo); DPRINTF("pop 0x%2.2X from tx_fifo.\n", ret); return ret; } static uint32_t xlnx_dp_aux_get_address(XlnxDPState *s) { return s->core_registers[DP_AUX_ADDRESS]; } /* * Get command from the register. */ static void xlnx_dp_aux_set_command(XlnxDPState *s, uint32_t value) { bool address_only = (value & AUX_ADDR_ONLY_MASK) != 0; AUXCommand cmd = (value & AUX_COMMAND_MASK) >> AUX_COMMAND_SHIFT; uint8_t nbytes = (value & AUX_COMMAND_NBYTES) + 1; uint8_t buf[16]; int i; /* * When an address_only command is executed nothing happen to the fifo, so * just make nbytes = 0. */ if (address_only) { nbytes = 0; } switch (cmd) { case READ_AUX: case READ_I2C: case READ_I2C_MOT: s->core_registers[DP_AUX_REPLY_CODE] = aux_request(s->aux_bus, cmd, xlnx_dp_aux_get_address(s), nbytes, buf); s->core_registers[DP_REPLY_DATA_COUNT] = nbytes; if (s->core_registers[DP_AUX_REPLY_CODE] == AUX_I2C_ACK) { xlnx_dp_aux_push_rx_fifo(s, buf, nbytes); } break; case WRITE_AUX: case WRITE_I2C: case WRITE_I2C_MOT: for (i = 0; i < nbytes; i++) { buf[i] = xlnx_dp_aux_pop_tx_fifo(s); } s->core_registers[DP_AUX_REPLY_CODE] = aux_request(s->aux_bus, cmd, xlnx_dp_aux_get_address(s), nbytes, buf); xlnx_dp_aux_clear_tx_fifo(s); break; case WRITE_I2C_STATUS: qemu_log_mask(LOG_UNIMP, "xlnx_dp: Write i2c status not implemented\n"); break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid command: %u", __func__, cmd); return; } s->core_registers[DP_INTERRUPT_SIGNAL_STATE] |= 0x04; } static void xlnx_dp_set_dpdma(const Object *obj, const char *name, Object *val, Error **errp) { XlnxDPState *s = XLNX_DP(obj); if (s->console) { DisplaySurface *surface = qemu_console_surface(s->console); XlnxDPDMAState *dma = XLNX_DPDMA(val); xlnx_dpdma_set_host_data_location(dma, DP_GRAPHIC_DMA_CHANNEL, surface_data(surface)); } } static inline uint8_t xlnx_dp_global_alpha_value(XlnxDPState *s) { return (s->vblend_registers[V_BLEND_SET_GLOBAL_ALPHA_REG] & 0x1FE) >> 1; } static inline bool xlnx_dp_global_alpha_enabled(XlnxDPState *s) { /* * If the alpha is totally opaque (255) we consider the alpha is disabled to * reduce CPU consumption. */ return ((xlnx_dp_global_alpha_value(s) != 0xFF) && ((s->vblend_registers[V_BLEND_SET_GLOBAL_ALPHA_REG] & 0x01) != 0)); } static void xlnx_dp_recreate_surface(XlnxDPState *s) { /* * Two possibilities, if blending is enabled the console displays * bout_plane, if not g_plane is displayed. */ uint16_t width = s->core_registers[DP_MAIN_STREAM_HRES]; uint16_t height = s->core_registers[DP_MAIN_STREAM_VRES]; DisplaySurface *current_console_surface = qemu_console_surface(s->console); if ((width != 0) && (height != 0)) { /* * As dpy_gfx_replace_surface calls qemu_free_displaysurface on the * surface we need to be careful and don't free the surface associated * to the console or double free will happen. */ if (s->bout_plane.surface != current_console_surface) { qemu_free_displaysurface(s->bout_plane.surface); } if (s->v_plane.surface != current_console_surface) { qemu_free_displaysurface(s->v_plane.surface); } if (s->g_plane.surface != current_console_surface) { qemu_free_displaysurface(s->g_plane.surface); } s->g_plane.surface = qemu_create_displaysurface_from(width, height, s->g_plane.format, 0, NULL); s->v_plane.surface = qemu_create_displaysurface_from(width, height, s->v_plane.format, 0, NULL); if (xlnx_dp_global_alpha_enabled(s)) { s->bout_plane.surface = qemu_create_displaysurface_from(width, height, s->g_plane.format, 0, NULL); dpy_gfx_replace_surface(s->console, s->bout_plane.surface); } else { s->bout_plane.surface = NULL; dpy_gfx_replace_surface(s->console, s->g_plane.surface); } xlnx_dpdma_set_host_data_location(s->dpdma, DP_GRAPHIC_DMA_CHANNEL, surface_data(s->g_plane.surface)); xlnx_dpdma_set_host_data_location(s->dpdma, DP_VIDEO_DMA_CHANNEL, surface_data(s->v_plane.surface)); } } /* * Change the graphic format of the surface. */ static void xlnx_dp_change_graphic_fmt(XlnxDPState *s) { switch (s->avbufm_registers[AV_BUF_FORMAT] & DP_GRAPHIC_MASK) { case DP_GRAPHIC_RGBA8888: s->g_plane.format = PIXMAN_r8g8b8a8; break; case DP_GRAPHIC_ABGR8888: s->g_plane.format = PIXMAN_a8b8g8r8; break; case DP_GRAPHIC_RGB565: s->g_plane.format = PIXMAN_r5g6b5; break; case DP_GRAPHIC_RGB888: s->g_plane.format = PIXMAN_r8g8b8; break; case DP_GRAPHIC_BGR888: s->g_plane.format = PIXMAN_b8g8r8; break; default: error_report("%s: unsupported graphic format %u", __func__, s->avbufm_registers[AV_BUF_FORMAT] & DP_GRAPHIC_MASK); abort(); } switch (s->avbufm_registers[AV_BUF_FORMAT] & DP_NL_VID_FMT_MASK) { case 0: s->v_plane.format = PIXMAN_x8b8g8r8; break; case DP_NL_VID_Y0_CB_Y1_CR: s->v_plane.format = PIXMAN_yuy2; break; case DP_NL_VID_RGBA8880: s->v_plane.format = PIXMAN_x8b8g8r8; break; default: error_report("%s: unsupported video format %u", __func__, s->avbufm_registers[AV_BUF_FORMAT] & DP_NL_VID_FMT_MASK); abort(); } xlnx_dp_recreate_surface(s); } static void xlnx_dp_update_irq(XlnxDPState *s) { uint32_t flags; flags = s->core_registers[DP_INT_STATUS] & ~s->core_registers[DP_INT_MASK]; DPRINTF("update IRQ value = %" PRIx32 "\n", flags); qemu_set_irq(s->irq, flags != 0); } static uint64_t xlnx_dp_read(void *opaque, hwaddr offset, unsigned size) { XlnxDPState *s = XLNX_DP(opaque); uint64_t ret = 0; offset = offset >> 2; switch (offset) { case DP_TX_USER_FIFO_OVERFLOW: /* This register is cleared after a read */ ret = s->core_registers[DP_TX_USER_FIFO_OVERFLOW]; s->core_registers[DP_TX_USER_FIFO_OVERFLOW] = 0; break; case DP_AUX_REPLY_DATA: ret = xlnx_dp_aux_pop_rx_fifo(s); break; case DP_INTERRUPT_SIGNAL_STATE: /* * XXX: Not sure it is the right thing to do actually. * The register is not written by the device driver so it's stuck * to 0x04. */ ret = s->core_registers[DP_INTERRUPT_SIGNAL_STATE]; s->core_registers[DP_INTERRUPT_SIGNAL_STATE] &= ~0x04; break; case DP_AUX_WRITE_FIFO: case DP_TX_AUDIO_INFO_DATA(0): case DP_TX_AUDIO_INFO_DATA(1): case DP_TX_AUDIO_INFO_DATA(2): case DP_TX_AUDIO_INFO_DATA(3): case DP_TX_AUDIO_INFO_DATA(4): case DP_TX_AUDIO_INFO_DATA(5): case DP_TX_AUDIO_INFO_DATA(6): case DP_TX_AUDIO_INFO_DATA(7): case DP_TX_AUDIO_EXT_DATA(0): case DP_TX_AUDIO_EXT_DATA(1): case DP_TX_AUDIO_EXT_DATA(2): case DP_TX_AUDIO_EXT_DATA(3): case DP_TX_AUDIO_EXT_DATA(4): case DP_TX_AUDIO_EXT_DATA(5): case DP_TX_AUDIO_EXT_DATA(6): case DP_TX_AUDIO_EXT_DATA(7): case DP_TX_AUDIO_EXT_DATA(8): /* write only registers */ ret = 0; break; default: assert(offset <= (0x3AC >> 2)); if (offset == (0x3A8 >> 2) || offset == (0x3AC >> 2)) { ret = s->core_registers[DP_INT_MASK]; } else { ret = s->core_registers[offset]; } break; } DPRINTF("core read @%" PRIx64 " = 0x%8.8" PRIX64 "\n", offset << 2, ret); return ret; } static void xlnx_dp_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { XlnxDPState *s = XLNX_DP(opaque); DPRINTF("core write @%" PRIx64 " = 0x%8.8" PRIX64 "\n", offset, value); offset = offset >> 2; switch (offset) { /* * Only special write case are handled. */ case DP_LINK_BW_SET: s->core_registers[offset] = value & 0x000000FF; break; case DP_LANE_COUNT_SET: case DP_MAIN_STREAM_MISC0: s->core_registers[offset] = value & 0x0000000F; break; case DP_TRAINING_PATTERN_SET: case DP_LINK_QUAL_PATTERN_SET: case DP_MAIN_STREAM_POLARITY: case DP_PHY_VOLTAGE_DIFF_LANE_0: case DP_PHY_VOLTAGE_DIFF_LANE_1: s->core_registers[offset] = value & 0x00000003; break; case DP_ENHANCED_FRAME_EN: case DP_SCRAMBLING_DISABLE: case DP_DOWNSPREAD_CTRL: case DP_MAIN_STREAM_ENABLE: case DP_TRANSMIT_PRBS7: s->core_registers[offset] = value & 0x00000001; break; case DP_PHY_CLOCK_SELECT: s->core_registers[offset] = value & 0x00000007; break; case DP_SOFTWARE_RESET: /* * No need to update this bit as it's read '0'. */ /* * TODO: reset IP. */ break; case DP_TRANSMITTER_ENABLE: s->core_registers[offset] = value & 0x01; ptimer_transaction_begin(s->vblank); if (value & 0x1) { ptimer_run(s->vblank, 0); } else { ptimer_stop(s->vblank); } ptimer_transaction_commit(s->vblank); break; case DP_FORCE_SCRAMBLER_RESET: /* * No need to update this bit as it's read '0'. */ /* * TODO: force a scrambler reset?? */ break; case DP_AUX_COMMAND_REGISTER: s->core_registers[offset] = value & 0x00001F0F; xlnx_dp_aux_set_command(s, s->core_registers[offset]); break; case DP_MAIN_STREAM_HTOTAL: case DP_MAIN_STREAM_VTOTAL: case DP_MAIN_STREAM_HSTART: case DP_MAIN_STREAM_VSTART: s->core_registers[offset] = value & 0x0000FFFF; break; case DP_MAIN_STREAM_HRES: case DP_MAIN_STREAM_VRES: s->core_registers[offset] = value & 0x0000FFFF; xlnx_dp_recreate_surface(s); break; case DP_MAIN_STREAM_HSWIDTH: case DP_MAIN_STREAM_VSWIDTH: s->core_registers[offset] = value & 0x00007FFF; break; case DP_MAIN_STREAM_MISC1: s->core_registers[offset] = value & 0x00000086; break; case DP_MAIN_STREAM_M_VID: case DP_MAIN_STREAM_N_VID: s->core_registers[offset] = value & 0x00FFFFFF; break; case DP_MSA_TRANSFER_UNIT_SIZE: case DP_MIN_BYTES_PER_TU: case DP_INIT_WAIT: s->core_registers[offset] = value & 0x00000007; break; case DP_USER_DATA_COUNT_PER_LANE: s->core_registers[offset] = value & 0x0003FFFF; break; case DP_FRAC_BYTES_PER_TU: s->core_registers[offset] = value & 0x000003FF; break; case DP_PHY_RESET: s->core_registers[offset] = value & 0x00010003; /* * TODO: Reset something? */ break; case DP_TX_PHY_POWER_DOWN: s->core_registers[offset] = value & 0x0000000F; /* * TODO: Power down things? */ break; case DP_AUX_WRITE_FIFO: { uint8_t c = value; xlnx_dp_aux_push_tx_fifo(s, &c, 1); break; } case DP_AUX_CLOCK_DIVIDER: break; case DP_AUX_REPLY_COUNT: /* * Writing to this register clear the counter. */ s->core_registers[offset] = 0x00000000; break; case DP_AUX_ADDRESS: s->core_registers[offset] = value & 0x000FFFFF; break; case DP_VERSION_REGISTER: case DP_CORE_ID: case DP_TX_USER_FIFO_OVERFLOW: case DP_AUX_REPLY_DATA: case DP_AUX_REPLY_CODE: case DP_REPLY_DATA_COUNT: case DP_REPLY_STATUS: case DP_HPD_DURATION: /* * Write to read only location.. */ break; case DP_TX_AUDIO_CONTROL: s->core_registers[offset] = value & 0x00000001; xlnx_dp_audio_activate(s); break; case DP_TX_AUDIO_CHANNELS: s->core_registers[offset] = value & 0x00000007; xlnx_dp_audio_activate(s); break; case DP_INT_STATUS: s->core_registers[DP_INT_STATUS] &= ~value; xlnx_dp_update_irq(s); break; case DP_INT_EN: s->core_registers[DP_INT_MASK] &= ~value; xlnx_dp_update_irq(s); break; case DP_INT_DS: s->core_registers[DP_INT_MASK] |= value; xlnx_dp_update_irq(s); break; default: assert(offset <= (0x504C >> 2)); s->core_registers[offset] = value; break; } } static const MemoryRegionOps dp_ops = { .read = xlnx_dp_read, .write = xlnx_dp_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; /* * This is to handle Read/Write to the Video Blender. */ static void xlnx_dp_vblend_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { XlnxDPState *s = XLNX_DP(opaque); bool alpha_was_enabled; DPRINTF("vblend: write @0x%" HWADDR_PRIX " = 0x%" PRIX32 "\n", offset, (uint32_t)value); offset = offset >> 2; switch (offset) { case V_BLEND_BG_CLR_0: case V_BLEND_BG_CLR_1: case V_BLEND_BG_CLR_2: s->vblend_registers[offset] = value & 0x00000FFF; break; case V_BLEND_SET_GLOBAL_ALPHA_REG: /* * A write to this register can enable or disable blending. Thus we need * to recreate the surfaces. */ alpha_was_enabled = xlnx_dp_global_alpha_enabled(s); s->vblend_registers[offset] = value & 0x000001FF; if (xlnx_dp_global_alpha_enabled(s) != alpha_was_enabled) { xlnx_dp_recreate_surface(s); } break; case V_BLEND_OUTPUT_VID_FORMAT: s->vblend_registers[offset] = value & 0x00000017; break; case V_BLEND_LAYER0_CONTROL: case V_BLEND_LAYER1_CONTROL: s->vblend_registers[offset] = value & 0x00000103; break; case V_BLEND_RGB2YCBCR_COEFF(0): case V_BLEND_RGB2YCBCR_COEFF(1): case V_BLEND_RGB2YCBCR_COEFF(2): case V_BLEND_RGB2YCBCR_COEFF(3): case V_BLEND_RGB2YCBCR_COEFF(4): case V_BLEND_RGB2YCBCR_COEFF(5): case V_BLEND_RGB2YCBCR_COEFF(6): case V_BLEND_RGB2YCBCR_COEFF(7): case V_BLEND_RGB2YCBCR_COEFF(8): case V_BLEND_IN1CSC_COEFF(0): case V_BLEND_IN1CSC_COEFF(1): case V_BLEND_IN1CSC_COEFF(2): case V_BLEND_IN1CSC_COEFF(3): case V_BLEND_IN1CSC_COEFF(4): case V_BLEND_IN1CSC_COEFF(5): case V_BLEND_IN1CSC_COEFF(6): case V_BLEND_IN1CSC_COEFF(7): case V_BLEND_IN1CSC_COEFF(8): case V_BLEND_IN2CSC_COEFF(0): case V_BLEND_IN2CSC_COEFF(1): case V_BLEND_IN2CSC_COEFF(2): case V_BLEND_IN2CSC_COEFF(3): case V_BLEND_IN2CSC_COEFF(4): case V_BLEND_IN2CSC_COEFF(5): case V_BLEND_IN2CSC_COEFF(6): case V_BLEND_IN2CSC_COEFF(7): case V_BLEND_IN2CSC_COEFF(8): s->vblend_registers[offset] = value & 0x0000FFFF; break; case V_BLEND_LUMA_IN1CSC_OFFSET: case V_BLEND_CR_IN1CSC_OFFSET: case V_BLEND_CB_IN1CSC_OFFSET: case V_BLEND_LUMA_IN2CSC_OFFSET: case V_BLEND_CR_IN2CSC_OFFSET: case V_BLEND_CB_IN2CSC_OFFSET: case V_BLEND_LUMA_OUTCSC_OFFSET: case V_BLEND_CR_OUTCSC_OFFSET: case V_BLEND_CB_OUTCSC_OFFSET: s->vblend_registers[offset] = value & 0x3FFF7FFF; break; case V_BLEND_CHROMA_KEY_ENABLE: s->vblend_registers[offset] = value & 0x00000003; break; case V_BLEND_CHROMA_KEY_COMP1: case V_BLEND_CHROMA_KEY_COMP2: case V_BLEND_CHROMA_KEY_COMP3: s->vblend_registers[offset] = value & 0x0FFF0FFF; break; default: s->vblend_registers[offset] = value; break; } } static uint64_t xlnx_dp_vblend_read(void *opaque, hwaddr offset, unsigned size) { XlnxDPState *s = XLNX_DP(opaque); DPRINTF("vblend: read @0x%" HWADDR_PRIX " = 0x%" PRIX32 "\n", offset, s->vblend_registers[offset >> 2]); return s->vblend_registers[offset >> 2]; } static const MemoryRegionOps vblend_ops = { .read = xlnx_dp_vblend_read, .write = xlnx_dp_vblend_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; /* * This is to handle Read/Write to the Audio Video buffer manager. */ static void xlnx_dp_avbufm_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { XlnxDPState *s = XLNX_DP(opaque); DPRINTF("avbufm: write @0x%" HWADDR_PRIX " = 0x%" PRIX32 "\n", offset, (uint32_t)value); offset = offset >> 2; switch (offset) { case AV_BUF_FORMAT: s->avbufm_registers[offset] = value & 0x00000FFF; xlnx_dp_change_graphic_fmt(s); break; case AV_CHBUF0: case AV_CHBUF1: case AV_CHBUF2: case AV_CHBUF3: case AV_CHBUF4: case AV_CHBUF5: s->avbufm_registers[offset] = value & 0x0000007F; break; case AV_BUF_OUTPUT_AUDIO_VIDEO_SELECT: s->avbufm_registers[offset] = value & 0x0000007F; break; case AV_BUF_DITHER_CONFIG: s->avbufm_registers[offset] = value & 0x000007FF; break; case AV_BUF_DITHER_CONFIG_MAX: case AV_BUF_DITHER_CONFIG_MIN: s->avbufm_registers[offset] = value & 0x00000FFF; break; case AV_BUF_PATTERN_GEN_SELECT: s->avbufm_registers[offset] = value & 0xFFFFFF03; break; case AV_BUF_AUD_VID_CLK_SOURCE: s->avbufm_registers[offset] = value & 0x00000007; break; case AV_BUF_SRST_REG: s->avbufm_registers[offset] = value & 0x00000002; break; case AV_BUF_AUDIO_CH_CONFIG: s->avbufm_registers[offset] = value & 0x00000003; break; case AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(0): case AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(1): case AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(2): case AV_BUF_VIDEO_COMP_SCALE_FACTOR(0): case AV_BUF_VIDEO_COMP_SCALE_FACTOR(1): case AV_BUF_VIDEO_COMP_SCALE_FACTOR(2): s->avbufm_registers[offset] = value & 0x0000FFFF; break; case AV_BUF_LIVE_VIDEO_COMP_SF(0): case AV_BUF_LIVE_VIDEO_COMP_SF(1): case AV_BUF_LIVE_VIDEO_COMP_SF(2): case AV_BUF_LIVE_VID_CONFIG: case AV_BUF_LIVE_GFX_COMP_SF(0): case AV_BUF_LIVE_GFX_COMP_SF(1): case AV_BUF_LIVE_GFX_COMP_SF(2): case AV_BUF_LIVE_GFX_CONFIG: case AV_BUF_NON_LIVE_LATENCY: case AV_BUF_STC_CONTROL: case AV_BUF_STC_INIT_VALUE0: case AV_BUF_STC_INIT_VALUE1: case AV_BUF_STC_ADJ: case AV_BUF_STC_VIDEO_VSYNC_TS_REG0: case AV_BUF_STC_VIDEO_VSYNC_TS_REG1: case AV_BUF_STC_EXT_VSYNC_TS_REG0: case AV_BUF_STC_EXT_VSYNC_TS_REG1: case AV_BUF_STC_CUSTOM_EVENT_TS_REG0: case AV_BUF_STC_CUSTOM_EVENT_TS_REG1: case AV_BUF_STC_CUSTOM_EVENT2_TS_REG0: case AV_BUF_STC_CUSTOM_EVENT2_TS_REG1: case AV_BUF_STC_SNAPSHOT0: case AV_BUF_STC_SNAPSHOT1: case AV_BUF_HCOUNT_VCOUNT_INT0: case AV_BUF_HCOUNT_VCOUNT_INT1: qemu_log_mask(LOG_UNIMP, "avbufm: unimplemented register 0x%04" PRIx64 "\n", offset << 2); break; default: s->avbufm_registers[offset] = value; break; } } static uint64_t xlnx_dp_avbufm_read(void *opaque, hwaddr offset, unsigned size) { XlnxDPState *s = XLNX_DP(opaque); offset = offset >> 2; return s->avbufm_registers[offset]; } static const MemoryRegionOps avbufm_ops = { .read = xlnx_dp_avbufm_read, .write = xlnx_dp_avbufm_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; /* * This is a global alpha blending using pixman. * Both graphic and video planes are multiplied with the global alpha * coefficient and added. */ static inline void xlnx_dp_blend_surface(XlnxDPState *s) { pixman_fixed_t alpha1[] = { pixman_double_to_fixed(1), pixman_double_to_fixed(1), pixman_double_to_fixed(1.0) }; pixman_fixed_t alpha2[] = { pixman_double_to_fixed(1), pixman_double_to_fixed(1), pixman_double_to_fixed(1.0) }; if ((surface_width(s->g_plane.surface) != surface_width(s->v_plane.surface)) || (surface_height(s->g_plane.surface) != surface_height(s->v_plane.surface))) { return; } alpha1[2] = pixman_double_to_fixed((double)(xlnx_dp_global_alpha_value(s)) / 256.0); alpha2[2] = pixman_double_to_fixed((255.0 - (double)xlnx_dp_global_alpha_value(s)) / 256.0); pixman_image_set_filter(s->g_plane.surface->image, PIXMAN_FILTER_CONVOLUTION, alpha1, 3); pixman_image_composite(PIXMAN_OP_SRC, s->g_plane.surface->image, 0, s->bout_plane.surface->image, 0, 0, 0, 0, 0, 0, surface_width(s->g_plane.surface), surface_height(s->g_plane.surface)); pixman_image_set_filter(s->v_plane.surface->image, PIXMAN_FILTER_CONVOLUTION, alpha2, 3); pixman_image_composite(PIXMAN_OP_ADD, s->v_plane.surface->image, 0, s->bout_plane.surface->image, 0, 0, 0, 0, 0, 0, surface_width(s->g_plane.surface), surface_height(s->g_plane.surface)); } static void xlnx_dp_update_display(void *opaque) { XlnxDPState *s = XLNX_DP(opaque); if ((s->core_registers[DP_TRANSMITTER_ENABLE] & 0x01) == 0) { return; } xlnx_dpdma_trigger_vsync_irq(s->dpdma); /* * Trigger the DMA channel. */ if (!xlnx_dpdma_start_operation(s->dpdma, 3, false)) { /* * An error occurred don't do anything with the data.. * Trigger an underflow interrupt. */ s->core_registers[DP_INT_STATUS] |= (1 << 21); xlnx_dp_update_irq(s); return; } if (xlnx_dp_global_alpha_enabled(s)) { if (!xlnx_dpdma_start_operation(s->dpdma, 0, false)) { s->core_registers[DP_INT_STATUS] |= (1 << 21); xlnx_dp_update_irq(s); return; } xlnx_dp_blend_surface(s); } /* * XXX: We might want to update only what changed. */ dpy_gfx_update_full(s->console); } static const GraphicHwOps xlnx_dp_gfx_ops = { .gfx_update = xlnx_dp_update_display, }; static void xlnx_dp_init(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); XlnxDPState *s = XLNX_DP(obj); memory_region_init(&s->container, obj, TYPE_XLNX_DP, DP_CONTAINER_SIZE); memory_region_init_io(&s->core_iomem, obj, &dp_ops, s, TYPE_XLNX_DP ".core", sizeof(s->core_registers)); memory_region_add_subregion(&s->container, DP_CORE_REG_OFFSET, &s->core_iomem); memory_region_init_io(&s->vblend_iomem, obj, &vblend_ops, s, TYPE_XLNX_DP ".v_blend", sizeof(s->vblend_registers)); memory_region_add_subregion(&s->container, DP_VBLEND_REG_OFFSET, &s->vblend_iomem); memory_region_init_io(&s->avbufm_iomem, obj, &avbufm_ops, s, TYPE_XLNX_DP ".av_buffer_manager", sizeof(s->avbufm_registers)); memory_region_add_subregion(&s->container, DP_AVBUF_REG_OFFSET, &s->avbufm_iomem); memory_region_init_io(&s->audio_iomem, obj, &audio_ops, s, TYPE_XLNX_DP ".audio", sizeof(s->audio_registers)); memory_region_add_subregion(&s->container, 0xC000, &s->audio_iomem); sysbus_init_mmio(sbd, &s->container); sysbus_init_irq(sbd, &s->irq); object_property_add_link(obj, "dpdma", TYPE_XLNX_DPDMA, (Object **) &s->dpdma, xlnx_dp_set_dpdma, OBJ_PROP_LINK_STRONG); /* * Initialize AUX Bus. */ s->aux_bus = aux_bus_init(DEVICE(obj), "aux"); /* * Initialize DPCD and EDID.. */ s->dpcd = DPCD(qdev_new("dpcd")); object_property_add_child(OBJECT(s), "dpcd", OBJECT(s->dpcd)); s->edid = I2CDDC(qdev_new("i2c-ddc")); i2c_slave_set_address(I2C_SLAVE(s->edid), 0x50); object_property_add_child(OBJECT(s), "edid", OBJECT(s->edid)); fifo8_create(&s->rx_fifo, 16); fifo8_create(&s->tx_fifo, 16); } static void xlnx_dp_finalize(Object *obj) { XlnxDPState *s = XLNX_DP(obj); fifo8_destroy(&s->tx_fifo); fifo8_destroy(&s->rx_fifo); } static void vblank_hit(void *opaque) { XlnxDPState *s = XLNX_DP(opaque); s->core_registers[DP_INT_STATUS] |= DP_INT_VBLNK_START; xlnx_dp_update_irq(s); } static void xlnx_dp_realize(DeviceState *dev, Error **errp) { XlnxDPState *s = XLNX_DP(dev); DisplaySurface *surface; struct audsettings as; if (!AUD_register_card("xlnx_dp.audio", &s->aud_card, errp)) { return; } aux_bus_realize(s->aux_bus); qdev_realize(DEVICE(s->dpcd), BUS(s->aux_bus), &error_fatal); aux_map_slave(AUX_SLAVE(s->dpcd), 0x0000); qdev_realize_and_unref(DEVICE(s->edid), BUS(aux_get_i2c_bus(s->aux_bus)), &error_fatal); s->console = graphic_console_init(dev, 0, &xlnx_dp_gfx_ops, s); surface = qemu_console_surface(s->console); xlnx_dpdma_set_host_data_location(s->dpdma, DP_GRAPHIC_DMA_CHANNEL, surface_data(surface)); as.freq = 44100; as.nchannels = 2; as.fmt = AUDIO_FORMAT_S16; as.endianness = 0; s->amixer_output_stream = AUD_open_out(&s->aud_card, s->amixer_output_stream, "xlnx_dp.audio.out", s, xlnx_dp_audio_callback, &as); AUD_set_volume_out(s->amixer_output_stream, 0, 255, 255); xlnx_dp_audio_activate(s); s->vblank = ptimer_init(vblank_hit, s, DP_VBLANK_PTIMER_POLICY); ptimer_transaction_begin(s->vblank); ptimer_set_freq(s->vblank, 30); ptimer_transaction_commit(s->vblank); } static void xlnx_dp_reset(DeviceState *dev) { XlnxDPState *s = XLNX_DP(dev); memset(s->core_registers, 0, sizeof(s->core_registers)); s->core_registers[DP_VERSION_REGISTER] = 0x04010000; s->core_registers[DP_CORE_ID] = 0x01020000; s->core_registers[DP_REPLY_STATUS] = 0x00000010; s->core_registers[DP_MSA_TRANSFER_UNIT_SIZE] = 0x00000040; s->core_registers[DP_INIT_WAIT] = 0x00000020; s->core_registers[DP_PHY_RESET] = 0x00010003; s->core_registers[DP_INT_MASK] = 0xFFFFF03F; s->core_registers[DP_PHY_STATUS] = 0x00000043; s->core_registers[DP_INTERRUPT_SIGNAL_STATE] = 0x00000001; s->vblend_registers[V_BLEND_RGB2YCBCR_COEFF(0)] = 0x00001000; s->vblend_registers[V_BLEND_RGB2YCBCR_COEFF(4)] = 0x00001000; s->vblend_registers[V_BLEND_RGB2YCBCR_COEFF(8)] = 0x00001000; s->vblend_registers[V_BLEND_IN1CSC_COEFF(0)] = 0x00001000; s->vblend_registers[V_BLEND_IN1CSC_COEFF(4)] = 0x00001000; s->vblend_registers[V_BLEND_IN1CSC_COEFF(8)] = 0x00001000; s->vblend_registers[V_BLEND_IN2CSC_COEFF(0)] = 0x00001000; s->vblend_registers[V_BLEND_IN2CSC_COEFF(4)] = 0x00001000; s->vblend_registers[V_BLEND_IN2CSC_COEFF(8)] = 0x00001000; s->avbufm_registers[AV_BUF_NON_LIVE_LATENCY] = 0x00000180; s->avbufm_registers[AV_BUF_OUTPUT_AUDIO_VIDEO_SELECT] = 0x00000008; s->avbufm_registers[AV_BUF_DITHER_CONFIG_MAX] = 0x00000FFF; s->avbufm_registers[AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(0)] = 0x00010101; s->avbufm_registers[AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(1)] = 0x00010101; s->avbufm_registers[AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(2)] = 0x00010101; s->avbufm_registers[AV_BUF_VIDEO_COMP_SCALE_FACTOR(0)] = 0x00010101; s->avbufm_registers[AV_BUF_VIDEO_COMP_SCALE_FACTOR(1)] = 0x00010101; s->avbufm_registers[AV_BUF_VIDEO_COMP_SCALE_FACTOR(2)] = 0x00010101; s->avbufm_registers[AV_BUF_LIVE_VIDEO_COMP_SF(0)] = 0x00010101; s->avbufm_registers[AV_BUF_LIVE_VIDEO_COMP_SF(1)] = 0x00010101; s->avbufm_registers[AV_BUF_LIVE_VIDEO_COMP_SF(2)] = 0x00010101; s->avbufm_registers[AV_BUF_LIVE_GFX_COMP_SF(0)] = 0x00010101; s->avbufm_registers[AV_BUF_LIVE_GFX_COMP_SF(1)] = 0x00010101; s->avbufm_registers[AV_BUF_LIVE_GFX_COMP_SF(2)] = 0x00010101; memset(s->audio_registers, 0, sizeof(s->audio_registers)); s->byte_left = 0; xlnx_dp_aux_clear_rx_fifo(s); xlnx_dp_change_graphic_fmt(s); xlnx_dp_update_irq(s); } static Property xlnx_dp_device_properties[] = { DEFINE_AUDIO_PROPERTIES(XlnxDPState, aud_card), DEFINE_PROP_END_OF_LIST(), }; static void xlnx_dp_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); dc->realize = xlnx_dp_realize; dc->vmsd = &vmstate_dp; device_class_set_legacy_reset(dc, xlnx_dp_reset); device_class_set_props(dc, xlnx_dp_device_properties); } static const TypeInfo xlnx_dp_info = { .name = TYPE_XLNX_DP, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(XlnxDPState), .instance_init = xlnx_dp_init, .instance_finalize = xlnx_dp_finalize, .class_init = xlnx_dp_class_init, }; static void xlnx_dp_register_types(void) { type_register_static(&xlnx_dp_info); } type_init(xlnx_dp_register_types)