/* * ARM CMSDK APB UART emulation * * Copyright (c) 2017 Linaro Limited * Written by Peter Maydell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 or * (at your option) any later version. */ /* This is a model of the "APB UART" which is part of the Cortex-M * System Design Kit (CMSDK) and documented in the Cortex-M System * Design Kit Technical Reference Manual (ARM DDI0479C): * https://developer.arm.com/products/system-design/system-design-kits/cortex-m-system-design-kit */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qapi/error.h" #include "trace.h" #include "hw/sysbus.h" #include "hw/registerfields.h" #include "chardev/char-fe.h" #include "chardev/char-serial.h" #include "hw/char/cmsdk-apb-uart.h" REG32(DATA, 0) REG32(STATE, 4) FIELD(STATE, TXFULL, 0, 1) FIELD(STATE, RXFULL, 1, 1) FIELD(STATE, TXOVERRUN, 2, 1) FIELD(STATE, RXOVERRUN, 3, 1) REG32(CTRL, 8) FIELD(CTRL, TX_EN, 0, 1) FIELD(CTRL, RX_EN, 1, 1) FIELD(CTRL, TX_INTEN, 2, 1) FIELD(CTRL, RX_INTEN, 3, 1) FIELD(CTRL, TXO_INTEN, 4, 1) FIELD(CTRL, RXO_INTEN, 5, 1) FIELD(CTRL, HSTEST, 6, 1) REG32(INTSTATUS, 0xc) FIELD(INTSTATUS, TX, 0, 1) FIELD(INTSTATUS, RX, 1, 1) FIELD(INTSTATUS, TXO, 2, 1) FIELD(INTSTATUS, RXO, 3, 1) REG32(BAUDDIV, 0x10) REG32(PID4, 0xFD0) REG32(PID5, 0xFD4) REG32(PID6, 0xFD8) REG32(PID7, 0xFDC) REG32(PID0, 0xFE0) REG32(PID1, 0xFE4) REG32(PID2, 0xFE8) REG32(PID3, 0xFEC) REG32(CID0, 0xFF0) REG32(CID1, 0xFF4) REG32(CID2, 0xFF8) REG32(CID3, 0xFFC) /* PID/CID values */ static const int uart_id[] = { 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */ 0x21, 0xb8, 0x1b, 0x00, /* PID0..PID3 */ 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */ }; static bool uart_baudrate_ok(CMSDKAPBUART *s) { /* The minimum permitted bauddiv setting is 16, so we just ignore * settings below that (usually this means the device has just * been reset and not yet programmed). */ return s->bauddiv >= 16 && s->bauddiv <= s->pclk_frq; } static void uart_update_parameters(CMSDKAPBUART *s) { QEMUSerialSetParams ssp; /* This UART is always 8N1 but the baud rate is programmable. */ if (!uart_baudrate_ok(s)) { return; } ssp.data_bits = 8; ssp.parity = 'N'; ssp.stop_bits = 1; ssp.speed = s->pclk_frq / s->bauddiv; qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); trace_cmsdk_apb_uart_set_params(ssp.speed); } static void cmsdk_apb_uart_update(CMSDKAPBUART *s) { /* update outbound irqs, including handling the way the rxo and txo * interrupt status bits are just logical AND of the overrun bit in * STATE and the overrun interrupt enable bit in CTRL. */ uint32_t omask = (R_INTSTATUS_RXO_MASK | R_INTSTATUS_TXO_MASK); s->intstatus &= ~omask; s->intstatus |= (s->state & (s->ctrl >> 2) & omask); qemu_set_irq(s->txint, !!(s->intstatus & R_INTSTATUS_TX_MASK)); qemu_set_irq(s->rxint, !!(s->intstatus & R_INTSTATUS_RX_MASK)); qemu_set_irq(s->txovrint, !!(s->intstatus & R_INTSTATUS_TXO_MASK)); qemu_set_irq(s->rxovrint, !!(s->intstatus & R_INTSTATUS_RXO_MASK)); qemu_set_irq(s->uartint, !!(s->intstatus)); } static int uart_can_receive(void *opaque) { CMSDKAPBUART *s = CMSDK_APB_UART(opaque); /* We can take a char if RX is enabled and the buffer is empty */ if (s->ctrl & R_CTRL_RX_EN_MASK && !(s->state & R_STATE_RXFULL_MASK)) { return 1; } return 0; } static void uart_receive(void *opaque, const uint8_t *buf, int size) { CMSDKAPBUART *s = CMSDK_APB_UART(opaque); trace_cmsdk_apb_uart_receive(*buf); /* In fact uart_can_receive() ensures that we can't be * called unless RX is enabled and the buffer is empty, * but we include this logic as documentation of what the * hardware does if a character arrives in these circumstances. */ if (!(s->ctrl & R_CTRL_RX_EN_MASK)) { /* Just drop the character on the floor */ return; } if (s->state & R_STATE_RXFULL_MASK) { s->state |= R_STATE_RXOVERRUN_MASK; } s->rxbuf = *buf; s->state |= R_STATE_RXFULL_MASK; if (s->ctrl & R_CTRL_RX_INTEN_MASK) { s->intstatus |= R_INTSTATUS_RX_MASK; } cmsdk_apb_uart_update(s); } static uint64_t uart_read(void *opaque, hwaddr offset, unsigned size) { CMSDKAPBUART *s = CMSDK_APB_UART(opaque); uint64_t r; switch (offset) { case A_DATA: r = s->rxbuf; s->state &= ~R_STATE_RXFULL_MASK; cmsdk_apb_uart_update(s); break; case A_STATE: r = s->state; break; case A_CTRL: r = s->ctrl; break; case A_INTSTATUS: r = s->intstatus; break; case A_BAUDDIV: r = s->bauddiv; break; case A_PID4 ... A_CID3: r = uart_id[(offset - A_PID4) / 4]; break; default: qemu_log_mask(LOG_GUEST_ERROR, "CMSDK APB UART read: bad offset %x\n", (int) offset); r = 0; break; } trace_cmsdk_apb_uart_read(offset, r, size); return r; } /* Try to send tx data, and arrange to be called back later if * we can't (ie the char backend is busy/blocking). */ static gboolean uart_transmit(GIOChannel *chan, GIOCondition cond, void *opaque) { CMSDKAPBUART *s = CMSDK_APB_UART(opaque); int ret; s->watch_tag = 0; if (!(s->ctrl & R_CTRL_TX_EN_MASK) || !(s->state & R_STATE_TXFULL_MASK)) { return FALSE; } ret = qemu_chr_fe_write(&s->chr, &s->txbuf, 1); if (ret <= 0) { s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, uart_transmit, s); if (!s->watch_tag) { /* Most common reason to be here is "no chardev backend": * just insta-drain the buffer, so the serial output * goes into a void, rather than blocking the guest. */ goto buffer_drained; } /* Transmit pending */ trace_cmsdk_apb_uart_tx_pending(); return FALSE; } buffer_drained: /* Character successfully sent */ trace_cmsdk_apb_uart_tx(s->txbuf); s->state &= ~R_STATE_TXFULL_MASK; /* Going from TXFULL set to clear triggers the tx interrupt */ if (s->ctrl & R_CTRL_TX_INTEN_MASK) { s->intstatus |= R_INTSTATUS_TX_MASK; } cmsdk_apb_uart_update(s); return FALSE; } static void uart_cancel_transmit(CMSDKAPBUART *s) { if (s->watch_tag) { g_source_remove(s->watch_tag); s->watch_tag = 0; } } static void uart_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { CMSDKAPBUART *s = CMSDK_APB_UART(opaque); trace_cmsdk_apb_uart_write(offset, value, size); switch (offset) { case A_DATA: s->txbuf = value; if (s->state & R_STATE_TXFULL_MASK) { /* Buffer already full -- note the overrun and let the * existing pending transmit callback handle the new char. */ s->state |= R_STATE_TXOVERRUN_MASK; cmsdk_apb_uart_update(s); } else { s->state |= R_STATE_TXFULL_MASK; uart_transmit(NULL, G_IO_OUT, s); } break; case A_STATE: /* Bits 0 and 1 are read only; bits 2 and 3 are W1C */ s->state &= ~(value & (R_STATE_TXOVERRUN_MASK | R_STATE_RXOVERRUN_MASK)); cmsdk_apb_uart_update(s); break; case A_CTRL: s->ctrl = value & 0x7f; if ((s->ctrl & R_CTRL_TX_EN_MASK) && !uart_baudrate_ok(s)) { qemu_log_mask(LOG_GUEST_ERROR, "CMSDK APB UART: Tx enabled with invalid baudrate\n"); } cmsdk_apb_uart_update(s); break; case A_INTSTATUS: /* All bits are W1C. Clearing the overrun interrupt bits really * clears the overrun status bits in the STATE register (which * is then reflected into the intstatus value by the update function). */ s->state &= ~(value & (R_INTSTATUS_TXO_MASK | R_INTSTATUS_RXO_MASK)); s->intstatus &= ~value; cmsdk_apb_uart_update(s); break; case A_BAUDDIV: s->bauddiv = value & 0xFFFFF; uart_update_parameters(s); break; case A_PID4 ... A_CID3: qemu_log_mask(LOG_GUEST_ERROR, "CMSDK APB UART write: write to RO offset 0x%x\n", (int)offset); break; default: qemu_log_mask(LOG_GUEST_ERROR, "CMSDK APB UART write: bad offset 0x%x\n", (int) offset); break; } } static const MemoryRegionOps uart_ops = { .read = uart_read, .write = uart_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void cmsdk_apb_uart_reset(DeviceState *dev) { CMSDKAPBUART *s = CMSDK_APB_UART(dev); trace_cmsdk_apb_uart_reset(); uart_cancel_transmit(s); s->state = 0; s->ctrl = 0; s->intstatus = 0; s->bauddiv = 0; s->txbuf = 0; s->rxbuf = 0; } static void cmsdk_apb_uart_init(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); CMSDKAPBUART *s = CMSDK_APB_UART(obj); memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000); sysbus_init_mmio(sbd, &s->iomem); sysbus_init_irq(sbd, &s->txint); sysbus_init_irq(sbd, &s->rxint); sysbus_init_irq(sbd, &s->txovrint); sysbus_init_irq(sbd, &s->rxovrint); sysbus_init_irq(sbd, &s->uartint); } static void cmsdk_apb_uart_realize(DeviceState *dev, Error **errp) { CMSDKAPBUART *s = CMSDK_APB_UART(dev); if (s->pclk_frq == 0) { error_setg(errp, "CMSDK APB UART: pclk-frq property must be set"); return; } /* This UART has no flow control, so we do not need to register * an event handler to deal with CHR_EVENT_BREAK. */ qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive, NULL, NULL, s, NULL, true); } static int cmsdk_apb_uart_post_load(void *opaque, int version_id) { CMSDKAPBUART *s = CMSDK_APB_UART(opaque); /* If we have a pending character, arrange to resend it. */ if (s->state & R_STATE_TXFULL_MASK) { s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, uart_transmit, s); } uart_update_parameters(s); return 0; } static const VMStateDescription cmsdk_apb_uart_vmstate = { .name = "cmsdk-apb-uart", .version_id = 1, .minimum_version_id = 1, .post_load = cmsdk_apb_uart_post_load, .fields = (VMStateField[]) { VMSTATE_UINT32(state, CMSDKAPBUART), VMSTATE_UINT32(ctrl, CMSDKAPBUART), VMSTATE_UINT32(intstatus, CMSDKAPBUART), VMSTATE_UINT32(bauddiv, CMSDKAPBUART), VMSTATE_UINT8(txbuf, CMSDKAPBUART), VMSTATE_UINT8(rxbuf, CMSDKAPBUART), VMSTATE_END_OF_LIST() } }; static Property cmsdk_apb_uart_properties[] = { DEFINE_PROP_CHR("chardev", CMSDKAPBUART, chr), DEFINE_PROP_UINT32("pclk-frq", CMSDKAPBUART, pclk_frq, 0), DEFINE_PROP_END_OF_LIST(), }; static void cmsdk_apb_uart_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = cmsdk_apb_uart_realize; dc->vmsd = &cmsdk_apb_uart_vmstate; dc->reset = cmsdk_apb_uart_reset; dc->props = cmsdk_apb_uart_properties; } static const TypeInfo cmsdk_apb_uart_info = { .name = TYPE_CMSDK_APB_UART, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(CMSDKAPBUART), .instance_init = cmsdk_apb_uart_init, .class_init = cmsdk_apb_uart_class_init, }; static void cmsdk_apb_uart_register_types(void) { type_register_static(&cmsdk_apb_uart_info); } type_init(cmsdk_apb_uart_register_types);