/* * QEMU Parallel PORT emulation * * Copyright (c) 2003-2005 Fabrice Bellard * Copyright (c) 2007 Marko Kohtala * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu/module.h" #include "hw/hw.h" #include "chardev/char-parallel.h" #include "chardev/char-fe.h" #include "hw/irq.h" #include "hw/isa/isa.h" #include "migration/vmstate.h" #include "hw/char/parallel.h" #include "sysemu/reset.h" #include "sysemu/sysemu.h" #include "trace.h" //#define DEBUG_PARALLEL #ifdef DEBUG_PARALLEL #define pdebug(fmt, ...) printf("pp: " fmt, ## __VA_ARGS__) #else #define pdebug(fmt, ...) ((void)0) #endif #define PARA_REG_DATA 0 #define PARA_REG_STS 1 #define PARA_REG_CTR 2 #define PARA_REG_EPP_ADDR 3 #define PARA_REG_EPP_DATA 4 /* * These are the definitions for the Printer Status Register */ #define PARA_STS_BUSY 0x80 /* Busy complement */ #define PARA_STS_ACK 0x40 /* Acknowledge */ #define PARA_STS_PAPER 0x20 /* Out of paper */ #define PARA_STS_ONLINE 0x10 /* Online */ #define PARA_STS_ERROR 0x08 /* Error complement */ #define PARA_STS_TMOUT 0x01 /* EPP timeout */ /* * These are the definitions for the Printer Control Register */ #define PARA_CTR_DIR 0x20 /* Direction (1=read, 0=write) */ #define PARA_CTR_INTEN 0x10 /* IRQ Enable */ #define PARA_CTR_SELECT 0x08 /* Select In complement */ #define PARA_CTR_INIT 0x04 /* Initialize Printer complement */ #define PARA_CTR_AUTOLF 0x02 /* Auto linefeed complement */ #define PARA_CTR_STROBE 0x01 /* Strobe complement */ #define PARA_CTR_SIGNAL (PARA_CTR_SELECT|PARA_CTR_INIT|PARA_CTR_AUTOLF|PARA_CTR_STROBE) typedef struct ParallelState { MemoryRegion iomem; uint8_t dataw; uint8_t datar; uint8_t status; uint8_t control; qemu_irq irq; int irq_pending; CharBackend chr; int hw_driver; int epp_timeout; uint32_t last_read_offset; /* For debugging */ /* Memory-mapped interface */ int it_shift; PortioList portio_list; } ParallelState; #define TYPE_ISA_PARALLEL "isa-parallel" #define ISA_PARALLEL(obj) \ OBJECT_CHECK(ISAParallelState, (obj), TYPE_ISA_PARALLEL) typedef struct ISAParallelState { ISADevice parent_obj; uint32_t index; uint32_t iobase; uint32_t isairq; ParallelState state; } ISAParallelState; static void parallel_update_irq(ParallelState *s) { if (s->irq_pending) qemu_irq_raise(s->irq); else qemu_irq_lower(s->irq); } static void parallel_ioport_write_sw(void *opaque, uint32_t addr, uint32_t val) { ParallelState *s = opaque; addr &= 7; trace_parallel_ioport_write("SW", addr, val); switch(addr) { case PARA_REG_DATA: s->dataw = val; parallel_update_irq(s); break; case PARA_REG_CTR: val |= 0xc0; if ((val & PARA_CTR_INIT) == 0 ) { s->status = PARA_STS_BUSY; s->status |= PARA_STS_ACK; s->status |= PARA_STS_ONLINE; s->status |= PARA_STS_ERROR; } else if (val & PARA_CTR_SELECT) { if (val & PARA_CTR_STROBE) { s->status &= ~PARA_STS_BUSY; if ((s->control & PARA_CTR_STROBE) == 0) /* XXX this blocks entire thread. Rewrite to use * qemu_chr_fe_write and background I/O callbacks */ qemu_chr_fe_write_all(&s->chr, &s->dataw, 1); } else { if (s->control & PARA_CTR_INTEN) { s->irq_pending = 1; } } } parallel_update_irq(s); s->control = val; break; } } static void parallel_ioport_write_hw(void *opaque, uint32_t addr, uint32_t val) { ParallelState *s = opaque; uint8_t parm = val; int dir; /* Sometimes programs do several writes for timing purposes on old HW. Take care not to waste time on writes that do nothing. */ s->last_read_offset = ~0U; addr &= 7; trace_parallel_ioport_write("HW", addr, val); switch(addr) { case PARA_REG_DATA: if (s->dataw == val) return; pdebug("wd%02x\n", val); qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_PP_WRITE_DATA, &parm); s->dataw = val; break; case PARA_REG_STS: pdebug("ws%02x\n", val); if (val & PARA_STS_TMOUT) s->epp_timeout = 0; break; case PARA_REG_CTR: val |= 0xc0; if (s->control == val) return; pdebug("wc%02x\n", val); if ((val & PARA_CTR_DIR) != (s->control & PARA_CTR_DIR)) { if (val & PARA_CTR_DIR) { dir = 1; } else { dir = 0; } qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_PP_DATA_DIR, &dir); parm &= ~PARA_CTR_DIR; } qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_PP_WRITE_CONTROL, &parm); s->control = val; break; case PARA_REG_EPP_ADDR: if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT) /* Controls not correct for EPP address cycle, so do nothing */ pdebug("wa%02x s\n", val); else { struct ParallelIOArg ioarg = { .buffer = &parm, .count = 1 }; if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_PP_EPP_WRITE_ADDR, &ioarg)) { s->epp_timeout = 1; pdebug("wa%02x t\n", val); } else pdebug("wa%02x\n", val); } break; case PARA_REG_EPP_DATA: if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT) /* Controls not correct for EPP data cycle, so do nothing */ pdebug("we%02x s\n", val); else { struct ParallelIOArg ioarg = { .buffer = &parm, .count = 1 }; if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_PP_EPP_WRITE, &ioarg)) { s->epp_timeout = 1; pdebug("we%02x t\n", val); } else pdebug("we%02x\n", val); } break; } } static void parallel_ioport_eppdata_write_hw2(void *opaque, uint32_t addr, uint32_t val) { ParallelState *s = opaque; uint16_t eppdata = cpu_to_le16(val); int err; struct ParallelIOArg ioarg = { .buffer = &eppdata, .count = sizeof(eppdata) }; trace_parallel_ioport_write("EPP", addr, val); if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT) { /* Controls not correct for EPP data cycle, so do nothing */ pdebug("we%04x s\n", val); return; } err = qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_PP_EPP_WRITE, &ioarg); if (err) { s->epp_timeout = 1; pdebug("we%04x t\n", val); } else pdebug("we%04x\n", val); } static void parallel_ioport_eppdata_write_hw4(void *opaque, uint32_t addr, uint32_t val) { ParallelState *s = opaque; uint32_t eppdata = cpu_to_le32(val); int err; struct ParallelIOArg ioarg = { .buffer = &eppdata, .count = sizeof(eppdata) }; trace_parallel_ioport_write("EPP", addr, val); if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT) { /* Controls not correct for EPP data cycle, so do nothing */ pdebug("we%08x s\n", val); return; } err = qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_PP_EPP_WRITE, &ioarg); if (err) { s->epp_timeout = 1; pdebug("we%08x t\n", val); } else pdebug("we%08x\n", val); } static uint32_t parallel_ioport_read_sw(void *opaque, uint32_t addr) { ParallelState *s = opaque; uint32_t ret = 0xff; addr &= 7; switch(addr) { case PARA_REG_DATA: if (s->control & PARA_CTR_DIR) ret = s->datar; else ret = s->dataw; break; case PARA_REG_STS: ret = s->status; s->irq_pending = 0; if ((s->status & PARA_STS_BUSY) == 0 && (s->control & PARA_CTR_STROBE) == 0) { /* XXX Fixme: wait 5 microseconds */ if (s->status & PARA_STS_ACK) s->status &= ~PARA_STS_ACK; else { /* XXX Fixme: wait 5 microseconds */ s->status |= PARA_STS_ACK; s->status |= PARA_STS_BUSY; } } parallel_update_irq(s); break; case PARA_REG_CTR: ret = s->control; break; } trace_parallel_ioport_read("SW", addr, ret); return ret; } static uint32_t parallel_ioport_read_hw(void *opaque, uint32_t addr) { ParallelState *s = opaque; uint8_t ret = 0xff; addr &= 7; switch(addr) { case PARA_REG_DATA: qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_PP_READ_DATA, &ret); if (s->last_read_offset != addr || s->datar != ret) pdebug("rd%02x\n", ret); s->datar = ret; break; case PARA_REG_STS: qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_PP_READ_STATUS, &ret); ret &= ~PARA_STS_TMOUT; if (s->epp_timeout) ret |= PARA_STS_TMOUT; if (s->last_read_offset != addr || s->status != ret) pdebug("rs%02x\n", ret); s->status = ret; break; case PARA_REG_CTR: /* s->control has some bits fixed to 1. It is zero only when it has not been yet written to. */ if (s->control == 0) { qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_PP_READ_CONTROL, &ret); if (s->last_read_offset != addr) pdebug("rc%02x\n", ret); s->control = ret; } else { ret = s->control; if (s->last_read_offset != addr) pdebug("rc%02x\n", ret); } break; case PARA_REG_EPP_ADDR: if ((s->control & (PARA_CTR_DIR | PARA_CTR_SIGNAL)) != (PARA_CTR_DIR | PARA_CTR_INIT)) /* Controls not correct for EPP addr cycle, so do nothing */ pdebug("ra%02x s\n", ret); else { struct ParallelIOArg ioarg = { .buffer = &ret, .count = 1 }; if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_PP_EPP_READ_ADDR, &ioarg)) { s->epp_timeout = 1; pdebug("ra%02x t\n", ret); } else pdebug("ra%02x\n", ret); } break; case PARA_REG_EPP_DATA: if ((s->control & (PARA_CTR_DIR | PARA_CTR_SIGNAL)) != (PARA_CTR_DIR | PARA_CTR_INIT)) /* Controls not correct for EPP data cycle, so do nothing */ pdebug("re%02x s\n", ret); else { struct ParallelIOArg ioarg = { .buffer = &ret, .count = 1 }; if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_PP_EPP_READ, &ioarg)) { s->epp_timeout = 1; pdebug("re%02x t\n", ret); } else pdebug("re%02x\n", ret); } break; } trace_parallel_ioport_read("HW", addr, ret); s->last_read_offset = addr; return ret; } static uint32_t parallel_ioport_eppdata_read_hw2(void *opaque, uint32_t addr) { ParallelState *s = opaque; uint32_t ret; uint16_t eppdata = ~0; int err; struct ParallelIOArg ioarg = { .buffer = &eppdata, .count = sizeof(eppdata) }; if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT)) { /* Controls not correct for EPP data cycle, so do nothing */ pdebug("re%04x s\n", eppdata); return eppdata; } err = qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_PP_EPP_READ, &ioarg); ret = le16_to_cpu(eppdata); if (err) { s->epp_timeout = 1; pdebug("re%04x t\n", ret); } else pdebug("re%04x\n", ret); trace_parallel_ioport_read("EPP", addr, ret); return ret; } static uint32_t parallel_ioport_eppdata_read_hw4(void *opaque, uint32_t addr) { ParallelState *s = opaque; uint32_t ret; uint32_t eppdata = ~0U; int err; struct ParallelIOArg ioarg = { .buffer = &eppdata, .count = sizeof(eppdata) }; if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT)) { /* Controls not correct for EPP data cycle, so do nothing */ pdebug("re%08x s\n", eppdata); return eppdata; } err = qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_PP_EPP_READ, &ioarg); ret = le32_to_cpu(eppdata); if (err) { s->epp_timeout = 1; pdebug("re%08x t\n", ret); } else pdebug("re%08x\n", ret); trace_parallel_ioport_read("EPP", addr, ret); return ret; } static void parallel_ioport_ecp_write(void *opaque, uint32_t addr, uint32_t val) { trace_parallel_ioport_write("ECP", addr & 7, val); pdebug("wecp%d=%02x\n", addr & 7, val); } static uint32_t parallel_ioport_ecp_read(void *opaque, uint32_t addr) { uint8_t ret = 0xff; trace_parallel_ioport_read("ECP", addr & 7, ret); pdebug("recp%d:%02x\n", addr & 7, ret); return ret; } static void parallel_reset(void *opaque) { ParallelState *s = opaque; s->datar = ~0; s->dataw = ~0; s->status = PARA_STS_BUSY; s->status |= PARA_STS_ACK; s->status |= PARA_STS_ONLINE; s->status |= PARA_STS_ERROR; s->status |= PARA_STS_TMOUT; s->control = PARA_CTR_SELECT; s->control |= PARA_CTR_INIT; s->control |= 0xc0; s->irq_pending = 0; s->hw_driver = 0; s->epp_timeout = 0; s->last_read_offset = ~0U; } static const int isa_parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc }; static const MemoryRegionPortio isa_parallel_portio_hw_list[] = { { 0, 8, 1, .read = parallel_ioport_read_hw, .write = parallel_ioport_write_hw }, { 4, 1, 2, .read = parallel_ioport_eppdata_read_hw2, .write = parallel_ioport_eppdata_write_hw2 }, { 4, 1, 4, .read = parallel_ioport_eppdata_read_hw4, .write = parallel_ioport_eppdata_write_hw4 }, { 0x400, 8, 1, .read = parallel_ioport_ecp_read, .write = parallel_ioport_ecp_write }, PORTIO_END_OF_LIST(), }; static const MemoryRegionPortio isa_parallel_portio_sw_list[] = { { 0, 8, 1, .read = parallel_ioport_read_sw, .write = parallel_ioport_write_sw }, PORTIO_END_OF_LIST(), }; static const VMStateDescription vmstate_parallel_isa = { .name = "parallel_isa", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(state.dataw, ISAParallelState), VMSTATE_UINT8(state.datar, ISAParallelState), VMSTATE_UINT8(state.status, ISAParallelState), VMSTATE_UINT8(state.control, ISAParallelState), VMSTATE_INT32(state.irq_pending, ISAParallelState), VMSTATE_INT32(state.epp_timeout, ISAParallelState), VMSTATE_END_OF_LIST() } }; static int parallel_can_receive(void *opaque) { return 1; } static void parallel_isa_realizefn(DeviceState *dev, Error **errp) { static int index; ISADevice *isadev = ISA_DEVICE(dev); ISAParallelState *isa = ISA_PARALLEL(dev); ParallelState *s = &isa->state; int base; uint8_t dummy; if (!qemu_chr_fe_backend_connected(&s->chr)) { error_setg(errp, "Can't create parallel device, empty char device"); return; } if (isa->index == -1) { isa->index = index; } if (isa->index >= MAX_PARALLEL_PORTS) { error_setg(errp, "Max. supported number of parallel ports is %d.", MAX_PARALLEL_PORTS); return; } if (isa->iobase == -1) { isa->iobase = isa_parallel_io[isa->index]; } index++; base = isa->iobase; isa_init_irq(isadev, &s->irq, isa->isairq); qemu_register_reset(parallel_reset, s); qemu_chr_fe_set_handlers(&s->chr, parallel_can_receive, NULL, NULL, NULL, s, NULL, true); if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_PP_READ_STATUS, &dummy) == 0) { s->hw_driver = 1; s->status = dummy; } isa_register_portio_list(isadev, &s->portio_list, base, (s->hw_driver ? &isa_parallel_portio_hw_list[0] : &isa_parallel_portio_sw_list[0]), s, "parallel"); } /* Memory mapped interface */ static uint64_t parallel_mm_readfn(void *opaque, hwaddr addr, unsigned size) { ParallelState *s = opaque; return parallel_ioport_read_sw(s, addr >> s->it_shift) & MAKE_64BIT_MASK(0, size * 8); } static void parallel_mm_writefn(void *opaque, hwaddr addr, uint64_t value, unsigned size) { ParallelState *s = opaque; parallel_ioport_write_sw(s, addr >> s->it_shift, value & MAKE_64BIT_MASK(0, size * 8)); } static const MemoryRegionOps parallel_mm_ops = { .read = parallel_mm_readfn, .write = parallel_mm_writefn, .valid.min_access_size = 1, .valid.max_access_size = 4, .endianness = DEVICE_NATIVE_ENDIAN, }; /* If fd is zero, it means that the parallel device uses the console */ bool parallel_mm_init(MemoryRegion *address_space, hwaddr base, int it_shift, qemu_irq irq, Chardev *chr) { ParallelState *s; s = g_malloc0(sizeof(ParallelState)); s->irq = irq; qemu_chr_fe_init(&s->chr, chr, &error_abort); s->it_shift = it_shift; qemu_register_reset(parallel_reset, s); memory_region_init_io(&s->iomem, NULL, ¶llel_mm_ops, s, "parallel", 8 << it_shift); memory_region_add_subregion(address_space, base, &s->iomem); return true; } static Property parallel_isa_properties[] = { DEFINE_PROP_UINT32("index", ISAParallelState, index, -1), DEFINE_PROP_UINT32("iobase", ISAParallelState, iobase, -1), DEFINE_PROP_UINT32("irq", ISAParallelState, isairq, 7), DEFINE_PROP_CHR("chardev", ISAParallelState, state.chr), DEFINE_PROP_END_OF_LIST(), }; static void parallel_isa_class_initfn(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = parallel_isa_realizefn; dc->vmsd = &vmstate_parallel_isa; dc->props = parallel_isa_properties; set_bit(DEVICE_CATEGORY_INPUT, dc->categories); } static const TypeInfo parallel_isa_info = { .name = TYPE_ISA_PARALLEL, .parent = TYPE_ISA_DEVICE, .instance_size = sizeof(ISAParallelState), .class_init = parallel_isa_class_initfn, }; static void parallel_register_types(void) { type_register_static(¶llel_isa_info); } type_init(parallel_register_types)