/* * ARM Platform Bus device tree generation helpers * * Copyright (c) 2014 Linaro Limited * * Authors: * Alex Graf * Eric Auger * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . * */ #include "qemu/osdep.h" #include "qapi/error.h" #include #ifdef CONFIG_LINUX #include #endif #include "hw/core/sysbus-fdt.h" #include "qemu/error-report.h" #include "sysemu/device_tree.h" #include "sysemu/tpm.h" #include "hw/platform-bus.h" #include "hw/vfio/vfio-platform.h" #include "hw/vfio/vfio-calxeda-xgmac.h" #include "hw/vfio/vfio-amd-xgbe.h" #include "hw/display/ramfb.h" #include "hw/arm/fdt.h" /* * internal struct that contains the information to create dynamic * sysbus device node */ typedef struct PlatformBusFDTData { void *fdt; /* device tree handle */ int irq_start; /* index of the first IRQ usable by platform bus devices */ const char *pbus_node_name; /* name of the platform bus node */ PlatformBusDevice *pbus; } PlatformBusFDTData; /* struct that allows to match a device and create its FDT node */ typedef struct BindingEntry { const char *typename; const char *compat; int (*add_fn)(SysBusDevice *sbdev, void *opaque); bool (*match_fn)(SysBusDevice *sbdev, const struct BindingEntry *combo); } BindingEntry; /* helpers */ typedef struct HostProperty { const char *name; bool optional; } HostProperty; #ifdef CONFIG_LINUX /** * copy_properties_from_host * * copies properties listed in an array from host device tree to * guest device tree. If a non optional property is not found, the * function asserts. An optional property is ignored if not found * in the host device tree. * @props: array of HostProperty to copy * @nb_props: number of properties in the array * @host_dt: host device tree blob * @guest_dt: guest device tree blob * @node_path: host dt node path where the property is supposed to be found * @nodename: guest node name the properties should be added to */ static void copy_properties_from_host(HostProperty *props, int nb_props, void *host_fdt, void *guest_fdt, char *node_path, char *nodename) { int i, prop_len; const void *r; Error *err = NULL; for (i = 0; i < nb_props; i++) { r = qemu_fdt_getprop(host_fdt, node_path, props[i].name, &prop_len, &err); if (r) { qemu_fdt_setprop(guest_fdt, nodename, props[i].name, r, prop_len); } else { if (props[i].optional && prop_len == -FDT_ERR_NOTFOUND) { /* optional property does not exist */ error_free(err); } else { error_report_err(err); } if (!props[i].optional) { /* mandatory property not found: bail out */ exit(1); } err = NULL; } } } /* clock properties whose values are copied/pasted from host */ static HostProperty clock_copied_properties[] = { {"compatible", false}, {"#clock-cells", false}, {"clock-frequency", true}, {"clock-output-names", true}, }; /** * fdt_build_clock_node * * Build a guest clock node, used as a dependency from a passthrough'ed * device. Most information are retrieved from the host clock node. * Also check the host clock is a fixed one. * * @host_fdt: host device tree blob from which info are retrieved * @guest_fdt: guest device tree blob where the clock node is added * @host_phandle: phandle of the clock in host device tree * @guest_phandle: phandle to assign to the guest node */ static void fdt_build_clock_node(void *host_fdt, void *guest_fdt, uint32_t host_phandle, uint32_t guest_phandle) { char *node_path = NULL; char *nodename; const void *r; int ret, node_offset, prop_len, path_len = 16; node_offset = fdt_node_offset_by_phandle(host_fdt, host_phandle); if (node_offset <= 0) { error_report("not able to locate clock handle %d in host device tree", host_phandle); exit(1); } node_path = g_malloc(path_len); while ((ret = fdt_get_path(host_fdt, node_offset, node_path, path_len)) == -FDT_ERR_NOSPACE) { path_len += 16; node_path = g_realloc(node_path, path_len); } if (ret < 0) { error_report("not able to retrieve node path for clock handle %d", host_phandle); exit(1); } r = qemu_fdt_getprop(host_fdt, node_path, "compatible", &prop_len, &error_fatal); if (strcmp(r, "fixed-clock")) { error_report("clock handle %d is not a fixed clock", host_phandle); exit(1); } nodename = strrchr(node_path, '/'); qemu_fdt_add_subnode(guest_fdt, nodename); copy_properties_from_host(clock_copied_properties, ARRAY_SIZE(clock_copied_properties), host_fdt, guest_fdt, node_path, nodename); qemu_fdt_setprop_cell(guest_fdt, nodename, "phandle", guest_phandle); g_free(node_path); } /** * sysfs_to_dt_name: convert the name found in sysfs into the node name * for instance e0900000.xgmac is converted into xgmac@e0900000 * @sysfs_name: directory name in sysfs * * returns the device tree name upon success or NULL in case the sysfs name * does not match the expected format */ static char *sysfs_to_dt_name(const char *sysfs_name) { gchar **substrings = g_strsplit(sysfs_name, ".", 2); char *dt_name = NULL; if (!substrings || !substrings[0] || !substrings[1]) { goto out; } dt_name = g_strdup_printf("%s@%s", substrings[1], substrings[0]); out: g_strfreev(substrings); return dt_name; } /* Device Specific Code */ /** * add_calxeda_midway_xgmac_fdt_node * * Generates a simple node with following properties: * compatible string, regs, interrupts, dma-coherent */ static int add_calxeda_midway_xgmac_fdt_node(SysBusDevice *sbdev, void *opaque) { PlatformBusFDTData *data = opaque; PlatformBusDevice *pbus = data->pbus; void *fdt = data->fdt; const char *parent_node = data->pbus_node_name; int compat_str_len, i; char *nodename; uint32_t *irq_attr, *reg_attr; uint64_t mmio_base, irq_number; VFIOPlatformDevice *vdev = VFIO_PLATFORM_DEVICE(sbdev); VFIODevice *vbasedev = &vdev->vbasedev; mmio_base = platform_bus_get_mmio_addr(pbus, sbdev, 0); nodename = g_strdup_printf("%s/%s@%" PRIx64, parent_node, vbasedev->name, mmio_base); qemu_fdt_add_subnode(fdt, nodename); compat_str_len = strlen(vdev->compat) + 1; qemu_fdt_setprop(fdt, nodename, "compatible", vdev->compat, compat_str_len); qemu_fdt_setprop(fdt, nodename, "dma-coherent", "", 0); reg_attr = g_new(uint32_t, vbasedev->num_regions * 2); for (i = 0; i < vbasedev->num_regions; i++) { mmio_base = platform_bus_get_mmio_addr(pbus, sbdev, i); reg_attr[2 * i] = cpu_to_be32(mmio_base); reg_attr[2 * i + 1] = cpu_to_be32( memory_region_size(vdev->regions[i]->mem)); } qemu_fdt_setprop(fdt, nodename, "reg", reg_attr, vbasedev->num_regions * 2 * sizeof(uint32_t)); irq_attr = g_new(uint32_t, vbasedev->num_irqs * 3); for (i = 0; i < vbasedev->num_irqs; i++) { irq_number = platform_bus_get_irqn(pbus, sbdev , i) + data->irq_start; irq_attr[3 * i] = cpu_to_be32(GIC_FDT_IRQ_TYPE_SPI); irq_attr[3 * i + 1] = cpu_to_be32(irq_number); irq_attr[3 * i + 2] = cpu_to_be32(GIC_FDT_IRQ_FLAGS_LEVEL_HI); } qemu_fdt_setprop(fdt, nodename, "interrupts", irq_attr, vbasedev->num_irqs * 3 * sizeof(uint32_t)); g_free(irq_attr); g_free(reg_attr); g_free(nodename); return 0; } /* AMD xgbe properties whose values are copied/pasted from host */ static HostProperty amd_xgbe_copied_properties[] = { {"compatible", false}, {"dma-coherent", true}, {"amd,per-channel-interrupt", true}, {"phy-mode", false}, {"mac-address", true}, {"amd,speed-set", false}, {"amd,serdes-blwc", true}, {"amd,serdes-cdr-rate", true}, {"amd,serdes-pq-skew", true}, {"amd,serdes-tx-amp", true}, {"amd,serdes-dfe-tap-config", true}, {"amd,serdes-dfe-tap-enable", true}, {"clock-names", false}, }; /** * add_amd_xgbe_fdt_node * * Generates the combined xgbe/phy node following kernel >=4.2 * binding documentation: * Documentation/devicetree/bindings/net/amd-xgbe.txt: * Also 2 clock nodes are created (dma and ptp) * * Asserts in case of error */ static int add_amd_xgbe_fdt_node(SysBusDevice *sbdev, void *opaque) { PlatformBusFDTData *data = opaque; PlatformBusDevice *pbus = data->pbus; VFIOPlatformDevice *vdev = VFIO_PLATFORM_DEVICE(sbdev); VFIODevice *vbasedev = &vdev->vbasedev; VFIOINTp *intp; const char *parent_node = data->pbus_node_name; char **node_path, *nodename, *dt_name; void *guest_fdt = data->fdt, *host_fdt; const void *r; int i, prop_len; uint32_t *irq_attr, *reg_attr, *host_clock_phandles; uint64_t mmio_base, irq_number; uint32_t guest_clock_phandles[2]; host_fdt = load_device_tree_from_sysfs(); dt_name = sysfs_to_dt_name(vbasedev->name); if (!dt_name) { error_report("%s incorrect sysfs device name %s", __func__, vbasedev->name); exit(1); } node_path = qemu_fdt_node_path(host_fdt, dt_name, vdev->compat, &error_fatal); if (!node_path || !node_path[0]) { error_report("%s unable to retrieve node path for %s/%s", __func__, dt_name, vdev->compat); exit(1); } if (node_path[1]) { error_report("%s more than one node matching %s/%s!", __func__, dt_name, vdev->compat); exit(1); } g_free(dt_name); if (vbasedev->num_regions != 5) { error_report("%s Does the host dt node combine XGBE/PHY?", __func__); exit(1); } /* generate nodes for DMA_CLK and PTP_CLK */ r = qemu_fdt_getprop(host_fdt, node_path[0], "clocks", &prop_len, &error_fatal); if (prop_len != 8) { error_report("%s clocks property should contain 2 handles", __func__); exit(1); } host_clock_phandles = (uint32_t *)r; guest_clock_phandles[0] = qemu_fdt_alloc_phandle(guest_fdt); guest_clock_phandles[1] = qemu_fdt_alloc_phandle(guest_fdt); /** * clock handles fetched from host dt are in be32 layout whereas * rest of the code uses cpu layout. Also guest clock handles are * in cpu layout. */ fdt_build_clock_node(host_fdt, guest_fdt, be32_to_cpu(host_clock_phandles[0]), guest_clock_phandles[0]); fdt_build_clock_node(host_fdt, guest_fdt, be32_to_cpu(host_clock_phandles[1]), guest_clock_phandles[1]); /* combined XGBE/PHY node */ mmio_base = platform_bus_get_mmio_addr(pbus, sbdev, 0); nodename = g_strdup_printf("%s/%s@%" PRIx64, parent_node, vbasedev->name, mmio_base); qemu_fdt_add_subnode(guest_fdt, nodename); copy_properties_from_host(amd_xgbe_copied_properties, ARRAY_SIZE(amd_xgbe_copied_properties), host_fdt, guest_fdt, node_path[0], nodename); qemu_fdt_setprop_cells(guest_fdt, nodename, "clocks", guest_clock_phandles[0], guest_clock_phandles[1]); reg_attr = g_new(uint32_t, vbasedev->num_regions * 2); for (i = 0; i < vbasedev->num_regions; i++) { mmio_base = platform_bus_get_mmio_addr(pbus, sbdev, i); reg_attr[2 * i] = cpu_to_be32(mmio_base); reg_attr[2 * i + 1] = cpu_to_be32( memory_region_size(vdev->regions[i]->mem)); } qemu_fdt_setprop(guest_fdt, nodename, "reg", reg_attr, vbasedev->num_regions * 2 * sizeof(uint32_t)); irq_attr = g_new(uint32_t, vbasedev->num_irqs * 3); for (i = 0; i < vbasedev->num_irqs; i++) { irq_number = platform_bus_get_irqn(pbus, sbdev , i) + data->irq_start; irq_attr[3 * i] = cpu_to_be32(GIC_FDT_IRQ_TYPE_SPI); irq_attr[3 * i + 1] = cpu_to_be32(irq_number); /* * General device interrupt and PCS auto-negotiation interrupts are * level-sensitive while the 4 per-channel interrupts are edge * sensitive */ QLIST_FOREACH(intp, &vdev->intp_list, next) { if (intp->pin == i) { break; } } if (intp->flags & VFIO_IRQ_INFO_AUTOMASKED) { irq_attr[3 * i + 2] = cpu_to_be32(GIC_FDT_IRQ_FLAGS_LEVEL_HI); } else { irq_attr[3 * i + 2] = cpu_to_be32(GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); } } qemu_fdt_setprop(guest_fdt, nodename, "interrupts", irq_attr, vbasedev->num_irqs * 3 * sizeof(uint32_t)); g_free(host_fdt); g_strfreev(node_path); g_free(irq_attr); g_free(reg_attr); g_free(nodename); return 0; } /* DT compatible matching */ static bool vfio_platform_match(SysBusDevice *sbdev, const BindingEntry *entry) { VFIOPlatformDevice *vdev = VFIO_PLATFORM_DEVICE(sbdev); const char *compat; unsigned int n; for (n = vdev->num_compat, compat = vdev->compat; n > 0; n--, compat += strlen(compat) + 1) { if (!strcmp(entry->compat, compat)) { return true; } } return false; } #define VFIO_PLATFORM_BINDING(compat, add_fn) \ {TYPE_VFIO_PLATFORM, (compat), (add_fn), vfio_platform_match} #endif /* CONFIG_LINUX */ #ifdef CONFIG_TPM /* * add_tpm_tis_fdt_node: Create a DT node for TPM TIS * * See kernel documentation: * Documentation/devicetree/bindings/security/tpm/tpm_tis_mmio.txt * Optional interrupt for command completion is not exposed */ static int add_tpm_tis_fdt_node(SysBusDevice *sbdev, void *opaque) { PlatformBusFDTData *data = opaque; PlatformBusDevice *pbus = data->pbus; void *fdt = data->fdt; const char *parent_node = data->pbus_node_name; char *nodename; uint32_t reg_attr[2]; uint64_t mmio_base; mmio_base = platform_bus_get_mmio_addr(pbus, sbdev, 0); nodename = g_strdup_printf("%s/tpm_tis@%" PRIx64, parent_node, mmio_base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_string(fdt, nodename, "compatible", "tcg,tpm-tis-mmio"); reg_attr[0] = cpu_to_be32(mmio_base); reg_attr[1] = cpu_to_be32(0x5000); qemu_fdt_setprop(fdt, nodename, "reg", reg_attr, 2 * sizeof(uint32_t)); g_free(nodename); return 0; } #endif static int no_fdt_node(SysBusDevice *sbdev, void *opaque) { return 0; } /* Device type based matching */ static bool type_match(SysBusDevice *sbdev, const BindingEntry *entry) { return !strcmp(object_get_typename(OBJECT(sbdev)), entry->typename); } #define TYPE_BINDING(type, add_fn) {(type), NULL, (add_fn), NULL} /* list of supported dynamic sysbus bindings */ static const BindingEntry bindings[] = { #ifdef CONFIG_LINUX TYPE_BINDING(TYPE_VFIO_CALXEDA_XGMAC, add_calxeda_midway_xgmac_fdt_node), TYPE_BINDING(TYPE_VFIO_AMD_XGBE, add_amd_xgbe_fdt_node), VFIO_PLATFORM_BINDING("amd,xgbe-seattle-v1a", add_amd_xgbe_fdt_node), #endif #ifdef CONFIG_TPM TYPE_BINDING(TYPE_TPM_TIS_SYSBUS, add_tpm_tis_fdt_node), #endif TYPE_BINDING(TYPE_RAMFB_DEVICE, no_fdt_node), TYPE_BINDING("", NULL), /* last element */ }; /* Generic Code */ /** * add_fdt_node - add the device tree node of a dynamic sysbus device * * @sbdev: handle to the sysbus device * @opaque: handle to the PlatformBusFDTData * * Checks the sysbus type belongs to the list of device types that * are dynamically instantiable and if so call the node creation * function. */ static void add_fdt_node(SysBusDevice *sbdev, void *opaque) { int i, ret; for (i = 0; i < ARRAY_SIZE(bindings); i++) { const BindingEntry *iter = &bindings[i]; if (type_match(sbdev, iter)) { if (!iter->match_fn || iter->match_fn(sbdev, iter)) { ret = iter->add_fn(sbdev, opaque); assert(!ret); return; } } } error_report("Device %s can not be dynamically instantiated", qdev_fw_name(DEVICE(sbdev))); exit(1); } void platform_bus_add_all_fdt_nodes(void *fdt, const char *intc, hwaddr addr, hwaddr bus_size, int irq_start) { const char platcomp[] = "qemu,platform\0simple-bus"; PlatformBusDevice *pbus; DeviceState *dev; gchar *node; assert(fdt); node = g_strdup_printf("/platform-bus@%"PRIx64, addr); /* Create a /platform node that we can put all devices into */ qemu_fdt_add_subnode(fdt, node); qemu_fdt_setprop(fdt, node, "compatible", platcomp, sizeof(platcomp)); /* Our platform bus region is less than 32bits, so 1 cell is enough for * address and size */ qemu_fdt_setprop_cells(fdt, node, "#size-cells", 1); qemu_fdt_setprop_cells(fdt, node, "#address-cells", 1); qemu_fdt_setprop_cells(fdt, node, "ranges", 0, addr >> 32, addr, bus_size); qemu_fdt_setprop_phandle(fdt, node, "interrupt-parent", intc); dev = qdev_find_recursive(sysbus_get_default(), TYPE_PLATFORM_BUS_DEVICE); pbus = PLATFORM_BUS_DEVICE(dev); PlatformBusFDTData data = { .fdt = fdt, .irq_start = irq_start, .pbus_node_name = node, .pbus = pbus, }; /* Loop through all dynamic sysbus devices and create their node */ foreach_dynamic_sysbus_device(add_fdt_node, &data); g_free(node); }