/* * General purpose implementation of a simple periodic countdown timer. * * Copyright (c) 2007 CodeSourcery. * * This code is licensed under the GNU LGPL. */ #include "qemu/osdep.h" #include "hw/hw.h" #include "qemu/timer.h" #include "hw/ptimer.h" #include "qemu/host-utils.h" #include "sysemu/replay.h" #include "sysemu/qtest.h" #define DELTA_ADJUST 1 #define DELTA_NO_ADJUST -1 struct ptimer_state { uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */ uint64_t limit; uint64_t delta; uint32_t period_frac; int64_t period; int64_t last_event; int64_t next_event; uint8_t policy_mask; QEMUBH *bh; QEMUTimer *timer; }; /* Use a bottom-half routine to avoid reentrancy issues. */ static void ptimer_trigger(ptimer_state *s) { if (s->bh) { replay_bh_schedule_event(s->bh); } } static void ptimer_reload(ptimer_state *s, int delta_adjust) { uint32_t period_frac = s->period_frac; uint64_t period = s->period; uint64_t delta = s->delta; if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { ptimer_trigger(s); } if (delta == 0) { delta = s->delta = s->limit; } if (s->period == 0) { if (!qtest_enabled()) { fprintf(stderr, "Timer with period zero, disabling\n"); } timer_del(s->timer); s->enabled = 0; return; } if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { if (delta_adjust != DELTA_NO_ADJUST) { delta += delta_adjust; } } if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) { if (s->enabled == 1 && s->limit == 0) { delta = 1; } } if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { if (delta_adjust != DELTA_NO_ADJUST) { delta = 1; } } if (delta == 0) { if (!qtest_enabled()) { fprintf(stderr, "Timer with delta zero, disabling\n"); } timer_del(s->timer); s->enabled = 0; return; } /* * Artificially limit timeout rate to something * achievable under QEMU. Otherwise, QEMU spends all * its time generating timer interrupts, and there * is no forward progress. * About ten microseconds is the fastest that really works * on the current generation of host machines. */ if (s->enabled == 1 && (delta * period < 10000) && !use_icount) { period = 10000 / delta; period_frac = 0; } s->last_event = s->next_event; s->next_event = s->last_event + delta * period; if (period_frac) { s->next_event += ((int64_t)period_frac * delta) >> 32; } timer_mod(s->timer, s->next_event); } static void ptimer_tick(void *opaque) { ptimer_state *s = (ptimer_state *)opaque; ptimer_trigger(s); s->delta = 0; if (s->enabled == 2) { s->enabled = 0; } else { int delta_adjust = DELTA_ADJUST; if (s->limit == 0) { /* If a "continuous trigger" policy is not used and limit == 0, we should error out. */ delta_adjust = DELTA_NO_ADJUST; } ptimer_reload(s, delta_adjust); } } uint64_t ptimer_get_count(ptimer_state *s) { uint64_t counter; if (s->enabled && s->delta != 0) { int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); int64_t next = s->next_event; int64_t last = s->last_event; bool expired = (now - next >= 0); bool oneshot = (s->enabled == 2); /* Figure out the current counter value. */ if (expired) { /* Prevent timer underflowing if it should already have triggered. */ counter = 0; } else { uint64_t rem; uint64_t div; int clz1, clz2; int shift; uint32_t period_frac = s->period_frac; uint64_t period = s->period; if (!oneshot && (s->delta * period < 10000) && !use_icount) { period = 10000 / s->delta; period_frac = 0; } /* We need to divide time by period, where time is stored in rem (64-bit integer) and period is stored in period/period_frac (64.32 fixed point). Doing full precision division is hard, so scale values and do a 64-bit division. The result should be rounded down, so that the rounding error never causes the timer to go backwards. */ rem = next - now; div = period; clz1 = clz64(rem); clz2 = clz64(div); shift = clz1 < clz2 ? clz1 : clz2; rem <<= shift; div <<= shift; if (shift >= 32) { div |= ((uint64_t)period_frac << (shift - 32)); } else { if (shift != 0) div |= (period_frac >> (32 - shift)); /* Look at remaining bits of period_frac and round div up if necessary. */ if ((uint32_t)(period_frac << shift)) div += 1; } counter = rem / div; if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { /* Before wrapping around, timer should stay with counter = 0 for a one period. */ if (!oneshot && s->delta == s->limit) { if (now == last) { /* Counter == delta here, check whether it was adjusted and if it was, then right now it is that "one period". */ if (counter == s->limit + DELTA_ADJUST) { return 0; } } else if (counter == s->limit) { /* Since the counter is rounded down and now != last, the counter == limit means that delta was adjusted by +1 and right now it is that adjusted period. */ return 0; } } } } } else { counter = s->delta; } return counter; } void ptimer_set_count(ptimer_state *s, uint64_t count) { s->delta = count; if (s->enabled) { s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); ptimer_reload(s, 0); } } void ptimer_run(ptimer_state *s, int oneshot) { bool was_disabled = !s->enabled; if (was_disabled && s->period == 0) { if (!qtest_enabled()) { fprintf(stderr, "Timer with period zero, disabling\n"); } return; } s->enabled = oneshot ? 2 : 1; if (was_disabled) { s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); ptimer_reload(s, 0); } } /* Pause a timer. Note that this may cause it to "lose" time, even if it is immediately restarted. */ void ptimer_stop(ptimer_state *s) { if (!s->enabled) return; s->delta = ptimer_get_count(s); timer_del(s->timer); s->enabled = 0; } /* Set counter increment interval in nanoseconds. */ void ptimer_set_period(ptimer_state *s, int64_t period) { s->delta = ptimer_get_count(s); s->period = period; s->period_frac = 0; if (s->enabled) { s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); ptimer_reload(s, 0); } } /* Set counter frequency in Hz. */ void ptimer_set_freq(ptimer_state *s, uint32_t freq) { s->delta = ptimer_get_count(s); s->period = 1000000000ll / freq; s->period_frac = (1000000000ll << 32) / freq; if (s->enabled) { s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); ptimer_reload(s, 0); } } /* Set the initial countdown value. If reload is nonzero then also set count = limit. */ void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload) { s->limit = limit; if (reload) s->delta = limit; if (s->enabled && reload) { s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); ptimer_reload(s, 0); } } uint64_t ptimer_get_limit(ptimer_state *s) { return s->limit; } const VMStateDescription vmstate_ptimer = { .name = "ptimer", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(enabled, ptimer_state), VMSTATE_UINT64(limit, ptimer_state), VMSTATE_UINT64(delta, ptimer_state), VMSTATE_UINT32(period_frac, ptimer_state), VMSTATE_INT64(period, ptimer_state), VMSTATE_INT64(last_event, ptimer_state), VMSTATE_INT64(next_event, ptimer_state), VMSTATE_TIMER_PTR(timer, ptimer_state), VMSTATE_END_OF_LIST() } }; ptimer_state *ptimer_init(QEMUBH *bh, uint8_t policy_mask) { ptimer_state *s; s = (ptimer_state *)g_malloc0(sizeof(ptimer_state)); s->bh = bh; s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s); s->policy_mask = policy_mask; return s; }