/* * CBUS three-pin bus and the Retu / Betty / Tahvo / Vilma / Avilma / * Hinku / Vinku / Ahne / Pihi chips used in various Nokia platforms. * Based on reverse-engineering of a linux driver. * * Copyright (C) 2008 Nokia Corporation * Written by Andrzej Zaborowski <andrew@openedhand.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu-common.h" #include "irq.h" #include "devices.h" #include "sysemu.h" //#define DEBUG typedef struct { void *opaque; void (*io)(void *opaque, int rw, int reg, uint16_t *val); int addr; } CBusSlave; typedef struct { CBus cbus; int sel; int dat; int clk; int bit; int dir; uint16_t val; qemu_irq dat_out; int addr; int reg; int rw; enum { cbus_address, cbus_value, } cycle; CBusSlave *slave[8]; } CBusPriv; static void cbus_io(CBusPriv *s) { if (s->slave[s->addr]) s->slave[s->addr]->io(s->slave[s->addr]->opaque, s->rw, s->reg, &s->val); else hw_error("%s: bad slave address %i\n", __FUNCTION__, s->addr); } static void cbus_cycle(CBusPriv *s) { switch (s->cycle) { case cbus_address: s->addr = (s->val >> 6) & 7; s->rw = (s->val >> 5) & 1; s->reg = (s->val >> 0) & 0x1f; s->cycle = cbus_value; s->bit = 15; s->dir = !s->rw; s->val = 0; if (s->rw) cbus_io(s); break; case cbus_value: if (!s->rw) cbus_io(s); s->cycle = cbus_address; s->bit = 8; s->dir = 1; s->val = 0; break; } } static void cbus_clk(void *opaque, int line, int level) { CBusPriv *s = (CBusPriv *) opaque; if (!s->sel && level && !s->clk) { if (s->dir) s->val |= s->dat << (s->bit --); else qemu_set_irq(s->dat_out, (s->val >> (s->bit --)) & 1); if (s->bit < 0) cbus_cycle(s); } s->clk = level; } static void cbus_dat(void *opaque, int line, int level) { CBusPriv *s = (CBusPriv *) opaque; s->dat = level; } static void cbus_sel(void *opaque, int line, int level) { CBusPriv *s = (CBusPriv *) opaque; if (!level) { s->dir = 1; s->bit = 8; s->val = 0; } s->sel = level; } CBus *cbus_init(qemu_irq dat) { CBusPriv *s = (CBusPriv *) qemu_mallocz(sizeof(*s)); s->dat_out = dat; s->cbus.clk = qemu_allocate_irqs(cbus_clk, s, 1)[0]; s->cbus.dat = qemu_allocate_irqs(cbus_dat, s, 1)[0]; s->cbus.sel = qemu_allocate_irqs(cbus_sel, s, 1)[0]; s->sel = 1; s->clk = 0; s->dat = 0; return &s->cbus; } void cbus_attach(CBus *bus, void *slave_opaque) { CBusSlave *slave = (CBusSlave *) slave_opaque; CBusPriv *s = (CBusPriv *) bus; s->slave[slave->addr] = slave; } /* Retu/Vilma */ typedef struct { uint16_t irqst; uint16_t irqen; uint16_t cc[2]; int channel; uint16_t result[16]; uint16_t sample; uint16_t status; struct { uint16_t cal; } rtc; int is_vilma; qemu_irq irq; CBusSlave cbus; } CBusRetu; static void retu_interrupt_update(CBusRetu *s) { qemu_set_irq(s->irq, s->irqst & ~s->irqen); } #define RETU_REG_ASICR 0x00 /* (RO) ASIC ID & revision */ #define RETU_REG_IDR 0x01 /* (T) Interrupt ID */ #define RETU_REG_IMR 0x02 /* (RW) Interrupt mask */ #define RETU_REG_RTCDSR 0x03 /* (RW) RTC seconds register */ #define RETU_REG_RTCHMR 0x04 /* (RO) RTC hours and minutes reg */ #define RETU_REG_RTCHMAR 0x05 /* (RW) RTC hours and minutes set reg */ #define RETU_REG_RTCCALR 0x06 /* (RW) RTC calibration register */ #define RETU_REG_ADCR 0x08 /* (RW) ADC result register */ #define RETU_REG_ADCSCR 0x09 /* (RW) ADC sample control register */ #define RETU_REG_AFCR 0x0a /* (RW) AFC register */ #define RETU_REG_ANTIFR 0x0b /* (RW) AntiF register */ #define RETU_REG_CALIBR 0x0c /* (RW) CalibR register*/ #define RETU_REG_CCR1 0x0d /* (RW) Common control register 1 */ #define RETU_REG_CCR2 0x0e /* (RW) Common control register 2 */ #define RETU_REG_RCTRL_CLR 0x0f /* (T) Regulator clear register */ #define RETU_REG_RCTRL_SET 0x10 /* (T) Regulator set register */ #define RETU_REG_TXCR 0x11 /* (RW) TxC register */ #define RETU_REG_STATUS 0x16 /* (RO) Status register */ #define RETU_REG_WATCHDOG 0x17 /* (RW) Watchdog register */ #define RETU_REG_AUDTXR 0x18 /* (RW) Audio Codec Tx register */ #define RETU_REG_AUDPAR 0x19 /* (RW) AudioPA register */ #define RETU_REG_AUDRXR1 0x1a /* (RW) Audio receive register 1 */ #define RETU_REG_AUDRXR2 0x1b /* (RW) Audio receive register 2 */ #define RETU_REG_SGR1 0x1c /* (RW) */ #define RETU_REG_SCR1 0x1d /* (RW) */ #define RETU_REG_SGR2 0x1e /* (RW) */ #define RETU_REG_SCR2 0x1f /* (RW) */ /* Retu Interrupt sources */ enum { retu_int_pwr = 0, /* Power button */ retu_int_char = 1, /* Charger */ retu_int_rtcs = 2, /* Seconds */ retu_int_rtcm = 3, /* Minutes */ retu_int_rtcd = 4, /* Days */ retu_int_rtca = 5, /* Alarm */ retu_int_hook = 6, /* Hook */ retu_int_head = 7, /* Headset */ retu_int_adcs = 8, /* ADC sample */ }; /* Retu ADC channel wiring */ enum { retu_adc_bsi = 1, /* BSI */ retu_adc_batt_temp = 2, /* Battery temperature */ retu_adc_chg_volt = 3, /* Charger voltage */ retu_adc_head_det = 4, /* Headset detection */ retu_adc_hook_det = 5, /* Hook detection */ retu_adc_rf_gp = 6, /* RF GP */ retu_adc_tx_det = 7, /* Wideband Tx detection */ retu_adc_batt_volt = 8, /* Battery voltage */ retu_adc_sens = 10, /* Light sensor */ retu_adc_sens_temp = 11, /* Light sensor temperature */ retu_adc_bbatt_volt = 12, /* Backup battery voltage */ retu_adc_self_temp = 13, /* RETU temperature */ }; static inline uint16_t retu_read(CBusRetu *s, int reg) { #ifdef DEBUG printf("RETU read at %02x\n", reg); #endif switch (reg) { case RETU_REG_ASICR: return 0x0215 | (s->is_vilma << 7); case RETU_REG_IDR: /* TODO: Or is this ffs(s->irqst)? */ return s->irqst; case RETU_REG_IMR: return s->irqen; case RETU_REG_RTCDSR: case RETU_REG_RTCHMR: case RETU_REG_RTCHMAR: /* TODO */ return 0x0000; case RETU_REG_RTCCALR: return s->rtc.cal; case RETU_REG_ADCR: return (s->channel << 10) | s->result[s->channel]; case RETU_REG_ADCSCR: return s->sample; case RETU_REG_AFCR: case RETU_REG_ANTIFR: case RETU_REG_CALIBR: /* TODO */ return 0x0000; case RETU_REG_CCR1: return s->cc[0]; case RETU_REG_CCR2: return s->cc[1]; case RETU_REG_RCTRL_CLR: case RETU_REG_RCTRL_SET: case RETU_REG_TXCR: /* TODO */ return 0x0000; case RETU_REG_STATUS: return s->status; case RETU_REG_WATCHDOG: case RETU_REG_AUDTXR: case RETU_REG_AUDPAR: case RETU_REG_AUDRXR1: case RETU_REG_AUDRXR2: case RETU_REG_SGR1: case RETU_REG_SCR1: case RETU_REG_SGR2: case RETU_REG_SCR2: /* TODO */ return 0x0000; default: hw_error("%s: bad register %02x\n", __FUNCTION__, reg); } } static inline void retu_write(CBusRetu *s, int reg, uint16_t val) { #ifdef DEBUG printf("RETU write of %04x at %02x\n", val, reg); #endif switch (reg) { case RETU_REG_IDR: s->irqst ^= val; retu_interrupt_update(s); break; case RETU_REG_IMR: s->irqen = val; retu_interrupt_update(s); break; case RETU_REG_RTCDSR: case RETU_REG_RTCHMAR: /* TODO */ break; case RETU_REG_RTCCALR: s->rtc.cal = val; break; case RETU_REG_ADCR: s->channel = (val >> 10) & 0xf; s->irqst |= 1 << retu_int_adcs; retu_interrupt_update(s); break; case RETU_REG_ADCSCR: s->sample &= ~val; break; case RETU_REG_AFCR: case RETU_REG_ANTIFR: case RETU_REG_CALIBR: case RETU_REG_CCR1: s->cc[0] = val; break; case RETU_REG_CCR2: s->cc[1] = val; break; case RETU_REG_RCTRL_CLR: case RETU_REG_RCTRL_SET: /* TODO */ break; case RETU_REG_WATCHDOG: if (val == 0 && (s->cc[0] & 2)) qemu_system_shutdown_request(); break; case RETU_REG_TXCR: case RETU_REG_AUDTXR: case RETU_REG_AUDPAR: case RETU_REG_AUDRXR1: case RETU_REG_AUDRXR2: case RETU_REG_SGR1: case RETU_REG_SCR1: case RETU_REG_SGR2: case RETU_REG_SCR2: /* TODO */ break; default: hw_error("%s: bad register %02x\n", __FUNCTION__, reg); } } static void retu_io(void *opaque, int rw, int reg, uint16_t *val) { CBusRetu *s = (CBusRetu *) opaque; if (rw) *val = retu_read(s, reg); else retu_write(s, reg, *val); } void *retu_init(qemu_irq irq, int vilma) { CBusRetu *s = (CBusRetu *) qemu_mallocz(sizeof(*s)); s->irq = irq; s->irqen = 0xffff; s->irqst = 0x0000; s->status = 0x0020; s->is_vilma = !!vilma; s->rtc.cal = 0x01; s->result[retu_adc_bsi] = 0x3c2; s->result[retu_adc_batt_temp] = 0x0fc; s->result[retu_adc_chg_volt] = 0x165; s->result[retu_adc_head_det] = 123; s->result[retu_adc_hook_det] = 1023; s->result[retu_adc_rf_gp] = 0x11; s->result[retu_adc_tx_det] = 0x11; s->result[retu_adc_batt_volt] = 0x250; s->result[retu_adc_sens] = 2; s->result[retu_adc_sens_temp] = 0x11; s->result[retu_adc_bbatt_volt] = 0x3d0; s->result[retu_adc_self_temp] = 0x330; s->cbus.opaque = s; s->cbus.io = retu_io; s->cbus.addr = 1; return &s->cbus; } void retu_key_event(void *retu, int state) { CBusSlave *slave = (CBusSlave *) retu; CBusRetu *s = (CBusRetu *) slave->opaque; s->irqst |= 1 << retu_int_pwr; retu_interrupt_update(s); if (state) s->status &= ~(1 << 5); else s->status |= 1 << 5; } #if 0 static void retu_head_event(void *retu, int state) { CBusSlave *slave = (CBusSlave *) retu; CBusRetu *s = (CBusRetu *) slave->opaque; if ((s->cc[0] & 0x500) == 0x500) { /* TODO: Which bits? */ /* TODO: reissue the interrupt every 100ms or so. */ s->irqst |= 1 << retu_int_head; retu_interrupt_update(s); } if (state) s->result[retu_adc_head_det] = 50; else s->result[retu_adc_head_det] = 123; } static void retu_hook_event(void *retu, int state) { CBusSlave *slave = (CBusSlave *) retu; CBusRetu *s = (CBusRetu *) slave->opaque; if ((s->cc[0] & 0x500) == 0x500) { /* TODO: reissue the interrupt every 100ms or so. */ s->irqst |= 1 << retu_int_hook; retu_interrupt_update(s); } if (state) s->result[retu_adc_hook_det] = 50; else s->result[retu_adc_hook_det] = 123; } #endif /* Tahvo/Betty */ typedef struct { uint16_t irqst; uint16_t irqen; uint8_t charger; uint8_t backlight; uint16_t usbr; uint16_t power; int is_betty; qemu_irq irq; CBusSlave cbus; } CBusTahvo; static void tahvo_interrupt_update(CBusTahvo *s) { qemu_set_irq(s->irq, s->irqst & ~s->irqen); } #define TAHVO_REG_ASICR 0x00 /* (RO) ASIC ID & revision */ #define TAHVO_REG_IDR 0x01 /* (T) Interrupt ID */ #define TAHVO_REG_IDSR 0x02 /* (RO) Interrupt status */ #define TAHVO_REG_IMR 0x03 /* (RW) Interrupt mask */ #define TAHVO_REG_CHAPWMR 0x04 /* (RW) Charger PWM */ #define TAHVO_REG_LEDPWMR 0x05 /* (RW) LED PWM */ #define TAHVO_REG_USBR 0x06 /* (RW) USB control */ #define TAHVO_REG_RCR 0x07 /* (RW) Some kind of power management */ #define TAHVO_REG_CCR1 0x08 /* (RW) Common control register 1 */ #define TAHVO_REG_CCR2 0x09 /* (RW) Common control register 2 */ #define TAHVO_REG_TESTR1 0x0a /* (RW) Test register 1 */ #define TAHVO_REG_TESTR2 0x0b /* (RW) Test register 2 */ #define TAHVO_REG_NOPR 0x0c /* (RW) Number of periods */ #define TAHVO_REG_FRR 0x0d /* (RO) FR */ static inline uint16_t tahvo_read(CBusTahvo *s, int reg) { #ifdef DEBUG printf("TAHVO read at %02x\n", reg); #endif switch (reg) { case TAHVO_REG_ASICR: return 0x0021 | (s->is_betty ? 0x0b00 : 0x0300); /* 22 in N810 */ case TAHVO_REG_IDR: case TAHVO_REG_IDSR: /* XXX: what does this do? */ return s->irqst; case TAHVO_REG_IMR: return s->irqen; case TAHVO_REG_CHAPWMR: return s->charger; case TAHVO_REG_LEDPWMR: return s->backlight; case TAHVO_REG_USBR: return s->usbr; case TAHVO_REG_RCR: return s->power; case TAHVO_REG_CCR1: case TAHVO_REG_CCR2: case TAHVO_REG_TESTR1: case TAHVO_REG_TESTR2: case TAHVO_REG_NOPR: case TAHVO_REG_FRR: return 0x0000; default: hw_error("%s: bad register %02x\n", __FUNCTION__, reg); } } static inline void tahvo_write(CBusTahvo *s, int reg, uint16_t val) { #ifdef DEBUG printf("TAHVO write of %04x at %02x\n", val, reg); #endif switch (reg) { case TAHVO_REG_IDR: s->irqst ^= val; tahvo_interrupt_update(s); break; case TAHVO_REG_IMR: s->irqen = val; tahvo_interrupt_update(s); break; case TAHVO_REG_CHAPWMR: s->charger = val; break; case TAHVO_REG_LEDPWMR: if (s->backlight != (val & 0x7f)) { s->backlight = val & 0x7f; printf("%s: LCD backlight now at %i / 127\n", __FUNCTION__, s->backlight); } break; case TAHVO_REG_USBR: s->usbr = val; break; case TAHVO_REG_RCR: s->power = val; break; case TAHVO_REG_CCR1: case TAHVO_REG_CCR2: case TAHVO_REG_TESTR1: case TAHVO_REG_TESTR2: case TAHVO_REG_NOPR: case TAHVO_REG_FRR: break; default: hw_error("%s: bad register %02x\n", __FUNCTION__, reg); } } static void tahvo_io(void *opaque, int rw, int reg, uint16_t *val) { CBusTahvo *s = (CBusTahvo *) opaque; if (rw) *val = tahvo_read(s, reg); else tahvo_write(s, reg, *val); } void *tahvo_init(qemu_irq irq, int betty) { CBusTahvo *s = (CBusTahvo *) qemu_mallocz(sizeof(*s)); s->irq = irq; s->irqen = 0xffff; s->irqst = 0x0000; s->is_betty = !!betty; s->cbus.opaque = s; s->cbus.io = tahvo_io; s->cbus.addr = 2; return &s->cbus; }