/* * NUMA parameter parsing routines * * Copyright (c) 2014 Fujitsu Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "sysemu/numa.h" #include "exec/cpu-common.h" #include "exec/ramlist.h" #include "qemu/bitmap.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "qapi/opts-visitor.h" #include "qapi/qapi-visit-machine.h" #include "hw/mem/pc-dimm.h" #include "hw/mem/memory-device.h" #include "qemu/option.h" #include "qemu/config-file.h" #include "qemu/cutils.h" QemuOptsList qemu_numa_opts = { .name = "numa", .implied_opt_name = "type", .head = QTAILQ_HEAD_INITIALIZER(qemu_numa_opts.head), .desc = { { 0 } } /* validated with OptsVisitor */ }; static int have_memdevs = -1; static int max_numa_nodeid; /* Highest specified NUMA node ID, plus one. * For all nodes, nodeid < max_numa_nodeid */ int nb_numa_nodes; bool have_numa_distance; NodeInfo numa_info[MAX_NODES]; static void parse_numa_node(MachineState *ms, NumaNodeOptions *node, Error **errp) { Error *err = NULL; uint16_t nodenr; uint16List *cpus = NULL; MachineClass *mc = MACHINE_GET_CLASS(ms); if (node->has_nodeid) { nodenr = node->nodeid; } else { nodenr = nb_numa_nodes; } if (nodenr >= MAX_NODES) { error_setg(errp, "Max number of NUMA nodes reached: %" PRIu16 "", nodenr); return; } if (numa_info[nodenr].present) { error_setg(errp, "Duplicate NUMA nodeid: %" PRIu16, nodenr); return; } if (!mc->cpu_index_to_instance_props || !mc->get_default_cpu_node_id) { error_setg(errp, "NUMA is not supported by this machine-type"); return; } for (cpus = node->cpus; cpus; cpus = cpus->next) { CpuInstanceProperties props; if (cpus->value >= max_cpus) { error_setg(errp, "CPU index (%" PRIu16 ")" " should be smaller than maxcpus (%d)", cpus->value, max_cpus); return; } props = mc->cpu_index_to_instance_props(ms, cpus->value); props.node_id = nodenr; props.has_node_id = true; machine_set_cpu_numa_node(ms, &props, &err); if (err) { error_propagate(errp, err); return; } } if (node->has_mem && node->has_memdev) { error_setg(errp, "cannot specify both mem= and memdev="); return; } if (have_memdevs == -1) { have_memdevs = node->has_memdev; } if (node->has_memdev != have_memdevs) { error_setg(errp, "memdev option must be specified for either " "all or no nodes"); return; } if (node->has_mem) { numa_info[nodenr].node_mem = node->mem; } if (node->has_memdev) { Object *o; o = object_resolve_path_type(node->memdev, TYPE_MEMORY_BACKEND, NULL); if (!o) { error_setg(errp, "memdev=%s is ambiguous", node->memdev); return; } object_ref(o); numa_info[nodenr].node_mem = object_property_get_uint(o, "size", NULL); numa_info[nodenr].node_memdev = MEMORY_BACKEND(o); } numa_info[nodenr].present = true; max_numa_nodeid = MAX(max_numa_nodeid, nodenr + 1); nb_numa_nodes++; } static void parse_numa_distance(NumaDistOptions *dist, Error **errp) { uint16_t src = dist->src; uint16_t dst = dist->dst; uint8_t val = dist->val; if (src >= MAX_NODES || dst >= MAX_NODES) { error_setg(errp, "Parameter '%s' expects an integer between 0 and %d", src >= MAX_NODES ? "src" : "dst", MAX_NODES - 1); return; } if (!numa_info[src].present || !numa_info[dst].present) { error_setg(errp, "Source/Destination NUMA node is missing. " "Please use '-numa node' option to declare it first."); return; } if (val < NUMA_DISTANCE_MIN) { error_setg(errp, "NUMA distance (%" PRIu8 ") is invalid, " "it shouldn't be less than %d.", val, NUMA_DISTANCE_MIN); return; } if (src == dst && val != NUMA_DISTANCE_MIN) { error_setg(errp, "Local distance of node %d should be %d.", src, NUMA_DISTANCE_MIN); return; } numa_info[src].distance[dst] = val; have_numa_distance = true; } void set_numa_options(MachineState *ms, NumaOptions *object, Error **errp) { Error *err = NULL; switch (object->type) { case NUMA_OPTIONS_TYPE_NODE: parse_numa_node(ms, &object->u.node, &err); if (err) { goto end; } break; case NUMA_OPTIONS_TYPE_DIST: parse_numa_distance(&object->u.dist, &err); if (err) { goto end; } break; case NUMA_OPTIONS_TYPE_CPU: if (!object->u.cpu.has_node_id) { error_setg(&err, "Missing mandatory node-id property"); goto end; } if (!numa_info[object->u.cpu.node_id].present) { error_setg(&err, "Invalid node-id=%" PRId64 ", NUMA node must be " "defined with -numa node,nodeid=ID before it's used with " "-numa cpu,node-id=ID", object->u.cpu.node_id); goto end; } machine_set_cpu_numa_node(ms, qapi_NumaCpuOptions_base(&object->u.cpu), &err); break; default: abort(); } end: error_propagate(errp, err); } static int parse_numa(void *opaque, QemuOpts *opts, Error **errp) { NumaOptions *object = NULL; MachineState *ms = MACHINE(opaque); Error *err = NULL; Visitor *v = opts_visitor_new(opts); visit_type_NumaOptions(v, NULL, &object, &err); visit_free(v); if (err) { goto end; } /* Fix up legacy suffix-less format */ if ((object->type == NUMA_OPTIONS_TYPE_NODE) && object->u.node.has_mem) { const char *mem_str = qemu_opt_get(opts, "mem"); qemu_strtosz_MiB(mem_str, NULL, &object->u.node.mem); } set_numa_options(ms, object, &err); end: qapi_free_NumaOptions(object); if (err) { error_propagate(errp, err); return -1; } return 0; } /* If all node pair distances are symmetric, then only distances * in one direction are enough. If there is even one asymmetric * pair, though, then all distances must be provided. The * distance from a node to itself is always NUMA_DISTANCE_MIN, * so providing it is never necessary. */ static void validate_numa_distance(void) { int src, dst; bool is_asymmetrical = false; for (src = 0; src < nb_numa_nodes; src++) { for (dst = src; dst < nb_numa_nodes; dst++) { if (numa_info[src].distance[dst] == 0 && numa_info[dst].distance[src] == 0) { if (src != dst) { error_report("The distance between node %d and %d is " "missing, at least one distance value " "between each nodes should be provided.", src, dst); exit(EXIT_FAILURE); } } if (numa_info[src].distance[dst] != 0 && numa_info[dst].distance[src] != 0 && numa_info[src].distance[dst] != numa_info[dst].distance[src]) { is_asymmetrical = true; } } } if (is_asymmetrical) { for (src = 0; src < nb_numa_nodes; src++) { for (dst = 0; dst < nb_numa_nodes; dst++) { if (src != dst && numa_info[src].distance[dst] == 0) { error_report("At least one asymmetrical pair of " "distances is given, please provide distances " "for both directions of all node pairs."); exit(EXIT_FAILURE); } } } } } static void complete_init_numa_distance(void) { int src, dst; /* Fixup NUMA distance by symmetric policy because if it is an * asymmetric distance table, it should be a complete table and * there would not be any missing distance except local node, which * is verified by validate_numa_distance above. */ for (src = 0; src < nb_numa_nodes; src++) { for (dst = 0; dst < nb_numa_nodes; dst++) { if (numa_info[src].distance[dst] == 0) { if (src == dst) { numa_info[src].distance[dst] = NUMA_DISTANCE_MIN; } else { numa_info[src].distance[dst] = numa_info[dst].distance[src]; } } } } } void numa_legacy_auto_assign_ram(MachineClass *mc, NodeInfo *nodes, int nb_nodes, ram_addr_t size) { int i; uint64_t usedmem = 0; /* Align each node according to the alignment * requirements of the machine class */ for (i = 0; i < nb_nodes - 1; i++) { nodes[i].node_mem = (size / nb_nodes) & ~((1 << mc->numa_mem_align_shift) - 1); usedmem += nodes[i].node_mem; } nodes[i].node_mem = size - usedmem; } void numa_default_auto_assign_ram(MachineClass *mc, NodeInfo *nodes, int nb_nodes, ram_addr_t size) { int i; uint64_t usedmem = 0, node_mem; uint64_t granularity = size / nb_nodes; uint64_t propagate = 0; for (i = 0; i < nb_nodes - 1; i++) { node_mem = (granularity + propagate) & ~((1 << mc->numa_mem_align_shift) - 1); propagate = granularity + propagate - node_mem; nodes[i].node_mem = node_mem; usedmem += node_mem; } nodes[i].node_mem = size - usedmem; } void numa_complete_configuration(MachineState *ms) { int i; MachineClass *mc = MACHINE_GET_CLASS(ms); /* * If memory hotplug is enabled (slots > 0) but without '-numa' * options explicitly on CLI, guestes will break. * * Windows: won't enable memory hotplug without SRAT table at all * * Linux: if QEMU is started with initial memory all below 4Gb * and no SRAT table present, guest kernel will use nommu DMA ops, * which breaks 32bit hw drivers when memory is hotplugged and * guest tries to use it with that drivers. * * Enable NUMA implicitly by adding a new NUMA node automatically. */ if (ms->ram_slots > 0 && nb_numa_nodes == 0 && mc->auto_enable_numa_with_memhp) { NumaNodeOptions node = { }; parse_numa_node(ms, &node, &error_abort); } assert(max_numa_nodeid <= MAX_NODES); /* No support for sparse NUMA node IDs yet: */ for (i = max_numa_nodeid - 1; i >= 0; i--) { /* Report large node IDs first, to make mistakes easier to spot */ if (!numa_info[i].present) { error_report("numa: Node ID missing: %d", i); exit(1); } } /* This must be always true if all nodes are present: */ assert(nb_numa_nodes == max_numa_nodeid); if (nb_numa_nodes > 0) { uint64_t numa_total; if (nb_numa_nodes > MAX_NODES) { nb_numa_nodes = MAX_NODES; } /* If no memory size is given for any node, assume the default case * and distribute the available memory equally across all nodes */ for (i = 0; i < nb_numa_nodes; i++) { if (numa_info[i].node_mem != 0) { break; } } if (i == nb_numa_nodes) { assert(mc->numa_auto_assign_ram); mc->numa_auto_assign_ram(mc, numa_info, nb_numa_nodes, ram_size); } numa_total = 0; for (i = 0; i < nb_numa_nodes; i++) { numa_total += numa_info[i].node_mem; } if (numa_total != ram_size) { error_report("total memory for NUMA nodes (0x%" PRIx64 ")" " should equal RAM size (0x" RAM_ADDR_FMT ")", numa_total, ram_size); exit(1); } /* QEMU needs at least all unique node pair distances to build * the whole NUMA distance table. QEMU treats the distance table * as symmetric by default, i.e. distance A->B == distance B->A. * Thus, QEMU is able to complete the distance table * initialization even though only distance A->B is provided and * distance B->A is not. QEMU knows the distance of a node to * itself is always 10, so A->A distances may be omitted. When * the distances of two nodes of a pair differ, i.e. distance * A->B != distance B->A, then that means the distance table is * asymmetric. In this case, the distances for both directions * of all node pairs are required. */ if (have_numa_distance) { /* Validate enough NUMA distance information was provided. */ validate_numa_distance(); /* Validation succeeded, now fill in any missing distances. */ complete_init_numa_distance(); } } } void parse_numa_opts(MachineState *ms) { qemu_opts_foreach(qemu_find_opts("numa"), parse_numa, ms, &error_fatal); } void numa_cpu_pre_plug(const CPUArchId *slot, DeviceState *dev, Error **errp) { int node_id = object_property_get_int(OBJECT(dev), "node-id", &error_abort); if (node_id == CPU_UNSET_NUMA_NODE_ID) { /* due to bug in libvirt, it doesn't pass node-id from props on * device_add as expected, so we have to fix it up here */ if (slot->props.has_node_id) { object_property_set_int(OBJECT(dev), slot->props.node_id, "node-id", errp); } } else if (node_id != slot->props.node_id) { error_setg(errp, "invalid node-id, must be %"PRId64, slot->props.node_id); } } static void allocate_system_memory_nonnuma(MemoryRegion *mr, Object *owner, const char *name, uint64_t ram_size) { if (mem_path) { #ifdef __linux__ Error *err = NULL; memory_region_init_ram_from_file(mr, owner, name, ram_size, 0, 0, mem_path, &err); if (err) { error_report_err(err); if (mem_prealloc) { exit(1); } error_report("falling back to regular RAM allocation."); /* Legacy behavior: if allocation failed, fall back to * regular RAM allocation. */ mem_path = NULL; memory_region_init_ram_nomigrate(mr, owner, name, ram_size, &error_fatal); } #else fprintf(stderr, "-mem-path not supported on this host\n"); exit(1); #endif } else { memory_region_init_ram_nomigrate(mr, owner, name, ram_size, &error_fatal); } vmstate_register_ram_global(mr); } void memory_region_allocate_system_memory(MemoryRegion *mr, Object *owner, const char *name, uint64_t ram_size) { uint64_t addr = 0; int i; if (nb_numa_nodes == 0 || !have_memdevs) { allocate_system_memory_nonnuma(mr, owner, name, ram_size); return; } memory_region_init(mr, owner, name, ram_size); for (i = 0; i < nb_numa_nodes; i++) { uint64_t size = numa_info[i].node_mem; HostMemoryBackend *backend = numa_info[i].node_memdev; if (!backend) { continue; } MemoryRegion *seg = host_memory_backend_get_memory(backend); if (memory_region_is_mapped(seg)) { char *path = object_get_canonical_path_component(OBJECT(backend)); error_report("memory backend %s is used multiple times. Each " "-numa option must use a different memdev value.", path); g_free(path); exit(1); } host_memory_backend_set_mapped(backend, true); memory_region_add_subregion(mr, addr, seg); vmstate_register_ram_global(seg); addr += size; } } static void numa_stat_memory_devices(NumaNodeMem node_mem[]) { MemoryDeviceInfoList *info_list = qmp_memory_device_list(); MemoryDeviceInfoList *info; PCDIMMDeviceInfo *pcdimm_info; for (info = info_list; info; info = info->next) { MemoryDeviceInfo *value = info->value; if (value) { switch (value->type) { case MEMORY_DEVICE_INFO_KIND_DIMM: pcdimm_info = value->u.dimm.data; break; case MEMORY_DEVICE_INFO_KIND_NVDIMM: pcdimm_info = value->u.nvdimm.data; break; default: pcdimm_info = NULL; break; } if (pcdimm_info) { node_mem[pcdimm_info->node].node_mem += pcdimm_info->size; node_mem[pcdimm_info->node].node_plugged_mem += pcdimm_info->size; } } } qapi_free_MemoryDeviceInfoList(info_list); } void query_numa_node_mem(NumaNodeMem node_mem[]) { int i; if (nb_numa_nodes <= 0) { return; } numa_stat_memory_devices(node_mem); for (i = 0; i < nb_numa_nodes; i++) { node_mem[i].node_mem += numa_info[i].node_mem; } } void ram_block_notifier_add(RAMBlockNotifier *n) { QLIST_INSERT_HEAD(&ram_list.ramblock_notifiers, n, next); } void ram_block_notifier_remove(RAMBlockNotifier *n) { QLIST_REMOVE(n, next); } void ram_block_notify_add(void *host, size_t size) { RAMBlockNotifier *notifier; QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) { notifier->ram_block_added(notifier, host, size); } } void ram_block_notify_remove(void *host, size_t size) { RAMBlockNotifier *notifier; QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) { notifier->ram_block_removed(notifier, host, size); } }