/* * Bluetooth serial HCI transport. * CSR41814 HCI with H4p vendor extensions. * * Copyright (C) 2008 Andrzej Zaborowski <balrog@zabor.org> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu-common.h" #include "qemu-char.h" #include "qemu-timer.h" #include "irq.h" #include "net.h" #include "bt.h" struct csrhci_s { int enable; qemu_irq *pins; int pin_state; int modem_state; CharDriverState chr; #define FIFO_LEN 4096 int out_start; int out_len; int out_size; uint8_t outfifo[FIFO_LEN * 2]; uint8_t inpkt[FIFO_LEN]; int in_len; int in_hdr; int in_data; QEMUTimer *out_tm; int64_t baud_delay; bdaddr_t bd_addr; struct HCIInfo *hci; }; /* H4+ packet types */ enum { H4_CMD_PKT = 1, H4_ACL_PKT = 2, H4_SCO_PKT = 3, H4_EVT_PKT = 4, H4_NEG_PKT = 6, H4_ALIVE_PKT = 7, }; /* CSR41814 negotiation start magic packet */ static const uint8_t csrhci_neg_packet[] = { H4_NEG_PKT, 10, 0x00, 0xa0, 0x01, 0x00, 0x00, 0x4c, 0x00, 0x96, 0x00, 0x00, }; /* CSR41814 vendor-specific command OCFs */ enum { OCF_CSR_SEND_FIRMWARE = 0x000, }; static inline void csrhci_fifo_wake(struct csrhci_s *s) { if (!s->enable || !s->out_len) return; /* XXX: Should wait for s->modem_state & CHR_TIOCM_RTS? */ if (s->chr.chr_can_read && s->chr.chr_can_read(s->chr.handler_opaque) && s->chr.chr_read) { s->chr.chr_read(s->chr.handler_opaque, s->outfifo + s->out_start ++, 1); s->out_len --; if (s->out_start >= s->out_size) { s->out_start = 0; s->out_size = FIFO_LEN; } } if (s->out_len) qemu_mod_timer(s->out_tm, qemu_get_clock_ns(vm_clock) + s->baud_delay); } #define csrhci_out_packetz(s, len) memset(csrhci_out_packet(s, len), 0, len) static uint8_t *csrhci_out_packet(struct csrhci_s *s, int len) { int off = s->out_start + s->out_len; /* TODO: do the padding here, i.e. align len */ s->out_len += len; if (off < FIFO_LEN) { if (off + len > FIFO_LEN && (s->out_size = off + len) > FIFO_LEN * 2) { fprintf(stderr, "%s: can't alloc %i bytes\n", __FUNCTION__, len); exit(-1); } return s->outfifo + off; } if (s->out_len > s->out_size) { fprintf(stderr, "%s: can't alloc %i bytes\n", __FUNCTION__, len); exit(-1); } return s->outfifo + off - s->out_size; } static inline uint8_t *csrhci_out_packet_csr(struct csrhci_s *s, int type, int len) { uint8_t *ret = csrhci_out_packetz(s, len + 2); *ret ++ = type; *ret ++ = len; return ret; } static inline uint8_t *csrhci_out_packet_event(struct csrhci_s *s, int evt, int len) { uint8_t *ret = csrhci_out_packetz(s, len + 1 + sizeof(struct hci_event_hdr)); *ret ++ = H4_EVT_PKT; ((struct hci_event_hdr *) ret)->evt = evt; ((struct hci_event_hdr *) ret)->plen = len; return ret + sizeof(struct hci_event_hdr); } static void csrhci_in_packet_vendor(struct csrhci_s *s, int ocf, uint8_t *data, int len) { int offset; uint8_t *rpkt; switch (ocf) { case OCF_CSR_SEND_FIRMWARE: /* Check if this is the bd_address packet */ if (len >= 18 + 8 && data[12] == 0x01 && data[13] == 0x00) { offset = 18; s->bd_addr.b[0] = data[offset + 7]; /* Beyond cmd packet end(!?) */ s->bd_addr.b[1] = data[offset + 6]; s->bd_addr.b[2] = data[offset + 4]; s->bd_addr.b[3] = data[offset + 0]; s->bd_addr.b[4] = data[offset + 3]; s->bd_addr.b[5] = data[offset + 2]; s->hci->bdaddr_set(s->hci, s->bd_addr.b); fprintf(stderr, "%s: bd_address loaded from firmware: " "%02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, s->bd_addr.b[0], s->bd_addr.b[1], s->bd_addr.b[2], s->bd_addr.b[3], s->bd_addr.b[4], s->bd_addr.b[5]); } rpkt = csrhci_out_packet_event(s, EVT_VENDOR, 11); /* Status bytes: no error */ rpkt[9] = 0x00; rpkt[10] = 0x00; break; default: fprintf(stderr, "%s: got a bad CMD packet\n", __FUNCTION__); return; } csrhci_fifo_wake(s); } static void csrhci_in_packet(struct csrhci_s *s, uint8_t *pkt) { uint8_t *rpkt; int opc; switch (*pkt ++) { case H4_CMD_PKT: opc = le16_to_cpu(((struct hci_command_hdr *) pkt)->opcode); if (cmd_opcode_ogf(opc) == OGF_VENDOR_CMD) { csrhci_in_packet_vendor(s, cmd_opcode_ocf(opc), pkt + sizeof(struct hci_command_hdr), s->in_len - sizeof(struct hci_command_hdr) - 1); return; } /* TODO: if the command is OCF_READ_LOCAL_COMMANDS or the likes, * we need to send it to the HCI layer and then add our supported * commands to the returned mask (such as OGF_VENDOR_CMD). With * bt-hci.c we could just have hooks for this kind of commands but * we can't with bt-host.c. */ s->hci->cmd_send(s->hci, pkt, s->in_len - 1); break; case H4_EVT_PKT: goto bad_pkt; case H4_ACL_PKT: s->hci->acl_send(s->hci, pkt, s->in_len - 1); break; case H4_SCO_PKT: s->hci->sco_send(s->hci, pkt, s->in_len - 1); break; case H4_NEG_PKT: if (s->in_hdr != sizeof(csrhci_neg_packet) || memcmp(pkt - 1, csrhci_neg_packet, s->in_hdr)) { fprintf(stderr, "%s: got a bad NEG packet\n", __FUNCTION__); return; } pkt += 2; rpkt = csrhci_out_packet_csr(s, H4_NEG_PKT, 10); *rpkt ++ = 0x20; /* Operational settings negotation Ok */ memcpy(rpkt, pkt, 7); rpkt += 7; *rpkt ++ = 0xff; *rpkt = 0xff; break; case H4_ALIVE_PKT: if (s->in_hdr != 4 || pkt[1] != 0x55 || pkt[2] != 0x00) { fprintf(stderr, "%s: got a bad ALIVE packet\n", __FUNCTION__); return; } rpkt = csrhci_out_packet_csr(s, H4_ALIVE_PKT, 2); *rpkt ++ = 0xcc; *rpkt = 0x00; break; default: bad_pkt: /* TODO: error out */ fprintf(stderr, "%s: got a bad packet\n", __FUNCTION__); break; } csrhci_fifo_wake(s); } static int csrhci_header_len(const uint8_t *pkt) { switch (pkt[0]) { case H4_CMD_PKT: return HCI_COMMAND_HDR_SIZE; case H4_EVT_PKT: return HCI_EVENT_HDR_SIZE; case H4_ACL_PKT: return HCI_ACL_HDR_SIZE; case H4_SCO_PKT: return HCI_SCO_HDR_SIZE; case H4_NEG_PKT: return pkt[1] + 1; case H4_ALIVE_PKT: return 3; } exit(-1); } static int csrhci_data_len(const uint8_t *pkt) { switch (*pkt ++) { case H4_CMD_PKT: /* It seems that vendor-specific command packets for H4+ are all * one byte longer than indicated in the standard header. */ if (le16_to_cpu(((struct hci_command_hdr *) pkt)->opcode) == 0xfc00) return (((struct hci_command_hdr *) pkt)->plen + 1) & ~1; return ((struct hci_command_hdr *) pkt)->plen; case H4_EVT_PKT: return ((struct hci_event_hdr *) pkt)->plen; case H4_ACL_PKT: return le16_to_cpu(((struct hci_acl_hdr *) pkt)->dlen); case H4_SCO_PKT: return ((struct hci_sco_hdr *) pkt)->dlen; case H4_NEG_PKT: case H4_ALIVE_PKT: return 0; } exit(-1); } static int csrhci_write(struct CharDriverState *chr, const uint8_t *buf, int len) { struct csrhci_s *s = (struct csrhci_s *) chr->opaque; int plen = s->in_len; if (!s->enable) return 0; s->in_len += len; memcpy(s->inpkt + plen, buf, len); while (1) { if (s->in_len >= 2 && plen < 2) s->in_hdr = csrhci_header_len(s->inpkt) + 1; if (s->in_len >= s->in_hdr && plen < s->in_hdr) s->in_data = csrhci_data_len(s->inpkt) + s->in_hdr; if (s->in_len >= s->in_data) { csrhci_in_packet(s, s->inpkt); memmove(s->inpkt, s->inpkt + s->in_len, s->in_len - s->in_data); s->in_len -= s->in_data; s->in_hdr = INT_MAX; s->in_data = INT_MAX; plen = 0; } else break; } return len; } static void csrhci_out_hci_packet_event(void *opaque, const uint8_t *data, int len) { struct csrhci_s *s = (struct csrhci_s *) opaque; uint8_t *pkt = csrhci_out_packet(s, (len + 2) & ~1); /* Align */ *pkt ++ = H4_EVT_PKT; memcpy(pkt, data, len); csrhci_fifo_wake(s); } static void csrhci_out_hci_packet_acl(void *opaque, const uint8_t *data, int len) { struct csrhci_s *s = (struct csrhci_s *) opaque; uint8_t *pkt = csrhci_out_packet(s, (len + 2) & ~1); /* Align */ *pkt ++ = H4_ACL_PKT; pkt[len & ~1] = 0; memcpy(pkt, data, len); csrhci_fifo_wake(s); } static int csrhci_ioctl(struct CharDriverState *chr, int cmd, void *arg) { QEMUSerialSetParams *ssp; struct csrhci_s *s = (struct csrhci_s *) chr->opaque; int prev_state = s->modem_state; switch (cmd) { case CHR_IOCTL_SERIAL_SET_PARAMS: ssp = (QEMUSerialSetParams *) arg; s->baud_delay = get_ticks_per_sec() / ssp->speed; /* Moments later... (but shorter than 100ms) */ s->modem_state |= CHR_TIOCM_CTS; break; case CHR_IOCTL_SERIAL_GET_TIOCM: *(int *) arg = s->modem_state; break; case CHR_IOCTL_SERIAL_SET_TIOCM: s->modem_state = *(int *) arg; if (~s->modem_state & prev_state & CHR_TIOCM_RTS) s->modem_state &= ~CHR_TIOCM_CTS; break; default: return -ENOTSUP; } return 0; } static void csrhci_reset(struct csrhci_s *s) { s->out_len = 0; s->out_size = FIFO_LEN; s->in_len = 0; s->baud_delay = get_ticks_per_sec(); s->enable = 0; s->in_hdr = INT_MAX; s->in_data = INT_MAX; s->modem_state = 0; /* After a while... (but sooner than 10ms) */ s->modem_state |= CHR_TIOCM_CTS; memset(&s->bd_addr, 0, sizeof(bdaddr_t)); } static void csrhci_out_tick(void *opaque) { csrhci_fifo_wake((struct csrhci_s *) opaque); } static void csrhci_pins(void *opaque, int line, int level) { struct csrhci_s *s = (struct csrhci_s *) opaque; int state = s->pin_state; s->pin_state &= ~(1 << line); s->pin_state |= (!!level) << line; if ((state & ~s->pin_state) & (1 << csrhci_pin_reset)) { /* TODO: Disappear from lower layers */ csrhci_reset(s); } if (s->pin_state == 3 && state != 3) { s->enable = 1; /* TODO: Wake lower layers up */ } } qemu_irq *csrhci_pins_get(CharDriverState *chr) { struct csrhci_s *s = (struct csrhci_s *) chr->opaque; return s->pins; } CharDriverState *uart_hci_init(qemu_irq wakeup) { struct csrhci_s *s = (struct csrhci_s *) g_malloc0(sizeof(struct csrhci_s)); s->chr.opaque = s; s->chr.chr_write = csrhci_write; s->chr.chr_ioctl = csrhci_ioctl; s->hci = qemu_next_hci(); s->hci->opaque = s; s->hci->evt_recv = csrhci_out_hci_packet_event; s->hci->acl_recv = csrhci_out_hci_packet_acl; s->out_tm = qemu_new_timer_ns(vm_clock, csrhci_out_tick, s); s->pins = qemu_allocate_irqs(csrhci_pins, s, __csrhci_pins); csrhci_reset(s); return &s->chr; }