/* * QEMU NVM Express Controller * * Copyright (c) 2012, Intel Corporation * * Written by Keith Busch * * This code is licensed under the GNU GPL v2 or later. */ /** * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e * * https://nvmexpress.org/developers/nvme-specification/ */ /** * Usage: add options: * -drive file=,if=none,id= * -device nvme-subsys,id=,nqn= * -device nvme,serial=,id=, \ * cmb_size_mb=, \ * [pmrdev=,] \ * max_ioqpairs=, \ * aerl=,aer_max_queued=, \ * mdts=,zoned.zasl=, \ * subsys= * -device nvme-ns,drive=,bus=,nsid=,\ * zoned=, \ * subsys= * * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to * always enable the CMBLOC and CMBSZ registers (v1.3 behavior). * * Enabling pmr emulation can be achieved by pointing to memory-backend-file. * For example: * -object memory-backend-file,id=,share=on,mem-path=, \ * size= .... -device nvme,...,pmrdev= * * The PMR will use BAR 4/5 exclusively. * * To place controller(s) and namespace(s) to a subsystem, then provide * nvme-subsys device as above. * * nvme subsystem device parameters * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * - `nqn` * This parameter provides the `` part of the string * `nqn.2019-08.org.qemu:` which will be reported in the SUBNQN field * of subsystem controllers. Note that `` should be unique per * subsystem, but this is not enforced by QEMU. If not specified, it will * default to the value of the `id` parameter (``). * * nvme device parameters * ~~~~~~~~~~~~~~~~~~~~~~ * - `subsys` * Specifying this parameter attaches the controller to the subsystem and * the SUBNQN field in the controller will report the NQN of the subsystem * device. This also enables multi controller capability represented in * Identify Controller data structure in CMIC (Controller Multi-path I/O and * Namesapce Sharing Capabilities). * * - `aerl` * The Asynchronous Event Request Limit (AERL). Indicates the maximum number * of concurrently outstanding Asynchronous Event Request commands support * by the controller. This is a 0's based value. * * - `aer_max_queued` * This is the maximum number of events that the device will enqueue for * completion when there are no outstanding AERs. When the maximum number of * enqueued events are reached, subsequent events will be dropped. * * - `mdts` * Indicates the maximum data transfer size for a command that transfers data * between host-accessible memory and the controller. The value is specified * as a power of two (2^n) and is in units of the minimum memory page size * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB). * * - `zoned.zasl` * Indicates the maximum data transfer size for the Zone Append command. Like * `mdts`, the value is specified as a power of two (2^n) and is in units of * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e. * defaulting to the value of `mdts`). * * nvme namespace device parameters * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * - `subsys` * If given, the namespace will be attached to all controllers in the * subsystem. Otherwise, `bus` must be given to attach this namespace to a * specific controller as a non-shared namespace. * * Setting `zoned` to true selects Zoned Command Set at the namespace. * In this case, the following namespace properties are available to configure * zoned operation: * zoned.zone_size= * The number may be followed by K, M, G as in kilo-, mega- or giga-. * * zoned.zone_capacity= * The value 0 (default) forces zone capacity to be the same as zone * size. The value of this property may not exceed zone size. * * zoned.descr_ext_size= * This value needs to be specified in 64B units. If it is zero, * namespace(s) will not support zone descriptor extensions. * * zoned.max_active= * The default value means there is no limit to the number of * concurrently active zones. * * zoned.max_open= * The default value means there is no limit to the number of * concurrently open zones. * * zoned.cross_read= * Setting this property to true enables Read Across Zone Boundaries. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/error-report.h" #include "hw/block/block.h" #include "hw/pci/msix.h" #include "hw/pci/pci.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" #include "sysemu/sysemu.h" #include "qapi/error.h" #include "qapi/visitor.h" #include "sysemu/hostmem.h" #include "sysemu/block-backend.h" #include "exec/memory.h" #include "qemu/log.h" #include "qemu/module.h" #include "qemu/cutils.h" #include "trace.h" #include "nvme.h" #include "nvme-ns.h" #define NVME_MAX_IOQPAIRS 0xffff #define NVME_DB_SIZE 4 #define NVME_SPEC_VER 0x00010400 #define NVME_CMB_BIR 2 #define NVME_PMR_BIR 4 #define NVME_TEMPERATURE 0x143 #define NVME_TEMPERATURE_WARNING 0x157 #define NVME_TEMPERATURE_CRITICAL 0x175 #define NVME_NUM_FW_SLOTS 1 #define NVME_GUEST_ERR(trace, fmt, ...) \ do { \ (trace_##trace)(__VA_ARGS__); \ qemu_log_mask(LOG_GUEST_ERROR, #trace \ " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \ } while (0) static const bool nvme_feature_support[NVME_FID_MAX] = { [NVME_ARBITRATION] = true, [NVME_POWER_MANAGEMENT] = true, [NVME_TEMPERATURE_THRESHOLD] = true, [NVME_ERROR_RECOVERY] = true, [NVME_VOLATILE_WRITE_CACHE] = true, [NVME_NUMBER_OF_QUEUES] = true, [NVME_INTERRUPT_COALESCING] = true, [NVME_INTERRUPT_VECTOR_CONF] = true, [NVME_WRITE_ATOMICITY] = true, [NVME_ASYNCHRONOUS_EVENT_CONF] = true, [NVME_TIMESTAMP] = true, }; static const uint32_t nvme_feature_cap[NVME_FID_MAX] = { [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE, [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE, [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE, [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE, [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE, }; static const uint32_t nvme_cse_acs[256] = { [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP, }; static const uint32_t nvme_cse_iocs_none[256]; static const uint32_t nvme_cse_iocs_nvm[256] = { [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, }; static const uint32_t nvme_cse_iocs_zoned[256] = { [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP, }; static void nvme_process_sq(void *opaque); static uint16_t nvme_cid(NvmeRequest *req) { if (!req) { return 0xffff; } return le16_to_cpu(req->cqe.cid); } static uint16_t nvme_sqid(NvmeRequest *req) { return le16_to_cpu(req->sq->sqid); } static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone, NvmeZoneState state) { if (QTAILQ_IN_USE(zone, entry)) { switch (nvme_get_zone_state(zone)) { case NVME_ZONE_STATE_EXPLICITLY_OPEN: QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry); break; case NVME_ZONE_STATE_IMPLICITLY_OPEN: QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); break; case NVME_ZONE_STATE_CLOSED: QTAILQ_REMOVE(&ns->closed_zones, zone, entry); break; case NVME_ZONE_STATE_FULL: QTAILQ_REMOVE(&ns->full_zones, zone, entry); default: ; } } nvme_set_zone_state(zone, state); switch (state) { case NVME_ZONE_STATE_EXPLICITLY_OPEN: QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry); break; case NVME_ZONE_STATE_IMPLICITLY_OPEN: QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry); break; case NVME_ZONE_STATE_CLOSED: QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry); break; case NVME_ZONE_STATE_FULL: QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry); case NVME_ZONE_STATE_READ_ONLY: break; default: zone->d.za = 0; } } /* * Check if we can open a zone without exceeding open/active limits. * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5). */ static int nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn) { if (ns->params.max_active_zones != 0 && ns->nr_active_zones + act > ns->params.max_active_zones) { trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones); return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR; } if (ns->params.max_open_zones != 0 && ns->nr_open_zones + opn > ns->params.max_open_zones) { trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones); return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR; } return NVME_SUCCESS; } static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr) { hwaddr hi, lo; if (!n->cmb.cmse) { return false; } lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; hi = lo + int128_get64(n->cmb.mem.size); return addr >= lo && addr < hi; } static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr) { hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; return &n->cmb.buf[addr - base]; } static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr) { hwaddr hi; if (!n->pmr.cmse) { return false; } hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size); return addr >= n->pmr.cba && addr < hi; } static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr) { return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba); } static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) { hwaddr hi = addr + size - 1; if (hi < addr) { return 1; } if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { memcpy(buf, nvme_addr_to_cmb(n, addr), size); return 0; } if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { memcpy(buf, nvme_addr_to_pmr(n, addr), size); return 0; } return pci_dma_read(&n->parent_obj, addr, buf, size); } static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid) { return nsid && (nsid == NVME_NSID_BROADCAST || nsid <= n->num_namespaces); } static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid) { return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1; } static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid) { return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1; } static void nvme_inc_cq_tail(NvmeCQueue *cq) { cq->tail++; if (cq->tail >= cq->size) { cq->tail = 0; cq->phase = !cq->phase; } } static void nvme_inc_sq_head(NvmeSQueue *sq) { sq->head = (sq->head + 1) % sq->size; } static uint8_t nvme_cq_full(NvmeCQueue *cq) { return (cq->tail + 1) % cq->size == cq->head; } static uint8_t nvme_sq_empty(NvmeSQueue *sq) { return sq->head == sq->tail; } static void nvme_irq_check(NvmeCtrl *n) { if (msix_enabled(&(n->parent_obj))) { return; } if (~n->bar.intms & n->irq_status) { pci_irq_assert(&n->parent_obj); } else { pci_irq_deassert(&n->parent_obj); } } static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq) { if (cq->irq_enabled) { if (msix_enabled(&(n->parent_obj))) { trace_pci_nvme_irq_msix(cq->vector); msix_notify(&(n->parent_obj), cq->vector); } else { trace_pci_nvme_irq_pin(); assert(cq->vector < 32); n->irq_status |= 1 << cq->vector; nvme_irq_check(n); } } else { trace_pci_nvme_irq_masked(); } } static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq) { if (cq->irq_enabled) { if (msix_enabled(&(n->parent_obj))) { return; } else { assert(cq->vector < 32); n->irq_status &= ~(1 << cq->vector); nvme_irq_check(n); } } } static void nvme_req_clear(NvmeRequest *req) { req->ns = NULL; req->opaque = NULL; memset(&req->cqe, 0x0, sizeof(req->cqe)); req->status = NVME_SUCCESS; } static void nvme_req_exit(NvmeRequest *req) { if (req->qsg.sg) { qemu_sglist_destroy(&req->qsg); } if (req->iov.iov) { qemu_iovec_destroy(&req->iov); } } static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, size_t len) { if (!len) { return NVME_SUCCESS; } trace_pci_nvme_map_addr_cmb(addr, len); if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) { return NVME_DATA_TRAS_ERROR; } qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len); return NVME_SUCCESS; } static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, size_t len) { if (!len) { return NVME_SUCCESS; } if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) { return NVME_DATA_TRAS_ERROR; } qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len); return NVME_SUCCESS; } static uint16_t nvme_map_addr(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov, hwaddr addr, size_t len) { bool cmb = false, pmr = false; if (!len) { return NVME_SUCCESS; } trace_pci_nvme_map_addr(addr, len); if (nvme_addr_is_cmb(n, addr)) { cmb = true; } else if (nvme_addr_is_pmr(n, addr)) { pmr = true; } if (cmb || pmr) { if (qsg && qsg->sg) { return NVME_INVALID_USE_OF_CMB | NVME_DNR; } assert(iov); if (!iov->iov) { qemu_iovec_init(iov, 1); } if (cmb) { return nvme_map_addr_cmb(n, iov, addr, len); } else { return nvme_map_addr_pmr(n, iov, addr, len); } } if (iov && iov->iov) { return NVME_INVALID_USE_OF_CMB | NVME_DNR; } assert(qsg); if (!qsg->sg) { pci_dma_sglist_init(qsg, &n->parent_obj, 1); } qemu_sglist_add(qsg, addr, len); return NVME_SUCCESS; } static uint16_t nvme_map_prp(NvmeCtrl *n, uint64_t prp1, uint64_t prp2, uint32_t len, NvmeRequest *req) { hwaddr trans_len = n->page_size - (prp1 % n->page_size); trans_len = MIN(len, trans_len); int num_prps = (len >> n->page_bits) + 1; uint16_t status; int ret; QEMUSGList *qsg = &req->qsg; QEMUIOVector *iov = &req->iov; trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps); if (nvme_addr_is_cmb(n, prp1) || (nvme_addr_is_pmr(n, prp1))) { qemu_iovec_init(iov, num_prps); } else { pci_dma_sglist_init(qsg, &n->parent_obj, num_prps); } status = nvme_map_addr(n, qsg, iov, prp1, trans_len); if (status) { return status; } len -= trans_len; if (len) { if (len > n->page_size) { uint64_t prp_list[n->max_prp_ents]; uint32_t nents, prp_trans; int i = 0; nents = (len + n->page_size - 1) >> n->page_bits; prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans); if (ret) { trace_pci_nvme_err_addr_read(prp2); return NVME_DATA_TRAS_ERROR; } while (len != 0) { uint64_t prp_ent = le64_to_cpu(prp_list[i]); if (i == n->max_prp_ents - 1 && len > n->page_size) { if (unlikely(prp_ent & (n->page_size - 1))) { trace_pci_nvme_err_invalid_prplist_ent(prp_ent); return NVME_INVALID_PRP_OFFSET | NVME_DNR; } i = 0; nents = (len + n->page_size - 1) >> n->page_bits; prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); ret = nvme_addr_read(n, prp_ent, (void *)prp_list, prp_trans); if (ret) { trace_pci_nvme_err_addr_read(prp_ent); return NVME_DATA_TRAS_ERROR; } prp_ent = le64_to_cpu(prp_list[i]); } if (unlikely(prp_ent & (n->page_size - 1))) { trace_pci_nvme_err_invalid_prplist_ent(prp_ent); return NVME_INVALID_PRP_OFFSET | NVME_DNR; } trans_len = MIN(len, n->page_size); status = nvme_map_addr(n, qsg, iov, prp_ent, trans_len); if (status) { return status; } len -= trans_len; i++; } } else { if (unlikely(prp2 & (n->page_size - 1))) { trace_pci_nvme_err_invalid_prp2_align(prp2); return NVME_INVALID_PRP_OFFSET | NVME_DNR; } status = nvme_map_addr(n, qsg, iov, prp2, len); if (status) { return status; } } } return NVME_SUCCESS; } /* * Map 'nsgld' data descriptors from 'segment'. The function will subtract the * number of bytes mapped in len. */ static uint16_t nvme_map_sgl_data(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov, NvmeSglDescriptor *segment, uint64_t nsgld, size_t *len, NvmeRequest *req) { dma_addr_t addr, trans_len; uint32_t dlen; uint16_t status; for (int i = 0; i < nsgld; i++) { uint8_t type = NVME_SGL_TYPE(segment[i].type); switch (type) { case NVME_SGL_DESCR_TYPE_BIT_BUCKET: if (req->cmd.opcode == NVME_CMD_WRITE) { continue; } case NVME_SGL_DESCR_TYPE_DATA_BLOCK: break; case NVME_SGL_DESCR_TYPE_SEGMENT: case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR; default: return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR; } dlen = le32_to_cpu(segment[i].len); if (!dlen) { continue; } if (*len == 0) { /* * All data has been mapped, but the SGL contains additional * segments and/or descriptors. The controller might accept * ignoring the rest of the SGL. */ uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls); if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) { break; } trace_pci_nvme_err_invalid_sgl_excess_length(nvme_cid(req)); return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; } trans_len = MIN(*len, dlen); if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) { goto next; } addr = le64_to_cpu(segment[i].addr); if (UINT64_MAX - addr < dlen) { return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; } status = nvme_map_addr(n, qsg, iov, addr, trans_len); if (status) { return status; } next: *len -= trans_len; } return NVME_SUCCESS; } static uint16_t nvme_map_sgl(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov, NvmeSglDescriptor sgl, size_t len, NvmeRequest *req) { /* * Read the segment in chunks of 256 descriptors (one 4k page) to avoid * dynamically allocating a potentially huge SGL. The spec allows the SGL * to be larger (as in number of bytes required to describe the SGL * descriptors and segment chain) than the command transfer size, so it is * not bounded by MDTS. */ const int SEG_CHUNK_SIZE = 256; NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld; uint64_t nsgld; uint32_t seg_len; uint16_t status; hwaddr addr; int ret; sgld = &sgl; addr = le64_to_cpu(sgl.addr); trace_pci_nvme_map_sgl(nvme_cid(req), NVME_SGL_TYPE(sgl.type), len); /* * If the entire transfer can be described with a single data block it can * be mapped directly. */ if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { status = nvme_map_sgl_data(n, qsg, iov, sgld, 1, &len, req); if (status) { goto unmap; } goto out; } for (;;) { switch (NVME_SGL_TYPE(sgld->type)) { case NVME_SGL_DESCR_TYPE_SEGMENT: case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: break; default: return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; } seg_len = le32_to_cpu(sgld->len); /* check the length of the (Last) Segment descriptor */ if ((!seg_len || seg_len & 0xf) && (NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) { return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; } if (UINT64_MAX - addr < seg_len) { return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; } nsgld = seg_len / sizeof(NvmeSglDescriptor); while (nsgld > SEG_CHUNK_SIZE) { if (nvme_addr_read(n, addr, segment, sizeof(segment))) { trace_pci_nvme_err_addr_read(addr); status = NVME_DATA_TRAS_ERROR; goto unmap; } status = nvme_map_sgl_data(n, qsg, iov, segment, SEG_CHUNK_SIZE, &len, req); if (status) { goto unmap; } nsgld -= SEG_CHUNK_SIZE; addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor); } ret = nvme_addr_read(n, addr, segment, nsgld * sizeof(NvmeSglDescriptor)); if (ret) { trace_pci_nvme_err_addr_read(addr); status = NVME_DATA_TRAS_ERROR; goto unmap; } last_sgld = &segment[nsgld - 1]; /* * If the segment ends with a Data Block or Bit Bucket Descriptor Type, * then we are done. */ switch (NVME_SGL_TYPE(last_sgld->type)) { case NVME_SGL_DESCR_TYPE_DATA_BLOCK: case NVME_SGL_DESCR_TYPE_BIT_BUCKET: status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld, &len, req); if (status) { goto unmap; } goto out; default: break; } /* * If the last descriptor was not a Data Block or Bit Bucket, then the * current segment must not be a Last Segment. */ if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) { status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; goto unmap; } sgld = last_sgld; addr = le64_to_cpu(sgld->addr); /* * Do not map the last descriptor; it will be a Segment or Last Segment * descriptor and is handled by the next iteration. */ status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld - 1, &len, req); if (status) { goto unmap; } } out: /* if there is any residual left in len, the SGL was too short */ if (len) { status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR; goto unmap; } return NVME_SUCCESS; unmap: if (iov->iov) { qemu_iovec_destroy(iov); } if (qsg->sg) { qemu_sglist_destroy(qsg); } return status; } static uint16_t nvme_map_dptr(NvmeCtrl *n, size_t len, NvmeRequest *req) { uint64_t prp1, prp2; switch (NVME_CMD_FLAGS_PSDT(req->cmd.flags)) { case NVME_PSDT_PRP: prp1 = le64_to_cpu(req->cmd.dptr.prp1); prp2 = le64_to_cpu(req->cmd.dptr.prp2); return nvme_map_prp(n, prp1, prp2, len, req); case NVME_PSDT_SGL_MPTR_CONTIGUOUS: case NVME_PSDT_SGL_MPTR_SGL: /* SGLs shall not be used for Admin commands in NVMe over PCIe */ if (!req->sq->sqid) { return NVME_INVALID_FIELD | NVME_DNR; } return nvme_map_sgl(n, &req->qsg, &req->iov, req->cmd.dptr.sgl, len, req); default: return NVME_INVALID_FIELD; } } static uint16_t nvme_dma(NvmeCtrl *n, uint8_t *ptr, uint32_t len, DMADirection dir, NvmeRequest *req) { uint16_t status = NVME_SUCCESS; status = nvme_map_dptr(n, len, req); if (status) { return status; } /* assert that only one of qsg and iov carries data */ assert((req->qsg.nsg > 0) != (req->iov.niov > 0)); if (req->qsg.nsg > 0) { uint64_t residual; if (dir == DMA_DIRECTION_TO_DEVICE) { residual = dma_buf_write(ptr, len, &req->qsg); } else { residual = dma_buf_read(ptr, len, &req->qsg); } if (unlikely(residual)) { trace_pci_nvme_err_invalid_dma(); status = NVME_INVALID_FIELD | NVME_DNR; } } else { size_t bytes; if (dir == DMA_DIRECTION_TO_DEVICE) { bytes = qemu_iovec_to_buf(&req->iov, 0, ptr, len); } else { bytes = qemu_iovec_from_buf(&req->iov, 0, ptr, len); } if (unlikely(bytes != len)) { trace_pci_nvme_err_invalid_dma(); status = NVME_INVALID_FIELD | NVME_DNR; } } return status; } static void nvme_post_cqes(void *opaque) { NvmeCQueue *cq = opaque; NvmeCtrl *n = cq->ctrl; NvmeRequest *req, *next; int ret; QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) { NvmeSQueue *sq; hwaddr addr; if (nvme_cq_full(cq)) { break; } sq = req->sq; req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase); req->cqe.sq_id = cpu_to_le16(sq->sqid); req->cqe.sq_head = cpu_to_le16(sq->head); addr = cq->dma_addr + cq->tail * n->cqe_size; ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe, sizeof(req->cqe)); if (ret) { trace_pci_nvme_err_addr_write(addr); trace_pci_nvme_err_cfs(); n->bar.csts = NVME_CSTS_FAILED; break; } QTAILQ_REMOVE(&cq->req_list, req, entry); nvme_inc_cq_tail(cq); nvme_req_exit(req); QTAILQ_INSERT_TAIL(&sq->req_list, req, entry); } if (cq->tail != cq->head) { nvme_irq_assert(n, cq); } } static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req) { assert(cq->cqid == req->sq->cqid); trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid, req->status); if (req->status) { trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns), req->status, req->cmd.opcode); } QTAILQ_REMOVE(&req->sq->out_req_list, req, entry); QTAILQ_INSERT_TAIL(&cq->req_list, req, entry); timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); } static void nvme_process_aers(void *opaque) { NvmeCtrl *n = opaque; NvmeAsyncEvent *event, *next; trace_pci_nvme_process_aers(n->aer_queued); QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) { NvmeRequest *req; NvmeAerResult *result; /* can't post cqe if there is nothing to complete */ if (!n->outstanding_aers) { trace_pci_nvme_no_outstanding_aers(); break; } /* ignore if masked (cqe posted, but event not cleared) */ if (n->aer_mask & (1 << event->result.event_type)) { trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask); continue; } QTAILQ_REMOVE(&n->aer_queue, event, entry); n->aer_queued--; n->aer_mask |= 1 << event->result.event_type; n->outstanding_aers--; req = n->aer_reqs[n->outstanding_aers]; result = (NvmeAerResult *) &req->cqe.result; result->event_type = event->result.event_type; result->event_info = event->result.event_info; result->log_page = event->result.log_page; g_free(event); trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info, result->log_page); nvme_enqueue_req_completion(&n->admin_cq, req); } } static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type, uint8_t event_info, uint8_t log_page) { NvmeAsyncEvent *event; trace_pci_nvme_enqueue_event(event_type, event_info, log_page); if (n->aer_queued == n->params.aer_max_queued) { trace_pci_nvme_enqueue_event_noqueue(n->aer_queued); return; } event = g_new(NvmeAsyncEvent, 1); event->result = (NvmeAerResult) { .event_type = event_type, .event_info = event_info, .log_page = log_page, }; QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry); n->aer_queued++; nvme_process_aers(n); } static void nvme_smart_event(NvmeCtrl *n, uint8_t event) { uint8_t aer_info; /* Ref SPEC */ if (!(NVME_AEC_SMART(n->features.async_config) & event)) { return; } switch (event) { case NVME_SMART_SPARE: aer_info = NVME_AER_INFO_SMART_SPARE_THRESH; break; case NVME_SMART_TEMPERATURE: aer_info = NVME_AER_INFO_SMART_TEMP_THRESH; break; case NVME_SMART_RELIABILITY: case NVME_SMART_MEDIA_READ_ONLY: case NVME_SMART_FAILED_VOLATILE_MEDIA: case NVME_SMART_PMR_UNRELIABLE: aer_info = NVME_AER_INFO_SMART_RELIABILITY; break; default: return; } nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO); } static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type) { n->aer_mask &= ~(1 << event_type); if (!QTAILQ_EMPTY(&n->aer_queue)) { nvme_process_aers(n); } } static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len) { uint8_t mdts = n->params.mdts; if (mdts && len > n->page_size << mdts) { trace_pci_nvme_err_mdts(len); return NVME_INVALID_FIELD | NVME_DNR; } return NVME_SUCCESS; } static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba, uint32_t nlb) { uint64_t nsze = le64_to_cpu(ns->id_ns.nsze); if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) { return NVME_LBA_RANGE | NVME_DNR; } return NVME_SUCCESS; } static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba, uint32_t nlb) { BlockDriverState *bs = blk_bs(ns->blkconf.blk); int64_t pnum = 0, bytes = nvme_l2b(ns, nlb); int64_t offset = nvme_l2b(ns, slba); bool zeroed; int ret; Error *local_err = NULL; /* * `pnum` holds the number of bytes after offset that shares the same * allocation status as the byte at offset. If `pnum` is different from * `bytes`, we should check the allocation status of the next range and * continue this until all bytes have been checked. */ do { bytes -= pnum; ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL); if (ret < 0) { error_setg_errno(&local_err, -ret, "unable to get block status"); error_report_err(local_err); return NVME_INTERNAL_DEV_ERROR; } zeroed = !!(ret & BDRV_BLOCK_ZERO); trace_pci_nvme_block_status(offset, bytes, pnum, ret, zeroed); if (zeroed) { return NVME_DULB; } offset += pnum; } while (pnum != bytes); return NVME_SUCCESS; } static void nvme_aio_err(NvmeRequest *req, int ret) { uint16_t status = NVME_SUCCESS; Error *local_err = NULL; switch (req->cmd.opcode) { case NVME_CMD_READ: status = NVME_UNRECOVERED_READ; break; case NVME_CMD_FLUSH: case NVME_CMD_WRITE: case NVME_CMD_WRITE_ZEROES: case NVME_CMD_ZONE_APPEND: status = NVME_WRITE_FAULT; break; default: status = NVME_INTERNAL_DEV_ERROR; break; } trace_pci_nvme_err_aio(nvme_cid(req), strerror(ret), status); error_setg_errno(&local_err, -ret, "aio failed"); error_report_err(local_err); /* * Set the command status code to the first encountered error but allow a * subsequent Internal Device Error to trump it. */ if (req->status && status != NVME_INTERNAL_DEV_ERROR) { return; } req->status = status; } static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba) { return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 : slba / ns->zone_size; } static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba) { uint32_t zone_idx = nvme_zone_idx(ns, slba); assert(zone_idx < ns->num_zones); return &ns->zone_array[zone_idx]; } static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone) { uint64_t zslba = zone->d.zslba; switch (nvme_get_zone_state(zone)) { case NVME_ZONE_STATE_EMPTY: case NVME_ZONE_STATE_IMPLICITLY_OPEN: case NVME_ZONE_STATE_EXPLICITLY_OPEN: case NVME_ZONE_STATE_CLOSED: return NVME_SUCCESS; case NVME_ZONE_STATE_FULL: trace_pci_nvme_err_zone_is_full(zslba); return NVME_ZONE_FULL; case NVME_ZONE_STATE_OFFLINE: trace_pci_nvme_err_zone_is_offline(zslba); return NVME_ZONE_OFFLINE; case NVME_ZONE_STATE_READ_ONLY: trace_pci_nvme_err_zone_is_read_only(zslba); return NVME_ZONE_READ_ONLY; default: assert(false); } return NVME_INTERNAL_DEV_ERROR; } static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone, uint64_t slba, uint32_t nlb) { uint64_t zcap = nvme_zone_wr_boundary(zone); uint16_t status; status = nvme_check_zone_state_for_write(zone); if (status) { return status; } if (unlikely(slba != zone->w_ptr)) { trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, zone->w_ptr); return NVME_ZONE_INVALID_WRITE; } if (unlikely((slba + nlb) > zcap)) { trace_pci_nvme_err_zone_boundary(slba, nlb, zcap); return NVME_ZONE_BOUNDARY_ERROR; } return NVME_SUCCESS; } static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone) { switch (nvme_get_zone_state(zone)) { case NVME_ZONE_STATE_EMPTY: case NVME_ZONE_STATE_IMPLICITLY_OPEN: case NVME_ZONE_STATE_EXPLICITLY_OPEN: case NVME_ZONE_STATE_FULL: case NVME_ZONE_STATE_CLOSED: case NVME_ZONE_STATE_READ_ONLY: return NVME_SUCCESS; case NVME_ZONE_STATE_OFFLINE: trace_pci_nvme_err_zone_is_offline(zone->d.zslba); return NVME_ZONE_OFFLINE; default: assert(false); } return NVME_INTERNAL_DEV_ERROR; } static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba, uint32_t nlb) { NvmeZone *zone = nvme_get_zone_by_slba(ns, slba); uint64_t bndry = nvme_zone_rd_boundary(ns, zone); uint64_t end = slba + nlb; uint16_t status; status = nvme_check_zone_state_for_read(zone); if (status) { ; } else if (unlikely(end > bndry)) { if (!ns->params.cross_zone_read) { status = NVME_ZONE_BOUNDARY_ERROR; } else { /* * Read across zone boundary - check that all subsequent * zones that are being read have an appropriate state. */ do { zone++; status = nvme_check_zone_state_for_read(zone); if (status) { break; } } while (end > nvme_zone_rd_boundary(ns, zone)); } } return status; } static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone) { switch (nvme_get_zone_state(zone)) { case NVME_ZONE_STATE_FULL: return NVME_SUCCESS; case NVME_ZONE_STATE_IMPLICITLY_OPEN: case NVME_ZONE_STATE_EXPLICITLY_OPEN: nvme_aor_dec_open(ns); /* fallthrough */ case NVME_ZONE_STATE_CLOSED: nvme_aor_dec_active(ns); /* fallthrough */ case NVME_ZONE_STATE_EMPTY: nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL); return NVME_SUCCESS; default: return NVME_ZONE_INVAL_TRANSITION; } } static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone) { switch (nvme_get_zone_state(zone)) { case NVME_ZONE_STATE_EXPLICITLY_OPEN: case NVME_ZONE_STATE_IMPLICITLY_OPEN: nvme_aor_dec_open(ns); nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); /* fall through */ case NVME_ZONE_STATE_CLOSED: return NVME_SUCCESS; default: return NVME_ZONE_INVAL_TRANSITION; } } static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns) { NvmeZone *zone; if (ns->params.max_open_zones && ns->nr_open_zones == ns->params.max_open_zones) { zone = QTAILQ_FIRST(&ns->imp_open_zones); if (zone) { /* * Automatically close this implicitly open zone. */ QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); nvme_zrm_close(ns, zone); } } } static uint16_t __nvme_zrm_open(NvmeNamespace *ns, NvmeZone *zone, bool implicit) { int act = 0; uint16_t status; switch (nvme_get_zone_state(zone)) { case NVME_ZONE_STATE_EMPTY: act = 1; /* fallthrough */ case NVME_ZONE_STATE_CLOSED: nvme_zrm_auto_transition_zone(ns); status = nvme_aor_check(ns, act, 1); if (status) { return status; } if (act) { nvme_aor_inc_active(ns); } nvme_aor_inc_open(ns); if (implicit) { nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN); return NVME_SUCCESS; } /* fallthrough */ case NVME_ZONE_STATE_IMPLICITLY_OPEN: if (implicit) { return NVME_SUCCESS; } nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN); /* fallthrough */ case NVME_ZONE_STATE_EXPLICITLY_OPEN: return NVME_SUCCESS; default: return NVME_ZONE_INVAL_TRANSITION; } } static inline uint16_t nvme_zrm_auto(NvmeNamespace *ns, NvmeZone *zone) { return __nvme_zrm_open(ns, zone, true); } static inline uint16_t nvme_zrm_open(NvmeNamespace *ns, NvmeZone *zone) { return __nvme_zrm_open(ns, zone, false); } static void __nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone, uint32_t nlb) { zone->d.wp += nlb; if (zone->d.wp == nvme_zone_wr_boundary(zone)) { nvme_zrm_finish(ns, zone); } } static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req) { NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; NvmeZone *zone; uint64_t slba; uint32_t nlb; slba = le64_to_cpu(rw->slba); nlb = le16_to_cpu(rw->nlb) + 1; zone = nvme_get_zone_by_slba(ns, slba); __nvme_advance_zone_wp(ns, zone, nlb); } static inline bool nvme_is_write(NvmeRequest *req) { NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; return rw->opcode == NVME_CMD_WRITE || rw->opcode == NVME_CMD_ZONE_APPEND || rw->opcode == NVME_CMD_WRITE_ZEROES; } static void nvme_rw_cb(void *opaque, int ret) { NvmeRequest *req = opaque; NvmeNamespace *ns = req->ns; BlockBackend *blk = ns->blkconf.blk; BlockAcctCookie *acct = &req->acct; BlockAcctStats *stats = blk_get_stats(blk); trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk)); if (ns->params.zoned && nvme_is_write(req)) { nvme_finalize_zoned_write(ns, req); } if (!ret) { block_acct_done(stats, acct); } else { block_acct_failed(stats, acct); nvme_aio_err(req, ret); } nvme_enqueue_req_completion(nvme_cq(req), req); } struct nvme_aio_flush_ctx { NvmeRequest *req; NvmeNamespace *ns; BlockAcctCookie acct; }; static void nvme_aio_flush_cb(void *opaque, int ret) { struct nvme_aio_flush_ctx *ctx = opaque; NvmeRequest *req = ctx->req; uintptr_t *num_flushes = (uintptr_t *)&req->opaque; BlockBackend *blk = ctx->ns->blkconf.blk; BlockAcctCookie *acct = &ctx->acct; BlockAcctStats *stats = blk_get_stats(blk); trace_pci_nvme_aio_flush_cb(nvme_cid(req), blk_name(blk)); if (!ret) { block_acct_done(stats, acct); } else { block_acct_failed(stats, acct); nvme_aio_err(req, ret); } (*num_flushes)--; g_free(ctx); if (*num_flushes) { return; } nvme_enqueue_req_completion(nvme_cq(req), req); } static void nvme_aio_discard_cb(void *opaque, int ret) { NvmeRequest *req = opaque; uintptr_t *discards = (uintptr_t *)&req->opaque; trace_pci_nvme_aio_discard_cb(nvme_cid(req)); if (ret) { nvme_aio_err(req, ret); } (*discards)--; if (*discards) { return; } nvme_enqueue_req_completion(nvme_cq(req), req); } struct nvme_zone_reset_ctx { NvmeRequest *req; NvmeZone *zone; }; static void nvme_aio_zone_reset_cb(void *opaque, int ret) { struct nvme_zone_reset_ctx *ctx = opaque; NvmeRequest *req = ctx->req; NvmeNamespace *ns = req->ns; NvmeZone *zone = ctx->zone; uintptr_t *resets = (uintptr_t *)&req->opaque; g_free(ctx); trace_pci_nvme_aio_zone_reset_cb(nvme_cid(req), zone->d.zslba); if (!ret) { switch (nvme_get_zone_state(zone)) { case NVME_ZONE_STATE_EXPLICITLY_OPEN: case NVME_ZONE_STATE_IMPLICITLY_OPEN: nvme_aor_dec_open(ns); /* fall through */ case NVME_ZONE_STATE_CLOSED: nvme_aor_dec_active(ns); /* fall through */ case NVME_ZONE_STATE_FULL: zone->w_ptr = zone->d.zslba; zone->d.wp = zone->w_ptr; nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY); /* fall through */ default: break; } } else { nvme_aio_err(req, ret); } (*resets)--; if (*resets) { return; } nvme_enqueue_req_completion(nvme_cq(req), req); } struct nvme_copy_ctx { int copies; uint8_t *bounce; uint32_t nlb; }; struct nvme_copy_in_ctx { NvmeRequest *req; QEMUIOVector iov; }; static void nvme_copy_cb(void *opaque, int ret) { NvmeRequest *req = opaque; NvmeNamespace *ns = req->ns; struct nvme_copy_ctx *ctx = req->opaque; trace_pci_nvme_copy_cb(nvme_cid(req)); if (ns->params.zoned) { NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; uint64_t sdlba = le64_to_cpu(copy->sdlba); NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba); __nvme_advance_zone_wp(ns, zone, ctx->nlb); } if (!ret) { block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct); } else { block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct); nvme_aio_err(req, ret); } g_free(ctx->bounce); g_free(ctx); nvme_enqueue_req_completion(nvme_cq(req), req); } static void nvme_copy_in_complete(NvmeRequest *req) { NvmeNamespace *ns = req->ns; NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; struct nvme_copy_ctx *ctx = req->opaque; uint64_t sdlba = le64_to_cpu(copy->sdlba); uint16_t status; trace_pci_nvme_copy_in_complete(nvme_cid(req)); block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct); status = nvme_check_bounds(ns, sdlba, ctx->nlb); if (status) { trace_pci_nvme_err_invalid_lba_range(sdlba, ctx->nlb, ns->id_ns.nsze); goto invalid; } if (ns->params.zoned) { NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba); status = nvme_check_zone_write(ns, zone, sdlba, ctx->nlb); if (status) { goto invalid; } status = nvme_zrm_auto(ns, zone); if (status) { goto invalid; } zone->w_ptr += ctx->nlb; } qemu_iovec_init(&req->iov, 1); qemu_iovec_add(&req->iov, ctx->bounce, nvme_l2b(ns, ctx->nlb)); block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0, BLOCK_ACCT_WRITE); req->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, sdlba), &req->iov, 0, nvme_copy_cb, req); return; invalid: req->status = status; g_free(ctx->bounce); g_free(ctx); nvme_enqueue_req_completion(nvme_cq(req), req); } static void nvme_aio_copy_in_cb(void *opaque, int ret) { struct nvme_copy_in_ctx *in_ctx = opaque; NvmeRequest *req = in_ctx->req; NvmeNamespace *ns = req->ns; struct nvme_copy_ctx *ctx = req->opaque; qemu_iovec_destroy(&in_ctx->iov); g_free(in_ctx); trace_pci_nvme_aio_copy_in_cb(nvme_cid(req)); if (ret) { nvme_aio_err(req, ret); } ctx->copies--; if (ctx->copies) { return; } if (req->status) { block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct); g_free(ctx->bounce); g_free(ctx); nvme_enqueue_req_completion(nvme_cq(req), req); return; } nvme_copy_in_complete(req); } struct nvme_compare_ctx { QEMUIOVector iov; uint8_t *bounce; size_t len; }; static void nvme_compare_cb(void *opaque, int ret) { NvmeRequest *req = opaque; NvmeNamespace *ns = req->ns; struct nvme_compare_ctx *ctx = req->opaque; g_autofree uint8_t *buf = NULL; uint16_t status; trace_pci_nvme_compare_cb(nvme_cid(req)); if (!ret) { block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct); } else { block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct); nvme_aio_err(req, ret); goto out; } buf = g_malloc(ctx->len); status = nvme_dma(nvme_ctrl(req), buf, ctx->len, DMA_DIRECTION_TO_DEVICE, req); if (status) { req->status = status; goto out; } if (memcmp(buf, ctx->bounce, ctx->len)) { req->status = NVME_CMP_FAILURE; } out: qemu_iovec_destroy(&ctx->iov); g_free(ctx->bounce); g_free(ctx); nvme_enqueue_req_completion(nvme_cq(req), req); } static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns = req->ns; NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd; uint32_t attr = le32_to_cpu(dsm->attributes); uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1; uint16_t status = NVME_SUCCESS; trace_pci_nvme_dsm(nvme_cid(req), nvme_nsid(ns), nr, attr); if (attr & NVME_DSMGMT_AD) { int64_t offset; size_t len; NvmeDsmRange range[nr]; uintptr_t *discards = (uintptr_t *)&req->opaque; status = nvme_dma(n, (uint8_t *)range, sizeof(range), DMA_DIRECTION_TO_DEVICE, req); if (status) { return status; } /* * AIO callbacks may be called immediately, so initialize discards to 1 * to make sure the the callback does not complete the request before * all discards have been issued. */ *discards = 1; for (int i = 0; i < nr; i++) { uint64_t slba = le64_to_cpu(range[i].slba); uint32_t nlb = le32_to_cpu(range[i].nlb); if (nvme_check_bounds(ns, slba, nlb)) { trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze); continue; } trace_pci_nvme_dsm_deallocate(nvme_cid(req), nvme_nsid(ns), slba, nlb); if (nlb > n->dmrsl) { trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl); } offset = nvme_l2b(ns, slba); len = nvme_l2b(ns, nlb); while (len) { size_t bytes = MIN(BDRV_REQUEST_MAX_BYTES, len); (*discards)++; blk_aio_pdiscard(ns->blkconf.blk, offset, bytes, nvme_aio_discard_cb, req); offset += bytes; len -= bytes; } } /* account for the 1-initialization */ (*discards)--; if (*discards) { status = NVME_NO_COMPLETE; } else { status = req->status; } } return status; } static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns = req->ns; NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; g_autofree NvmeCopySourceRange *range = NULL; uint16_t nr = copy->nr + 1; uint8_t format = copy->control[0] & 0xf; uint32_t nlb = 0; uint8_t *bounce = NULL, *bouncep = NULL; struct nvme_copy_ctx *ctx; uint16_t status; int i; trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format); if (!(n->id_ctrl.ocfs & (1 << format))) { trace_pci_nvme_err_copy_invalid_format(format); return NVME_INVALID_FIELD | NVME_DNR; } if (nr > ns->id_ns.msrc + 1) { return NVME_CMD_SIZE_LIMIT | NVME_DNR; } range = g_new(NvmeCopySourceRange, nr); status = nvme_dma(n, (uint8_t *)range, nr * sizeof(NvmeCopySourceRange), DMA_DIRECTION_TO_DEVICE, req); if (status) { return status; } for (i = 0; i < nr; i++) { uint64_t slba = le64_to_cpu(range[i].slba); uint32_t _nlb = le16_to_cpu(range[i].nlb) + 1; if (_nlb > le16_to_cpu(ns->id_ns.mssrl)) { return NVME_CMD_SIZE_LIMIT | NVME_DNR; } status = nvme_check_bounds(ns, slba, _nlb); if (status) { trace_pci_nvme_err_invalid_lba_range(slba, _nlb, ns->id_ns.nsze); return status; } if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { status = nvme_check_dulbe(ns, slba, _nlb); if (status) { return status; } } if (ns->params.zoned) { status = nvme_check_zone_read(ns, slba, _nlb); if (status) { return status; } } nlb += _nlb; } if (nlb > le32_to_cpu(ns->id_ns.mcl)) { return NVME_CMD_SIZE_LIMIT | NVME_DNR; } bounce = bouncep = g_malloc(nvme_l2b(ns, nlb)); block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0, BLOCK_ACCT_READ); ctx = g_new(struct nvme_copy_ctx, 1); ctx->bounce = bounce; ctx->nlb = nlb; ctx->copies = 1; req->opaque = ctx; for (i = 0; i < nr; i++) { uint64_t slba = le64_to_cpu(range[i].slba); uint32_t nlb = le16_to_cpu(range[i].nlb) + 1; size_t len = nvme_l2b(ns, nlb); int64_t offset = nvme_l2b(ns, slba); trace_pci_nvme_copy_source_range(slba, nlb); struct nvme_copy_in_ctx *in_ctx = g_new(struct nvme_copy_in_ctx, 1); in_ctx->req = req; qemu_iovec_init(&in_ctx->iov, 1); qemu_iovec_add(&in_ctx->iov, bouncep, len); ctx->copies++; blk_aio_preadv(ns->blkconf.blk, offset, &in_ctx->iov, 0, nvme_aio_copy_in_cb, in_ctx); bouncep += len; } /* account for the 1-initialization */ ctx->copies--; if (!ctx->copies) { nvme_copy_in_complete(req); } return NVME_NO_COMPLETE; } static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req) { NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; NvmeNamespace *ns = req->ns; BlockBackend *blk = ns->blkconf.blk; uint64_t slba = le64_to_cpu(rw->slba); uint32_t nlb = le16_to_cpu(rw->nlb) + 1; size_t len = nvme_l2b(ns, nlb); int64_t offset = nvme_l2b(ns, slba); uint8_t *bounce = NULL; struct nvme_compare_ctx *ctx = NULL; uint16_t status; trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb); status = nvme_check_mdts(n, len); if (status) { return status; } status = nvme_check_bounds(ns, slba, nlb); if (status) { trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze); return status; } if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { status = nvme_check_dulbe(ns, slba, nlb); if (status) { return status; } } bounce = g_malloc(len); ctx = g_new(struct nvme_compare_ctx, 1); ctx->bounce = bounce; ctx->len = len; req->opaque = ctx; qemu_iovec_init(&ctx->iov, 1); qemu_iovec_add(&ctx->iov, bounce, len); block_acct_start(blk_get_stats(blk), &req->acct, len, BLOCK_ACCT_READ); blk_aio_preadv(blk, offset, &ctx->iov, 0, nvme_compare_cb, req); return NVME_NO_COMPLETE; } static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req) { uint32_t nsid = le32_to_cpu(req->cmd.nsid); uintptr_t *num_flushes = (uintptr_t *)&req->opaque; uint16_t status; struct nvme_aio_flush_ctx *ctx; NvmeNamespace *ns; trace_pci_nvme_flush(nvme_cid(req), nsid); if (nsid != NVME_NSID_BROADCAST) { req->ns = nvme_ns(n, nsid); if (unlikely(!req->ns)) { return NVME_INVALID_FIELD | NVME_DNR; } block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0, BLOCK_ACCT_FLUSH); req->aiocb = blk_aio_flush(req->ns->blkconf.blk, nvme_rw_cb, req); return NVME_NO_COMPLETE; } /* 1-initialize; see comment in nvme_dsm */ *num_flushes = 1; for (int i = 1; i <= n->num_namespaces; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } ctx = g_new(struct nvme_aio_flush_ctx, 1); ctx->req = req; ctx->ns = ns; (*num_flushes)++; block_acct_start(blk_get_stats(ns->blkconf.blk), &ctx->acct, 0, BLOCK_ACCT_FLUSH); blk_aio_flush(ns->blkconf.blk, nvme_aio_flush_cb, ctx); } /* account for the 1-initialization */ (*num_flushes)--; if (*num_flushes) { status = NVME_NO_COMPLETE; } else { status = req->status; } return status; } static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req) { NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; NvmeNamespace *ns = req->ns; uint64_t slba = le64_to_cpu(rw->slba); uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; uint64_t data_size = nvme_l2b(ns, nlb); uint64_t data_offset; BlockBackend *blk = ns->blkconf.blk; uint16_t status; trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, data_size, slba); status = nvme_check_mdts(n, data_size); if (status) { goto invalid; } status = nvme_check_bounds(ns, slba, nlb); if (status) { trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze); goto invalid; } if (ns->params.zoned) { status = nvme_check_zone_read(ns, slba, nlb); if (status) { trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status); goto invalid; } } status = nvme_map_dptr(n, data_size, req); if (status) { goto invalid; } if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { status = nvme_check_dulbe(ns, slba, nlb); if (status) { goto invalid; } } data_offset = nvme_l2b(ns, slba); block_acct_start(blk_get_stats(blk), &req->acct, data_size, BLOCK_ACCT_READ); if (req->qsg.sg) { req->aiocb = dma_blk_read(blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); } else { req->aiocb = blk_aio_preadv(blk, data_offset, &req->iov, 0, nvme_rw_cb, req); } return NVME_NO_COMPLETE; invalid: block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ); return status | NVME_DNR; } static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append, bool wrz) { NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; NvmeNamespace *ns = req->ns; uint64_t slba = le64_to_cpu(rw->slba); uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; uint64_t data_size = nvme_l2b(ns, nlb); uint64_t data_offset; NvmeZone *zone; NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe; BlockBackend *blk = ns->blkconf.blk; uint16_t status; trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode), nvme_nsid(ns), nlb, data_size, slba); if (!wrz) { status = nvme_check_mdts(n, data_size); if (status) { goto invalid; } } status = nvme_check_bounds(ns, slba, nlb); if (status) { trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze); goto invalid; } if (ns->params.zoned) { zone = nvme_get_zone_by_slba(ns, slba); if (append) { if (unlikely(slba != zone->d.zslba)) { trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba); status = NVME_INVALID_FIELD; goto invalid; } if (n->params.zasl && data_size > n->page_size << n->params.zasl) { trace_pci_nvme_err_zasl(data_size); return NVME_INVALID_FIELD | NVME_DNR; } slba = zone->w_ptr; res->slba = cpu_to_le64(slba); } status = nvme_check_zone_write(ns, zone, slba, nlb); if (status) { goto invalid; } status = nvme_zrm_auto(ns, zone); if (status) { goto invalid; } zone->w_ptr += nlb; } data_offset = nvme_l2b(ns, slba); if (!wrz) { status = nvme_map_dptr(n, data_size, req); if (status) { goto invalid; } block_acct_start(blk_get_stats(blk), &req->acct, data_size, BLOCK_ACCT_WRITE); if (req->qsg.sg) { req->aiocb = dma_blk_write(blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); } else { req->aiocb = blk_aio_pwritev(blk, data_offset, &req->iov, 0, nvme_rw_cb, req); } } else { block_acct_start(blk_get_stats(blk), &req->acct, 0, BLOCK_ACCT_WRITE); req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size, BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req); } return NVME_NO_COMPLETE; invalid: block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE); return status | NVME_DNR; } static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req) { return nvme_do_write(n, req, false, false); } static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req) { return nvme_do_write(n, req, false, true); } static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req) { return nvme_do_write(n, req, true, false); } static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c, uint64_t *slba, uint32_t *zone_idx) { uint32_t dw10 = le32_to_cpu(c->cdw10); uint32_t dw11 = le32_to_cpu(c->cdw11); if (!ns->params.zoned) { trace_pci_nvme_err_invalid_opc(c->opcode); return NVME_INVALID_OPCODE | NVME_DNR; } *slba = ((uint64_t)dw11) << 32 | dw10; if (unlikely(*slba >= ns->id_ns.nsze)) { trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze); *slba = 0; return NVME_LBA_RANGE | NVME_DNR; } *zone_idx = nvme_zone_idx(ns, *slba); assert(*zone_idx < ns->num_zones); return NVME_SUCCESS; } typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState, NvmeRequest *); enum NvmeZoneProcessingMask { NVME_PROC_CURRENT_ZONE = 0, NVME_PROC_OPENED_ZONES = 1 << 0, NVME_PROC_CLOSED_ZONES = 1 << 1, NVME_PROC_READ_ONLY_ZONES = 1 << 2, NVME_PROC_FULL_ZONES = 1 << 3, }; static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone, NvmeZoneState state, NvmeRequest *req) { return nvme_zrm_open(ns, zone); } static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone, NvmeZoneState state, NvmeRequest *req) { return nvme_zrm_close(ns, zone); } static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone, NvmeZoneState state, NvmeRequest *req) { return nvme_zrm_finish(ns, zone); } static uint16_t nvme_reset_zone(NvmeNamespace *ns, NvmeZone *zone, NvmeZoneState state, NvmeRequest *req) { uintptr_t *resets = (uintptr_t *)&req->opaque; struct nvme_zone_reset_ctx *ctx; switch (state) { case NVME_ZONE_STATE_EMPTY: return NVME_SUCCESS; case NVME_ZONE_STATE_EXPLICITLY_OPEN: case NVME_ZONE_STATE_IMPLICITLY_OPEN: case NVME_ZONE_STATE_CLOSED: case NVME_ZONE_STATE_FULL: break; default: return NVME_ZONE_INVAL_TRANSITION; } /* * The zone reset aio callback needs to know the zone that is being reset * in order to transition the zone on completion. */ ctx = g_new(struct nvme_zone_reset_ctx, 1); ctx->req = req; ctx->zone = zone; (*resets)++; blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_l2b(ns, zone->d.zslba), nvme_l2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP, nvme_aio_zone_reset_cb, ctx); return NVME_NO_COMPLETE; } static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone, NvmeZoneState state, NvmeRequest *req) { switch (state) { case NVME_ZONE_STATE_READ_ONLY: nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE); /* fall through */ case NVME_ZONE_STATE_OFFLINE: return NVME_SUCCESS; default: return NVME_ZONE_INVAL_TRANSITION; } } static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone) { uint16_t status; uint8_t state = nvme_get_zone_state(zone); if (state == NVME_ZONE_STATE_EMPTY) { status = nvme_aor_check(ns, 1, 0); if (status) { return status; } nvme_aor_inc_active(ns); zone->d.za |= NVME_ZA_ZD_EXT_VALID; nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); return NVME_SUCCESS; } return NVME_ZONE_INVAL_TRANSITION; } static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone, enum NvmeZoneProcessingMask proc_mask, op_handler_t op_hndlr, NvmeRequest *req) { uint16_t status = NVME_SUCCESS; NvmeZoneState zs = nvme_get_zone_state(zone); bool proc_zone; switch (zs) { case NVME_ZONE_STATE_IMPLICITLY_OPEN: case NVME_ZONE_STATE_EXPLICITLY_OPEN: proc_zone = proc_mask & NVME_PROC_OPENED_ZONES; break; case NVME_ZONE_STATE_CLOSED: proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES; break; case NVME_ZONE_STATE_READ_ONLY: proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES; break; case NVME_ZONE_STATE_FULL: proc_zone = proc_mask & NVME_PROC_FULL_ZONES; break; default: proc_zone = false; } if (proc_zone) { status = op_hndlr(ns, zone, zs, req); } return status; } static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone, enum NvmeZoneProcessingMask proc_mask, op_handler_t op_hndlr, NvmeRequest *req) { NvmeZone *next; uint16_t status = NVME_SUCCESS; int i; if (!proc_mask) { status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req); } else { if (proc_mask & NVME_PROC_CLOSED_ZONES) { QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) { status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, req); if (status && status != NVME_NO_COMPLETE) { goto out; } } } if (proc_mask & NVME_PROC_OPENED_ZONES) { QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) { status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, req); if (status && status != NVME_NO_COMPLETE) { goto out; } } QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) { status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, req); if (status && status != NVME_NO_COMPLETE) { goto out; } } } if (proc_mask & NVME_PROC_FULL_ZONES) { QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) { status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, req); if (status && status != NVME_NO_COMPLETE) { goto out; } } } if (proc_mask & NVME_PROC_READ_ONLY_ZONES) { for (i = 0; i < ns->num_zones; i++, zone++) { status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, req); if (status && status != NVME_NO_COMPLETE) { goto out; } } } } out: return status; } static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req) { NvmeCmd *cmd = (NvmeCmd *)&req->cmd; NvmeNamespace *ns = req->ns; NvmeZone *zone; uintptr_t *resets; uint8_t *zd_ext; uint32_t dw13 = le32_to_cpu(cmd->cdw13); uint64_t slba = 0; uint32_t zone_idx = 0; uint16_t status; uint8_t action; bool all; enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE; action = dw13 & 0xff; all = dw13 & 0x100; req->status = NVME_SUCCESS; if (!all) { status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx); if (status) { return status; } } zone = &ns->zone_array[zone_idx]; if (slba != zone->d.zslba) { trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba); return NVME_INVALID_FIELD | NVME_DNR; } switch (action) { case NVME_ZONE_ACTION_OPEN: if (all) { proc_mask = NVME_PROC_CLOSED_ZONES; } trace_pci_nvme_open_zone(slba, zone_idx, all); status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req); break; case NVME_ZONE_ACTION_CLOSE: if (all) { proc_mask = NVME_PROC_OPENED_ZONES; } trace_pci_nvme_close_zone(slba, zone_idx, all); status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req); break; case NVME_ZONE_ACTION_FINISH: if (all) { proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES; } trace_pci_nvme_finish_zone(slba, zone_idx, all); status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req); break; case NVME_ZONE_ACTION_RESET: resets = (uintptr_t *)&req->opaque; if (all) { proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES | NVME_PROC_FULL_ZONES; } trace_pci_nvme_reset_zone(slba, zone_idx, all); *resets = 1; status = nvme_do_zone_op(ns, zone, proc_mask, nvme_reset_zone, req); (*resets)--; return *resets ? NVME_NO_COMPLETE : req->status; case NVME_ZONE_ACTION_OFFLINE: if (all) { proc_mask = NVME_PROC_READ_ONLY_ZONES; } trace_pci_nvme_offline_zone(slba, zone_idx, all); status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req); break; case NVME_ZONE_ACTION_SET_ZD_EXT: trace_pci_nvme_set_descriptor_extension(slba, zone_idx); if (all || !ns->params.zd_extension_size) { return NVME_INVALID_FIELD | NVME_DNR; } zd_ext = nvme_get_zd_extension(ns, zone_idx); status = nvme_dma(n, zd_ext, ns->params.zd_extension_size, DMA_DIRECTION_TO_DEVICE, req); if (status) { trace_pci_nvme_err_zd_extension_map_error(zone_idx); return status; } status = nvme_set_zd_ext(ns, zone); if (status == NVME_SUCCESS) { trace_pci_nvme_zd_extension_set(zone_idx); return status; } break; default: trace_pci_nvme_err_invalid_mgmt_action(action); status = NVME_INVALID_FIELD; } if (status == NVME_ZONE_INVAL_TRANSITION) { trace_pci_nvme_err_invalid_zone_state_transition(action, slba, zone->d.za); } if (status) { status |= NVME_DNR; } return status; } static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl) { NvmeZoneState zs = nvme_get_zone_state(zl); switch (zafs) { case NVME_ZONE_REPORT_ALL: return true; case NVME_ZONE_REPORT_EMPTY: return zs == NVME_ZONE_STATE_EMPTY; case NVME_ZONE_REPORT_IMPLICITLY_OPEN: return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN; case NVME_ZONE_REPORT_EXPLICITLY_OPEN: return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN; case NVME_ZONE_REPORT_CLOSED: return zs == NVME_ZONE_STATE_CLOSED; case NVME_ZONE_REPORT_FULL: return zs == NVME_ZONE_STATE_FULL; case NVME_ZONE_REPORT_READ_ONLY: return zs == NVME_ZONE_STATE_READ_ONLY; case NVME_ZONE_REPORT_OFFLINE: return zs == NVME_ZONE_STATE_OFFLINE; default: return false; } } static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) { NvmeCmd *cmd = (NvmeCmd *)&req->cmd; NvmeNamespace *ns = req->ns; /* cdw12 is zero-based number of dwords to return. Convert to bytes */ uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2; uint32_t dw13 = le32_to_cpu(cmd->cdw13); uint32_t zone_idx, zra, zrasf, partial; uint64_t max_zones, nr_zones = 0; uint16_t status; uint64_t slba, capacity = nvme_ns_nlbas(ns); NvmeZoneDescr *z; NvmeZone *zone; NvmeZoneReportHeader *header; void *buf, *buf_p; size_t zone_entry_sz; req->status = NVME_SUCCESS; status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx); if (status) { return status; } zra = dw13 & 0xff; if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) { return NVME_INVALID_FIELD | NVME_DNR; } if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) { return NVME_INVALID_FIELD | NVME_DNR; } zrasf = (dw13 >> 8) & 0xff; if (zrasf > NVME_ZONE_REPORT_OFFLINE) { return NVME_INVALID_FIELD | NVME_DNR; } if (data_size < sizeof(NvmeZoneReportHeader)) { return NVME_INVALID_FIELD | NVME_DNR; } status = nvme_check_mdts(n, data_size); if (status) { return status; } partial = (dw13 >> 16) & 0x01; zone_entry_sz = sizeof(NvmeZoneDescr); if (zra == NVME_ZONE_REPORT_EXTENDED) { zone_entry_sz += ns->params.zd_extension_size; } max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz; buf = g_malloc0(data_size); zone = &ns->zone_array[zone_idx]; for (; slba < capacity; slba += ns->zone_size) { if (partial && nr_zones >= max_zones) { break; } if (nvme_zone_matches_filter(zrasf, zone++)) { nr_zones++; } } header = (NvmeZoneReportHeader *)buf; header->nr_zones = cpu_to_le64(nr_zones); buf_p = buf + sizeof(NvmeZoneReportHeader); for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) { zone = &ns->zone_array[zone_idx]; if (nvme_zone_matches_filter(zrasf, zone)) { z = (NvmeZoneDescr *)buf_p; buf_p += sizeof(NvmeZoneDescr); z->zt = zone->d.zt; z->zs = zone->d.zs; z->zcap = cpu_to_le64(zone->d.zcap); z->zslba = cpu_to_le64(zone->d.zslba); z->za = zone->d.za; if (nvme_wp_is_valid(zone)) { z->wp = cpu_to_le64(zone->d.wp); } else { z->wp = cpu_to_le64(~0ULL); } if (zra == NVME_ZONE_REPORT_EXTENDED) { if (zone->d.za & NVME_ZA_ZD_EXT_VALID) { memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx), ns->params.zd_extension_size); } buf_p += ns->params.zd_extension_size; } max_zones--; } } status = nvme_dma(n, (uint8_t *)buf, data_size, DMA_DIRECTION_FROM_DEVICE, req); g_free(buf); return status; } static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req) { uint32_t nsid = le32_to_cpu(req->cmd.nsid); trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req), req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode)); if (!nvme_nsid_valid(n, nsid)) { return NVME_INVALID_NSID | NVME_DNR; } /* * In the base NVM command set, Flush may apply to all namespaces * (indicated by NSID being set to 0xFFFFFFFF). But if that feature is used * along with TP 4056 (Namespace Types), it may be pretty screwed up. * * If NSID is indeed set to 0xFFFFFFFF, we simply cannot associate the * opcode with a specific command since we cannot determine a unique I/O * command set. Opcode 0x0 could have any other meaning than something * equivalent to flushing and say it DOES have completely different * semantics in some other command set - does an NSID of 0xFFFFFFFF then * mean "for all namespaces, apply whatever command set specific command * that uses the 0x0 opcode?" Or does it mean "for all namespaces, apply * whatever command that uses the 0x0 opcode if, and only if, it allows * NSID to be 0xFFFFFFFF"? * * Anyway (and luckily), for now, we do not care about this since the * device only supports namespace types that includes the NVM Flush command * (NVM and Zoned), so always do an NVM Flush. */ if (req->cmd.opcode == NVME_CMD_FLUSH) { return nvme_flush(n, req); } req->ns = nvme_ns(n, nsid); if (unlikely(!req->ns)) { return NVME_INVALID_FIELD | NVME_DNR; } if (!(req->ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { trace_pci_nvme_err_invalid_opc(req->cmd.opcode); return NVME_INVALID_OPCODE | NVME_DNR; } switch (req->cmd.opcode) { case NVME_CMD_WRITE_ZEROES: return nvme_write_zeroes(n, req); case NVME_CMD_ZONE_APPEND: return nvme_zone_append(n, req); case NVME_CMD_WRITE: return nvme_write(n, req); case NVME_CMD_READ: return nvme_read(n, req); case NVME_CMD_COMPARE: return nvme_compare(n, req); case NVME_CMD_DSM: return nvme_dsm(n, req); case NVME_CMD_COPY: return nvme_copy(n, req); case NVME_CMD_ZONE_MGMT_SEND: return nvme_zone_mgmt_send(n, req); case NVME_CMD_ZONE_MGMT_RECV: return nvme_zone_mgmt_recv(n, req); default: assert(false); } return NVME_INVALID_OPCODE | NVME_DNR; } static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n) { n->sq[sq->sqid] = NULL; timer_free(sq->timer); g_free(sq->io_req); if (sq->sqid) { g_free(sq); } } static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req) { NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; NvmeRequest *r, *next; NvmeSQueue *sq; NvmeCQueue *cq; uint16_t qid = le16_to_cpu(c->qid); if (unlikely(!qid || nvme_check_sqid(n, qid))) { trace_pci_nvme_err_invalid_del_sq(qid); return NVME_INVALID_QID | NVME_DNR; } trace_pci_nvme_del_sq(qid); sq = n->sq[qid]; while (!QTAILQ_EMPTY(&sq->out_req_list)) { r = QTAILQ_FIRST(&sq->out_req_list); assert(r->aiocb); blk_aio_cancel(r->aiocb); } if (!nvme_check_cqid(n, sq->cqid)) { cq = n->cq[sq->cqid]; QTAILQ_REMOVE(&cq->sq_list, sq, entry); nvme_post_cqes(cq); QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) { if (r->sq == sq) { QTAILQ_REMOVE(&cq->req_list, r, entry); QTAILQ_INSERT_TAIL(&sq->req_list, r, entry); } } } nvme_free_sq(sq, n); return NVME_SUCCESS; } static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr, uint16_t sqid, uint16_t cqid, uint16_t size) { int i; NvmeCQueue *cq; sq->ctrl = n; sq->dma_addr = dma_addr; sq->sqid = sqid; sq->size = size; sq->cqid = cqid; sq->head = sq->tail = 0; sq->io_req = g_new0(NvmeRequest, sq->size); QTAILQ_INIT(&sq->req_list); QTAILQ_INIT(&sq->out_req_list); for (i = 0; i < sq->size; i++) { sq->io_req[i].sq = sq; QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry); } sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq); assert(n->cq[cqid]); cq = n->cq[cqid]; QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry); n->sq[sqid] = sq; } static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req) { NvmeSQueue *sq; NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd; uint16_t cqid = le16_to_cpu(c->cqid); uint16_t sqid = le16_to_cpu(c->sqid); uint16_t qsize = le16_to_cpu(c->qsize); uint16_t qflags = le16_to_cpu(c->sq_flags); uint64_t prp1 = le64_to_cpu(c->prp1); trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags); if (unlikely(!cqid || nvme_check_cqid(n, cqid))) { trace_pci_nvme_err_invalid_create_sq_cqid(cqid); return NVME_INVALID_CQID | NVME_DNR; } if (unlikely(!sqid || sqid > n->params.max_ioqpairs || n->sq[sqid] != NULL)) { trace_pci_nvme_err_invalid_create_sq_sqid(sqid); return NVME_INVALID_QID | NVME_DNR; } if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) { trace_pci_nvme_err_invalid_create_sq_size(qsize); return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; } if (unlikely(prp1 & (n->page_size - 1))) { trace_pci_nvme_err_invalid_create_sq_addr(prp1); return NVME_INVALID_PRP_OFFSET | NVME_DNR; } if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) { trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags)); return NVME_INVALID_FIELD | NVME_DNR; } sq = g_malloc0(sizeof(*sq)); nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1); return NVME_SUCCESS; } struct nvme_stats { uint64_t units_read; uint64_t units_written; uint64_t read_commands; uint64_t write_commands; }; static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats) { BlockAcctStats *s = blk_get_stats(ns->blkconf.blk); stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS; stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS; stats->read_commands += s->nr_ops[BLOCK_ACCT_READ]; stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE]; } static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, uint64_t off, NvmeRequest *req) { uint32_t nsid = le32_to_cpu(req->cmd.nsid); struct nvme_stats stats = { 0 }; NvmeSmartLog smart = { 0 }; uint32_t trans_len; NvmeNamespace *ns; time_t current_ms; if (off >= sizeof(smart)) { return NVME_INVALID_FIELD | NVME_DNR; } if (nsid != 0xffffffff) { ns = nvme_ns(n, nsid); if (!ns) { return NVME_INVALID_NSID | NVME_DNR; } nvme_set_blk_stats(ns, &stats); } else { int i; for (i = 1; i <= n->num_namespaces; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } nvme_set_blk_stats(ns, &stats); } } trans_len = MIN(sizeof(smart) - off, buf_len); smart.critical_warning = n->smart_critical_warning; smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read, 1000)); smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written, 1000)); smart.host_read_commands[0] = cpu_to_le64(stats.read_commands); smart.host_write_commands[0] = cpu_to_le64(stats.write_commands); smart.temperature = cpu_to_le16(n->temperature); if ((n->temperature >= n->features.temp_thresh_hi) || (n->temperature <= n->features.temp_thresh_low)) { smart.critical_warning |= NVME_SMART_TEMPERATURE; } current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); smart.power_on_hours[0] = cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60); if (!rae) { nvme_clear_events(n, NVME_AER_TYPE_SMART); } return nvme_dma(n, (uint8_t *) &smart + off, trans_len, DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off, NvmeRequest *req) { uint32_t trans_len; NvmeFwSlotInfoLog fw_log = { .afi = 0x1, }; if (off >= sizeof(fw_log)) { return NVME_INVALID_FIELD | NVME_DNR; } strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' '); trans_len = MIN(sizeof(fw_log) - off, buf_len); return nvme_dma(n, (uint8_t *) &fw_log + off, trans_len, DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, uint64_t off, NvmeRequest *req) { uint32_t trans_len; NvmeErrorLog errlog; if (off >= sizeof(errlog)) { return NVME_INVALID_FIELD | NVME_DNR; } if (!rae) { nvme_clear_events(n, NVME_AER_TYPE_ERROR); } memset(&errlog, 0x0, sizeof(errlog)); trans_len = MIN(sizeof(errlog) - off, buf_len); return nvme_dma(n, (uint8_t *)&errlog, trans_len, DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len, uint64_t off, NvmeRequest *req) { NvmeEffectsLog log = {}; const uint32_t *src_iocs = NULL; uint32_t trans_len; if (off >= sizeof(log)) { trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log)); return NVME_INVALID_FIELD | NVME_DNR; } switch (NVME_CC_CSS(n->bar.cc)) { case NVME_CC_CSS_NVM: src_iocs = nvme_cse_iocs_nvm; /* fall through */ case NVME_CC_CSS_ADMIN_ONLY: break; case NVME_CC_CSS_CSI: switch (csi) { case NVME_CSI_NVM: src_iocs = nvme_cse_iocs_nvm; break; case NVME_CSI_ZONED: src_iocs = nvme_cse_iocs_zoned; break; } } memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs)); if (src_iocs) { memcpy(log.iocs, src_iocs, sizeof(log.iocs)); } trans_len = MIN(sizeof(log) - off, buf_len); return nvme_dma(n, ((uint8_t *)&log) + off, trans_len, DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req) { NvmeCmd *cmd = &req->cmd; uint32_t dw10 = le32_to_cpu(cmd->cdw10); uint32_t dw11 = le32_to_cpu(cmd->cdw11); uint32_t dw12 = le32_to_cpu(cmd->cdw12); uint32_t dw13 = le32_to_cpu(cmd->cdw13); uint8_t lid = dw10 & 0xff; uint8_t lsp = (dw10 >> 8) & 0xf; uint8_t rae = (dw10 >> 15) & 0x1; uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24; uint32_t numdl, numdu; uint64_t off, lpol, lpou; size_t len; uint16_t status; numdl = (dw10 >> 16); numdu = (dw11 & 0xffff); lpol = dw12; lpou = dw13; len = (((numdu << 16) | numdl) + 1) << 2; off = (lpou << 32ULL) | lpol; if (off & 0x3) { return NVME_INVALID_FIELD | NVME_DNR; } trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off); status = nvme_check_mdts(n, len); if (status) { return status; } switch (lid) { case NVME_LOG_ERROR_INFO: return nvme_error_info(n, rae, len, off, req); case NVME_LOG_SMART_INFO: return nvme_smart_info(n, rae, len, off, req); case NVME_LOG_FW_SLOT_INFO: return nvme_fw_log_info(n, len, off, req); case NVME_LOG_CMD_EFFECTS: return nvme_cmd_effects(n, csi, len, off, req); default: trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid); return NVME_INVALID_FIELD | NVME_DNR; } } static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n) { n->cq[cq->cqid] = NULL; timer_free(cq->timer); if (msix_enabled(&n->parent_obj)) { msix_vector_unuse(&n->parent_obj, cq->vector); } if (cq->cqid) { g_free(cq); } } static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req) { NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; NvmeCQueue *cq; uint16_t qid = le16_to_cpu(c->qid); if (unlikely(!qid || nvme_check_cqid(n, qid))) { trace_pci_nvme_err_invalid_del_cq_cqid(qid); return NVME_INVALID_CQID | NVME_DNR; } cq = n->cq[qid]; if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) { trace_pci_nvme_err_invalid_del_cq_notempty(qid); return NVME_INVALID_QUEUE_DEL; } nvme_irq_deassert(n, cq); trace_pci_nvme_del_cq(qid); nvme_free_cq(cq, n); return NVME_SUCCESS; } static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr, uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled) { int ret; if (msix_enabled(&n->parent_obj)) { ret = msix_vector_use(&n->parent_obj, vector); assert(ret == 0); } cq->ctrl = n; cq->cqid = cqid; cq->size = size; cq->dma_addr = dma_addr; cq->phase = 1; cq->irq_enabled = irq_enabled; cq->vector = vector; cq->head = cq->tail = 0; QTAILQ_INIT(&cq->req_list); QTAILQ_INIT(&cq->sq_list); n->cq[cqid] = cq; cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq); } static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req) { NvmeCQueue *cq; NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd; uint16_t cqid = le16_to_cpu(c->cqid); uint16_t vector = le16_to_cpu(c->irq_vector); uint16_t qsize = le16_to_cpu(c->qsize); uint16_t qflags = le16_to_cpu(c->cq_flags); uint64_t prp1 = le64_to_cpu(c->prp1); trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags, NVME_CQ_FLAGS_IEN(qflags) != 0); if (unlikely(!cqid || cqid > n->params.max_ioqpairs || n->cq[cqid] != NULL)) { trace_pci_nvme_err_invalid_create_cq_cqid(cqid); return NVME_INVALID_QID | NVME_DNR; } if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) { trace_pci_nvme_err_invalid_create_cq_size(qsize); return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; } if (unlikely(prp1 & (n->page_size - 1))) { trace_pci_nvme_err_invalid_create_cq_addr(prp1); return NVME_INVALID_PRP_OFFSET | NVME_DNR; } if (unlikely(!msix_enabled(&n->parent_obj) && vector)) { trace_pci_nvme_err_invalid_create_cq_vector(vector); return NVME_INVALID_IRQ_VECTOR | NVME_DNR; } if (unlikely(vector >= n->params.msix_qsize)) { trace_pci_nvme_err_invalid_create_cq_vector(vector); return NVME_INVALID_IRQ_VECTOR | NVME_DNR; } if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) { trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags)); return NVME_INVALID_FIELD | NVME_DNR; } cq = g_malloc0(sizeof(*cq)); nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1, NVME_CQ_FLAGS_IEN(qflags)); /* * It is only required to set qs_created when creating a completion queue; * creating a submission queue without a matching completion queue will * fail. */ n->qs_created = true; return NVME_SUCCESS; } static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req) { uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; return nvme_dma(n, id, sizeof(id), DMA_DIRECTION_FROM_DEVICE, req); } static inline bool nvme_csi_has_nvm_support(NvmeNamespace *ns) { switch (ns->csi) { case NVME_CSI_NVM: case NVME_CSI_ZONED: return true; } return false; } static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req) { trace_pci_nvme_identify_ctrl(); return nvme_dma(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req) { NvmeIdentify *c = (NvmeIdentify *)&req->cmd; uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; trace_pci_nvme_identify_ctrl_csi(c->csi); switch (c->csi) { case NVME_CSI_NVM: ((NvmeIdCtrlNvm *)&id)->dmrsl = cpu_to_le32(n->dmrsl); break; case NVME_CSI_ZONED: ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl; break; default: return NVME_INVALID_FIELD | NVME_DNR; } return nvme_dma(n, id, sizeof(id), DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns; NvmeIdentify *c = (NvmeIdentify *)&req->cmd; uint32_t nsid = le32_to_cpu(c->nsid); trace_pci_nvme_identify_ns(nsid); if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { return NVME_INVALID_NSID | NVME_DNR; } ns = nvme_ns(n, nsid); if (unlikely(!ns)) { return nvme_rpt_empty_id_struct(n, req); } if (c->csi == NVME_CSI_NVM && nvme_csi_has_nvm_support(ns)) { return nvme_dma(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), DMA_DIRECTION_FROM_DEVICE, req); } return NVME_INVALID_CMD_SET | NVME_DNR; } static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns; NvmeIdentify *c = (NvmeIdentify *)&req->cmd; uint32_t nsid = le32_to_cpu(c->nsid); trace_pci_nvme_identify_ns_csi(nsid, c->csi); if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { return NVME_INVALID_NSID | NVME_DNR; } ns = nvme_ns(n, nsid); if (unlikely(!ns)) { return nvme_rpt_empty_id_struct(n, req); } if (c->csi == NVME_CSI_NVM && nvme_csi_has_nvm_support(ns)) { return nvme_rpt_empty_id_struct(n, req); } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) { return nvme_dma(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned), DMA_DIRECTION_FROM_DEVICE, req); } return NVME_INVALID_FIELD | NVME_DNR; } static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns; NvmeIdentify *c = (NvmeIdentify *)&req->cmd; uint32_t min_nsid = le32_to_cpu(c->nsid); uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; static const int data_len = sizeof(list); uint32_t *list_ptr = (uint32_t *)list; int i, j = 0; trace_pci_nvme_identify_nslist(min_nsid); /* * Both 0xffffffff (NVME_NSID_BROADCAST) and 0xfffffffe are invalid values * since the Active Namespace ID List should return namespaces with ids * *higher* than the NSID specified in the command. This is also specified * in the spec (NVM Express v1.3d, Section 5.15.4). */ if (min_nsid >= NVME_NSID_BROADCAST - 1) { return NVME_INVALID_NSID | NVME_DNR; } for (i = 1; i <= n->num_namespaces; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } if (ns->params.nsid <= min_nsid) { continue; } list_ptr[j++] = cpu_to_le32(ns->params.nsid); if (j == data_len / sizeof(uint32_t)) { break; } } return nvme_dma(n, list, data_len, DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns; NvmeIdentify *c = (NvmeIdentify *)&req->cmd; uint32_t min_nsid = le32_to_cpu(c->nsid); uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; static const int data_len = sizeof(list); uint32_t *list_ptr = (uint32_t *)list; int i, j = 0; trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi); /* * Same as in nvme_identify_nslist(), 0xffffffff/0xfffffffe are invalid. */ if (min_nsid >= NVME_NSID_BROADCAST - 1) { return NVME_INVALID_NSID | NVME_DNR; } if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) { return NVME_INVALID_FIELD | NVME_DNR; } for (i = 1; i <= n->num_namespaces; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } if (ns->params.nsid <= min_nsid || c->csi != ns->csi) { continue; } list_ptr[j++] = cpu_to_le32(ns->params.nsid); if (j == data_len / sizeof(uint32_t)) { break; } } return nvme_dma(n, list, data_len, DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns; NvmeIdentify *c = (NvmeIdentify *)&req->cmd; uint32_t nsid = le32_to_cpu(c->nsid); uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; struct data { struct { NvmeIdNsDescr hdr; uint8_t v[NVME_NIDL_UUID]; } uuid; struct { NvmeIdNsDescr hdr; uint8_t v; } csi; }; struct data *ns_descrs = (struct data *)list; trace_pci_nvme_identify_ns_descr_list(nsid); if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { return NVME_INVALID_NSID | NVME_DNR; } ns = nvme_ns(n, nsid); if (unlikely(!ns)) { return NVME_INVALID_FIELD | NVME_DNR; } /* * Because the NGUID and EUI64 fields are 0 in the Identify Namespace data * structure, a Namespace UUID (nidt = 0x3) must be reported in the * Namespace Identification Descriptor. Add the namespace UUID here. */ ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID; ns_descrs->uuid.hdr.nidl = NVME_NIDL_UUID; memcpy(&ns_descrs->uuid.v, ns->params.uuid.data, NVME_NIDL_UUID); ns_descrs->csi.hdr.nidt = NVME_NIDT_CSI; ns_descrs->csi.hdr.nidl = NVME_NIDL_CSI; ns_descrs->csi.v = ns->csi; return nvme_dma(n, list, sizeof(list), DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req) { uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; static const int data_len = sizeof(list); trace_pci_nvme_identify_cmd_set(); NVME_SET_CSI(*list, NVME_CSI_NVM); NVME_SET_CSI(*list, NVME_CSI_ZONED); return nvme_dma(n, list, data_len, DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req) { NvmeIdentify *c = (NvmeIdentify *)&req->cmd; trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid), c->csi); switch (c->cns) { case NVME_ID_CNS_NS: /* fall through */ case NVME_ID_CNS_NS_PRESENT: return nvme_identify_ns(n, req); case NVME_ID_CNS_CS_NS: /* fall through */ case NVME_ID_CNS_CS_NS_PRESENT: return nvme_identify_ns_csi(n, req); case NVME_ID_CNS_CTRL: return nvme_identify_ctrl(n, req); case NVME_ID_CNS_CS_CTRL: return nvme_identify_ctrl_csi(n, req); case NVME_ID_CNS_NS_ACTIVE_LIST: /* fall through */ case NVME_ID_CNS_NS_PRESENT_LIST: return nvme_identify_nslist(n, req); case NVME_ID_CNS_CS_NS_ACTIVE_LIST: /* fall through */ case NVME_ID_CNS_CS_NS_PRESENT_LIST: return nvme_identify_nslist_csi(n, req); case NVME_ID_CNS_NS_DESCR_LIST: return nvme_identify_ns_descr_list(n, req); case NVME_ID_CNS_IO_COMMAND_SET: return nvme_identify_cmd_set(n, req); default: trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns)); return NVME_INVALID_FIELD | NVME_DNR; } } static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req) { uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff; req->cqe.result = 1; if (nvme_check_sqid(n, sqid)) { return NVME_INVALID_FIELD | NVME_DNR; } return NVME_SUCCESS; } static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts) { trace_pci_nvme_setfeat_timestamp(ts); n->host_timestamp = le64_to_cpu(ts); n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); } static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n) { uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms; union nvme_timestamp { struct { uint64_t timestamp:48; uint64_t sync:1; uint64_t origin:3; uint64_t rsvd1:12; }; uint64_t all; }; union nvme_timestamp ts; ts.all = 0; ts.timestamp = n->host_timestamp + elapsed_time; /* If the host timestamp is non-zero, set the timestamp origin */ ts.origin = n->host_timestamp ? 0x01 : 0x00; trace_pci_nvme_getfeat_timestamp(ts.all); return cpu_to_le64(ts.all); } static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) { uint64_t timestamp = nvme_get_timestamp(n); return nvme_dma(n, (uint8_t *)×tamp, sizeof(timestamp), DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req) { NvmeCmd *cmd = &req->cmd; uint32_t dw10 = le32_to_cpu(cmd->cdw10); uint32_t dw11 = le32_to_cpu(cmd->cdw11); uint32_t nsid = le32_to_cpu(cmd->nsid); uint32_t result; uint8_t fid = NVME_GETSETFEAT_FID(dw10); NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10); uint16_t iv; NvmeNamespace *ns; int i; static const uint32_t nvme_feature_default[NVME_FID_MAX] = { [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT, }; trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11); if (!nvme_feature_support[fid]) { return NVME_INVALID_FIELD | NVME_DNR; } if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { /* * The Reservation Notification Mask and Reservation Persistence * features require a status code of Invalid Field in Command when * NSID is 0xFFFFFFFF. Since the device does not support those * features we can always return Invalid Namespace or Format as we * should do for all other features. */ return NVME_INVALID_NSID | NVME_DNR; } if (!nvme_ns(n, nsid)) { return NVME_INVALID_FIELD | NVME_DNR; } } switch (sel) { case NVME_GETFEAT_SELECT_CURRENT: break; case NVME_GETFEAT_SELECT_SAVED: /* no features are saveable by the controller; fallthrough */ case NVME_GETFEAT_SELECT_DEFAULT: goto defaults; case NVME_GETFEAT_SELECT_CAP: result = nvme_feature_cap[fid]; goto out; } switch (fid) { case NVME_TEMPERATURE_THRESHOLD: result = 0; /* * The controller only implements the Composite Temperature sensor, so * return 0 for all other sensors. */ if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { goto out; } switch (NVME_TEMP_THSEL(dw11)) { case NVME_TEMP_THSEL_OVER: result = n->features.temp_thresh_hi; goto out; case NVME_TEMP_THSEL_UNDER: result = n->features.temp_thresh_low; goto out; } return NVME_INVALID_FIELD | NVME_DNR; case NVME_ERROR_RECOVERY: if (!nvme_nsid_valid(n, nsid)) { return NVME_INVALID_NSID | NVME_DNR; } ns = nvme_ns(n, nsid); if (unlikely(!ns)) { return NVME_INVALID_FIELD | NVME_DNR; } result = ns->features.err_rec; goto out; case NVME_VOLATILE_WRITE_CACHE: result = 0; for (i = 1; i <= n->num_namespaces; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } result = blk_enable_write_cache(ns->blkconf.blk); if (result) { break; } } trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled"); goto out; case NVME_ASYNCHRONOUS_EVENT_CONF: result = n->features.async_config; goto out; case NVME_TIMESTAMP: return nvme_get_feature_timestamp(n, req); default: break; } defaults: switch (fid) { case NVME_TEMPERATURE_THRESHOLD: result = 0; if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { break; } if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) { result = NVME_TEMPERATURE_WARNING; } break; case NVME_NUMBER_OF_QUEUES: result = (n->params.max_ioqpairs - 1) | ((n->params.max_ioqpairs - 1) << 16); trace_pci_nvme_getfeat_numq(result); break; case NVME_INTERRUPT_VECTOR_CONF: iv = dw11 & 0xffff; if (iv >= n->params.max_ioqpairs + 1) { return NVME_INVALID_FIELD | NVME_DNR; } result = iv; if (iv == n->admin_cq.vector) { result |= NVME_INTVC_NOCOALESCING; } break; case NVME_COMMAND_SET_PROFILE: result = 0; break; default: result = nvme_feature_default[fid]; break; } out: req->cqe.result = cpu_to_le32(result); return NVME_SUCCESS; } static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) { uint16_t ret; uint64_t timestamp; ret = nvme_dma(n, (uint8_t *)×tamp, sizeof(timestamp), DMA_DIRECTION_TO_DEVICE, req); if (ret) { return ret; } nvme_set_timestamp(n, timestamp); return NVME_SUCCESS; } static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns = NULL; NvmeCmd *cmd = &req->cmd; uint32_t dw10 = le32_to_cpu(cmd->cdw10); uint32_t dw11 = le32_to_cpu(cmd->cdw11); uint32_t nsid = le32_to_cpu(cmd->nsid); uint8_t fid = NVME_GETSETFEAT_FID(dw10); uint8_t save = NVME_SETFEAT_SAVE(dw10); int i; trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11); if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) { return NVME_FID_NOT_SAVEABLE | NVME_DNR; } if (!nvme_feature_support[fid]) { return NVME_INVALID_FIELD | NVME_DNR; } if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { if (nsid != NVME_NSID_BROADCAST) { if (!nvme_nsid_valid(n, nsid)) { return NVME_INVALID_NSID | NVME_DNR; } ns = nvme_ns(n, nsid); if (unlikely(!ns)) { return NVME_INVALID_FIELD | NVME_DNR; } } } else if (nsid && nsid != NVME_NSID_BROADCAST) { if (!nvme_nsid_valid(n, nsid)) { return NVME_INVALID_NSID | NVME_DNR; } return NVME_FEAT_NOT_NS_SPEC | NVME_DNR; } if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) { return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; } switch (fid) { case NVME_TEMPERATURE_THRESHOLD: if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { break; } switch (NVME_TEMP_THSEL(dw11)) { case NVME_TEMP_THSEL_OVER: n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11); break; case NVME_TEMP_THSEL_UNDER: n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11); break; default: return NVME_INVALID_FIELD | NVME_DNR; } if ((n->temperature >= n->features.temp_thresh_hi) || (n->temperature <= n->features.temp_thresh_low)) { nvme_smart_event(n, NVME_AER_INFO_SMART_TEMP_THRESH); } break; case NVME_ERROR_RECOVERY: if (nsid == NVME_NSID_BROADCAST) { for (i = 1; i <= n->num_namespaces; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { ns->features.err_rec = dw11; } } break; } assert(ns); if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { ns->features.err_rec = dw11; } break; case NVME_VOLATILE_WRITE_CACHE: for (i = 1; i <= n->num_namespaces; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) { blk_flush(ns->blkconf.blk); } blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1); } break; case NVME_NUMBER_OF_QUEUES: if (n->qs_created) { return NVME_CMD_SEQ_ERROR | NVME_DNR; } /* * NVMe v1.3, Section 5.21.1.7: 0xffff is not an allowed value for NCQR * and NSQR. */ if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) { return NVME_INVALID_FIELD | NVME_DNR; } trace_pci_nvme_setfeat_numq((dw11 & 0xFFFF) + 1, ((dw11 >> 16) & 0xFFFF) + 1, n->params.max_ioqpairs, n->params.max_ioqpairs); req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) | ((n->params.max_ioqpairs - 1) << 16)); break; case NVME_ASYNCHRONOUS_EVENT_CONF: n->features.async_config = dw11; break; case NVME_TIMESTAMP: return nvme_set_feature_timestamp(n, req); case NVME_COMMAND_SET_PROFILE: if (dw11 & 0x1ff) { trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff); return NVME_CMD_SET_CMB_REJECTED | NVME_DNR; } break; default: return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; } return NVME_SUCCESS; } static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req) { trace_pci_nvme_aer(nvme_cid(req)); if (n->outstanding_aers > n->params.aerl) { trace_pci_nvme_aer_aerl_exceeded(); return NVME_AER_LIMIT_EXCEEDED; } n->aer_reqs[n->outstanding_aers] = req; n->outstanding_aers++; if (!QTAILQ_EMPTY(&n->aer_queue)) { nvme_process_aers(n); } return NVME_NO_COMPLETE; } static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req) { trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode, nvme_adm_opc_str(req->cmd.opcode)); if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode); return NVME_INVALID_OPCODE | NVME_DNR; } switch (req->cmd.opcode) { case NVME_ADM_CMD_DELETE_SQ: return nvme_del_sq(n, req); case NVME_ADM_CMD_CREATE_SQ: return nvme_create_sq(n, req); case NVME_ADM_CMD_GET_LOG_PAGE: return nvme_get_log(n, req); case NVME_ADM_CMD_DELETE_CQ: return nvme_del_cq(n, req); case NVME_ADM_CMD_CREATE_CQ: return nvme_create_cq(n, req); case NVME_ADM_CMD_IDENTIFY: return nvme_identify(n, req); case NVME_ADM_CMD_ABORT: return nvme_abort(n, req); case NVME_ADM_CMD_SET_FEATURES: return nvme_set_feature(n, req); case NVME_ADM_CMD_GET_FEATURES: return nvme_get_feature(n, req); case NVME_ADM_CMD_ASYNC_EV_REQ: return nvme_aer(n, req); default: assert(false); } return NVME_INVALID_OPCODE | NVME_DNR; } static void nvme_process_sq(void *opaque) { NvmeSQueue *sq = opaque; NvmeCtrl *n = sq->ctrl; NvmeCQueue *cq = n->cq[sq->cqid]; uint16_t status; hwaddr addr; NvmeCmd cmd; NvmeRequest *req; while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) { addr = sq->dma_addr + sq->head * n->sqe_size; if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) { trace_pci_nvme_err_addr_read(addr); trace_pci_nvme_err_cfs(); n->bar.csts = NVME_CSTS_FAILED; break; } nvme_inc_sq_head(sq); req = QTAILQ_FIRST(&sq->req_list); QTAILQ_REMOVE(&sq->req_list, req, entry); QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry); nvme_req_clear(req); req->cqe.cid = cmd.cid; memcpy(&req->cmd, &cmd, sizeof(NvmeCmd)); status = sq->sqid ? nvme_io_cmd(n, req) : nvme_admin_cmd(n, req); if (status != NVME_NO_COMPLETE) { req->status = status; nvme_enqueue_req_completion(cq, req); } } } static void nvme_ctrl_reset(NvmeCtrl *n) { NvmeNamespace *ns; int i; for (i = 1; i <= n->num_namespaces; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } nvme_ns_drain(ns); } for (i = 0; i < n->params.max_ioqpairs + 1; i++) { if (n->sq[i] != NULL) { nvme_free_sq(n->sq[i], n); } } for (i = 0; i < n->params.max_ioqpairs + 1; i++) { if (n->cq[i] != NULL) { nvme_free_cq(n->cq[i], n); } } while (!QTAILQ_EMPTY(&n->aer_queue)) { NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue); QTAILQ_REMOVE(&n->aer_queue, event, entry); g_free(event); } n->aer_queued = 0; n->outstanding_aers = 0; n->qs_created = false; n->bar.cc = 0; } static void nvme_ctrl_shutdown(NvmeCtrl *n) { NvmeNamespace *ns; int i; if (n->pmr.dev) { memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); } for (i = 1; i <= n->num_namespaces; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } nvme_ns_shutdown(ns); } } static void nvme_select_ns_iocs(NvmeCtrl *n) { NvmeNamespace *ns; int i; for (i = 1; i <= n->num_namespaces; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } ns->iocs = nvme_cse_iocs_none; switch (ns->csi) { case NVME_CSI_NVM: if (NVME_CC_CSS(n->bar.cc) != NVME_CC_CSS_ADMIN_ONLY) { ns->iocs = nvme_cse_iocs_nvm; } break; case NVME_CSI_ZONED: if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_CSI) { ns->iocs = nvme_cse_iocs_zoned; } else if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_NVM) { ns->iocs = nvme_cse_iocs_nvm; } break; } } } static int nvme_start_ctrl(NvmeCtrl *n) { uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12; uint32_t page_size = 1 << page_bits; if (unlikely(n->cq[0])) { trace_pci_nvme_err_startfail_cq(); return -1; } if (unlikely(n->sq[0])) { trace_pci_nvme_err_startfail_sq(); return -1; } if (unlikely(!n->bar.asq)) { trace_pci_nvme_err_startfail_nbarasq(); return -1; } if (unlikely(!n->bar.acq)) { trace_pci_nvme_err_startfail_nbaracq(); return -1; } if (unlikely(n->bar.asq & (page_size - 1))) { trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq); return -1; } if (unlikely(n->bar.acq & (page_size - 1))) { trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq); return -1; } if (unlikely(!(NVME_CAP_CSS(n->bar.cap) & (1 << NVME_CC_CSS(n->bar.cc))))) { trace_pci_nvme_err_startfail_css(NVME_CC_CSS(n->bar.cc)); return -1; } if (unlikely(NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap))) { trace_pci_nvme_err_startfail_page_too_small( NVME_CC_MPS(n->bar.cc), NVME_CAP_MPSMIN(n->bar.cap)); return -1; } if (unlikely(NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap))) { trace_pci_nvme_err_startfail_page_too_large( NVME_CC_MPS(n->bar.cc), NVME_CAP_MPSMAX(n->bar.cap)); return -1; } if (unlikely(NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) { trace_pci_nvme_err_startfail_cqent_too_small( NVME_CC_IOCQES(n->bar.cc), NVME_CTRL_CQES_MIN(n->bar.cap)); return -1; } if (unlikely(NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) { trace_pci_nvme_err_startfail_cqent_too_large( NVME_CC_IOCQES(n->bar.cc), NVME_CTRL_CQES_MAX(n->bar.cap)); return -1; } if (unlikely(NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) { trace_pci_nvme_err_startfail_sqent_too_small( NVME_CC_IOSQES(n->bar.cc), NVME_CTRL_SQES_MIN(n->bar.cap)); return -1; } if (unlikely(NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) { trace_pci_nvme_err_startfail_sqent_too_large( NVME_CC_IOSQES(n->bar.cc), NVME_CTRL_SQES_MAX(n->bar.cap)); return -1; } if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) { trace_pci_nvme_err_startfail_asqent_sz_zero(); return -1; } if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) { trace_pci_nvme_err_startfail_acqent_sz_zero(); return -1; } n->page_bits = page_bits; n->page_size = page_size; n->max_prp_ents = n->page_size / sizeof(uint64_t); n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc); n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc); nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0, NVME_AQA_ACQS(n->bar.aqa) + 1, 1); nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0, NVME_AQA_ASQS(n->bar.aqa) + 1); nvme_set_timestamp(n, 0ULL); QTAILQ_INIT(&n->aer_queue); nvme_select_ns_iocs(n); return 0; } static void nvme_cmb_enable_regs(NvmeCtrl *n) { NVME_CMBLOC_SET_CDPCILS(n->bar.cmbloc, 1); NVME_CMBLOC_SET_CDPMLS(n->bar.cmbloc, 1); NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR); NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1); NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0); NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 1); NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1); NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1); NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */ NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb); } static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data, unsigned size) { if (unlikely(offset & (sizeof(uint32_t) - 1))) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32, "MMIO write not 32-bit aligned," " offset=0x%"PRIx64"", offset); /* should be ignored, fall through for now */ } if (unlikely(size < sizeof(uint32_t))) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall, "MMIO write smaller than 32-bits," " offset=0x%"PRIx64", size=%u", offset, size); /* should be ignored, fall through for now */ } switch (offset) { case 0xc: /* INTMS */ if (unlikely(msix_enabled(&(n->parent_obj)))) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, "undefined access to interrupt mask set" " when MSI-X is enabled"); /* should be ignored, fall through for now */ } n->bar.intms |= data & 0xffffffff; n->bar.intmc = n->bar.intms; trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc); nvme_irq_check(n); break; case 0x10: /* INTMC */ if (unlikely(msix_enabled(&(n->parent_obj)))) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, "undefined access to interrupt mask clr" " when MSI-X is enabled"); /* should be ignored, fall through for now */ } n->bar.intms &= ~(data & 0xffffffff); n->bar.intmc = n->bar.intms; trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc); nvme_irq_check(n); break; case 0x14: /* CC */ trace_pci_nvme_mmio_cfg(data & 0xffffffff); /* Windows first sends data, then sends enable bit */ if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) && !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc)) { n->bar.cc = data; } if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) { n->bar.cc = data; if (unlikely(nvme_start_ctrl(n))) { trace_pci_nvme_err_startfail(); n->bar.csts = NVME_CSTS_FAILED; } else { trace_pci_nvme_mmio_start_success(); n->bar.csts = NVME_CSTS_READY; } } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) { trace_pci_nvme_mmio_stopped(); nvme_ctrl_reset(n); n->bar.csts &= ~NVME_CSTS_READY; } if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) { trace_pci_nvme_mmio_shutdown_set(); nvme_ctrl_shutdown(n); n->bar.cc = data; n->bar.csts |= NVME_CSTS_SHST_COMPLETE; } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) { trace_pci_nvme_mmio_shutdown_cleared(); n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE; n->bar.cc = data; } break; case 0x1C: /* CSTS */ if (data & (1 << 4)) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported, "attempted to W1C CSTS.NSSRO" " but CAP.NSSRS is zero (not supported)"); } else if (data != 0) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts, "attempted to set a read only bit" " of controller status"); } break; case 0x20: /* NSSR */ if (data == 0x4E564D65) { trace_pci_nvme_ub_mmiowr_ssreset_unsupported(); } else { /* The spec says that writes of other values have no effect */ return; } break; case 0x24: /* AQA */ n->bar.aqa = data & 0xffffffff; trace_pci_nvme_mmio_aqattr(data & 0xffffffff); break; case 0x28: /* ASQ */ n->bar.asq = size == 8 ? data : (n->bar.asq & ~0xffffffffULL) | (data & 0xffffffff); trace_pci_nvme_mmio_asqaddr(data); break; case 0x2c: /* ASQ hi */ n->bar.asq = (n->bar.asq & 0xffffffff) | (data << 32); trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq); break; case 0x30: /* ACQ */ trace_pci_nvme_mmio_acqaddr(data); n->bar.acq = size == 8 ? data : (n->bar.acq & ~0xffffffffULL) | (data & 0xffffffff); break; case 0x34: /* ACQ hi */ n->bar.acq = (n->bar.acq & 0xffffffff) | (data << 32); trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq); break; case 0x38: /* CMBLOC */ NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved, "invalid write to reserved CMBLOC" " when CMBSZ is zero, ignored"); return; case 0x3C: /* CMBSZ */ NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly, "invalid write to read only CMBSZ, ignored"); return; case 0x50: /* CMBMSC */ if (!NVME_CAP_CMBS(n->bar.cap)) { return; } n->bar.cmbmsc = size == 8 ? data : (n->bar.cmbmsc & ~0xffffffff) | (data & 0xffffffff); n->cmb.cmse = false; if (NVME_CMBMSC_CRE(data)) { nvme_cmb_enable_regs(n); if (NVME_CMBMSC_CMSE(data)) { hwaddr cba = NVME_CMBMSC_CBA(data) << CMBMSC_CBA_SHIFT; if (cba + int128_get64(n->cmb.mem.size) < cba) { NVME_CMBSTS_SET_CBAI(n->bar.cmbsts, 1); return; } n->cmb.cba = cba; n->cmb.cmse = true; } } else { n->bar.cmbsz = 0; n->bar.cmbloc = 0; } return; case 0x54: /* CMBMSC hi */ n->bar.cmbmsc = (n->bar.cmbmsc & 0xffffffff) | (data << 32); return; case 0xE00: /* PMRCAP */ NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly, "invalid write to PMRCAP register, ignored"); return; case 0xE04: /* PMRCTL */ n->bar.pmrctl = data; if (NVME_PMRCTL_EN(data)) { memory_region_set_enabled(&n->pmr.dev->mr, true); n->bar.pmrsts = 0; } else { memory_region_set_enabled(&n->pmr.dev->mr, false); NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 1); n->pmr.cmse = false; } return; case 0xE08: /* PMRSTS */ NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly, "invalid write to PMRSTS register, ignored"); return; case 0xE0C: /* PMREBS */ NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly, "invalid write to PMREBS register, ignored"); return; case 0xE10: /* PMRSWTP */ NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly, "invalid write to PMRSWTP register, ignored"); return; case 0xE14: /* PMRMSCL */ if (!NVME_CAP_PMRS(n->bar.cap)) { return; } n->bar.pmrmsc = (n->bar.pmrmsc & ~0xffffffff) | (data & 0xffffffff); n->pmr.cmse = false; if (NVME_PMRMSC_CMSE(n->bar.pmrmsc)) { hwaddr cba = NVME_PMRMSC_CBA(n->bar.pmrmsc) << PMRMSC_CBA_SHIFT; if (cba + int128_get64(n->pmr.dev->mr.size) < cba) { NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 1); return; } n->pmr.cmse = true; n->pmr.cba = cba; } return; case 0xE18: /* PMRMSCU */ if (!NVME_CAP_PMRS(n->bar.cap)) { return; } n->bar.pmrmsc = (n->bar.pmrmsc & 0xffffffff) | (data << 32); return; default: NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid, "invalid MMIO write," " offset=0x%"PRIx64", data=%"PRIx64"", offset, data); break; } } static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size) { NvmeCtrl *n = (NvmeCtrl *)opaque; uint8_t *ptr = (uint8_t *)&n->bar; uint64_t val = 0; trace_pci_nvme_mmio_read(addr, size); if (unlikely(addr & (sizeof(uint32_t) - 1))) { NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32, "MMIO read not 32-bit aligned," " offset=0x%"PRIx64"", addr); /* should RAZ, fall through for now */ } else if (unlikely(size < sizeof(uint32_t))) { NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall, "MMIO read smaller than 32-bits," " offset=0x%"PRIx64"", addr); /* should RAZ, fall through for now */ } if (addr < sizeof(n->bar)) { /* * When PMRWBM bit 1 is set then read from * from PMRSTS should ensure prior writes * made it to persistent media */ if (addr == 0xE08 && (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) { memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); } memcpy(&val, ptr + addr, size); } else { NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs, "MMIO read beyond last register," " offset=0x%"PRIx64", returning 0", addr); } return val; } static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val) { uint32_t qid; if (unlikely(addr & ((1 << 2) - 1))) { NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned, "doorbell write not 32-bit aligned," " offset=0x%"PRIx64", ignoring", addr); return; } if (((addr - 0x1000) >> 2) & 1) { /* Completion queue doorbell write */ uint16_t new_head = val & 0xffff; int start_sqs; NvmeCQueue *cq; qid = (addr - (0x1000 + (1 << 2))) >> 3; if (unlikely(nvme_check_cqid(n, qid))) { NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq, "completion queue doorbell write" " for nonexistent queue," " sqid=%"PRIu32", ignoring", qid); /* * NVM Express v1.3d, Section 4.1 state: "If host software writes * an invalid value to the Submission Queue Tail Doorbell or * Completion Queue Head Doorbell regiter and an Asynchronous Event * Request command is outstanding, then an asynchronous event is * posted to the Admin Completion Queue with a status code of * Invalid Doorbell Write Value." * * Also note that the spec includes the "Invalid Doorbell Register" * status code, but nowhere does it specify when to use it. * However, it seems reasonable to use it here in a similar * fashion. */ if (n->outstanding_aers) { nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, NVME_AER_INFO_ERR_INVALID_DB_REGISTER, NVME_LOG_ERROR_INFO); } return; } cq = n->cq[qid]; if (unlikely(new_head >= cq->size)) { NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead, "completion queue doorbell write value" " beyond queue size, sqid=%"PRIu32"," " new_head=%"PRIu16", ignoring", qid, new_head); if (n->outstanding_aers) { nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, NVME_AER_INFO_ERR_INVALID_DB_VALUE, NVME_LOG_ERROR_INFO); } return; } trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head); start_sqs = nvme_cq_full(cq) ? 1 : 0; cq->head = new_head; if (start_sqs) { NvmeSQueue *sq; QTAILQ_FOREACH(sq, &cq->sq_list, entry) { timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); } timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); } if (cq->tail == cq->head) { nvme_irq_deassert(n, cq); } } else { /* Submission queue doorbell write */ uint16_t new_tail = val & 0xffff; NvmeSQueue *sq; qid = (addr - 0x1000) >> 3; if (unlikely(nvme_check_sqid(n, qid))) { NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq, "submission queue doorbell write" " for nonexistent queue," " sqid=%"PRIu32", ignoring", qid); if (n->outstanding_aers) { nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, NVME_AER_INFO_ERR_INVALID_DB_REGISTER, NVME_LOG_ERROR_INFO); } return; } sq = n->sq[qid]; if (unlikely(new_tail >= sq->size)) { NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail, "submission queue doorbell write value" " beyond queue size, sqid=%"PRIu32"," " new_tail=%"PRIu16", ignoring", qid, new_tail); if (n->outstanding_aers) { nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, NVME_AER_INFO_ERR_INVALID_DB_VALUE, NVME_LOG_ERROR_INFO); } return; } trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail); sq->tail = new_tail; timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); } } static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { NvmeCtrl *n = (NvmeCtrl *)opaque; trace_pci_nvme_mmio_write(addr, data, size); if (addr < sizeof(n->bar)) { nvme_write_bar(n, addr, data, size); } else { nvme_process_db(n, addr, data); } } static const MemoryRegionOps nvme_mmio_ops = { .read = nvme_mmio_read, .write = nvme_mmio_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 2, .max_access_size = 8, }, }; static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { NvmeCtrl *n = (NvmeCtrl *)opaque; stn_le_p(&n->cmb.buf[addr], size, data); } static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size) { NvmeCtrl *n = (NvmeCtrl *)opaque; return ldn_le_p(&n->cmb.buf[addr], size); } static const MemoryRegionOps nvme_cmb_ops = { .read = nvme_cmb_read, .write = nvme_cmb_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 1, .max_access_size = 8, }, }; static void nvme_check_constraints(NvmeCtrl *n, Error **errp) { NvmeParams *params = &n->params; if (params->num_queues) { warn_report("num_queues is deprecated; please use max_ioqpairs " "instead"); params->max_ioqpairs = params->num_queues - 1; } if (n->conf.blk) { warn_report("drive property is deprecated; " "please use an nvme-ns device instead"); } if (params->max_ioqpairs < 1 || params->max_ioqpairs > NVME_MAX_IOQPAIRS) { error_setg(errp, "max_ioqpairs must be between 1 and %d", NVME_MAX_IOQPAIRS); return; } if (params->msix_qsize < 1 || params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) { error_setg(errp, "msix_qsize must be between 1 and %d", PCI_MSIX_FLAGS_QSIZE + 1); return; } if (!params->serial) { error_setg(errp, "serial property not set"); return; } if (n->pmr.dev) { if (host_memory_backend_is_mapped(n->pmr.dev)) { error_setg(errp, "can't use already busy memdev: %s", object_get_canonical_path_component(OBJECT(n->pmr.dev))); return; } if (!is_power_of_2(n->pmr.dev->size)) { error_setg(errp, "pmr backend size needs to be power of 2 in size"); return; } host_memory_backend_set_mapped(n->pmr.dev, true); } if (n->params.zasl > n->params.mdts) { error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less " "than or equal to mdts (Maximum Data Transfer Size)"); return; } } static void nvme_init_state(NvmeCtrl *n) { n->num_namespaces = NVME_MAX_NAMESPACES; /* add one to max_ioqpairs to account for the admin queue pair */ n->reg_size = pow2ceil(sizeof(NvmeBar) + 2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE); n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1); n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1); n->temperature = NVME_TEMPERATURE; n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING; n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1); } int nvme_register_namespace(NvmeCtrl *n, NvmeNamespace *ns, Error **errp) { uint32_t nsid = nvme_nsid(ns); if (nsid > NVME_MAX_NAMESPACES) { error_setg(errp, "invalid namespace id (must be between 0 and %d)", NVME_MAX_NAMESPACES); return -1; } if (!nsid) { for (int i = 1; i <= n->num_namespaces; i++) { if (!nvme_ns(n, i)) { nsid = ns->params.nsid = i; break; } } if (!nsid) { error_setg(errp, "no free namespace id"); return -1; } } else { if (n->namespaces[nsid - 1]) { error_setg(errp, "namespace id '%d' is already in use", nsid); return -1; } } trace_pci_nvme_register_namespace(nsid); n->namespaces[nsid - 1] = ns; n->dmrsl = MIN_NON_ZERO(n->dmrsl, BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); return 0; } static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev) { uint64_t cmb_size = n->params.cmb_size_mb * MiB; n->cmb.buf = g_malloc0(cmb_size); memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n, "nvme-cmb", cmb_size); pci_register_bar(pci_dev, NVME_CMB_BIR, PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 | PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem); NVME_CAP_SET_CMBS(n->bar.cap, 1); if (n->params.legacy_cmb) { nvme_cmb_enable_regs(n); n->cmb.cmse = true; } } static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev) { NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 1); NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 1); NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR); /* Turn on bit 1 support */ NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02); NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 1); pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap), PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 | PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr); memory_region_set_enabled(&n->pmr.dev->mr, false); } static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp) { uint8_t *pci_conf = pci_dev->config; uint64_t bar_size, msix_table_size, msix_pba_size; unsigned msix_table_offset, msix_pba_offset; int ret; Error *err = NULL; pci_conf[PCI_INTERRUPT_PIN] = 1; pci_config_set_prog_interface(pci_conf, 0x2); if (n->params.use_intel_id) { pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); pci_config_set_device_id(pci_conf, 0x5845); } else { pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT); pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME); } pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS); pcie_endpoint_cap_init(pci_dev, 0x80); bar_size = QEMU_ALIGN_UP(n->reg_size, 4 * KiB); msix_table_offset = bar_size; msix_table_size = PCI_MSIX_ENTRY_SIZE * n->params.msix_qsize; bar_size += msix_table_size; bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); msix_pba_offset = bar_size; msix_pba_size = QEMU_ALIGN_UP(n->params.msix_qsize, 64) / 8; bar_size += msix_pba_size; bar_size = pow2ceil(bar_size); memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size); memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme", n->reg_size); memory_region_add_subregion(&n->bar0, 0, &n->iomem); pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0); ret = msix_init(pci_dev, n->params.msix_qsize, &n->bar0, 0, msix_table_offset, &n->bar0, 0, msix_pba_offset, 0, &err); if (ret < 0) { if (ret == -ENOTSUP) { warn_report_err(err); } else { error_propagate(errp, err); return ret; } } if (n->params.cmb_size_mb) { nvme_init_cmb(n, pci_dev); } if (n->pmr.dev) { nvme_init_pmr(n, pci_dev); } return 0; } static void nvme_init_subnqn(NvmeCtrl *n) { NvmeSubsystem *subsys = n->subsys; NvmeIdCtrl *id = &n->id_ctrl; if (!subsys) { snprintf((char *)id->subnqn, sizeof(id->subnqn), "nqn.2019-08.org.qemu:%s", n->params.serial); } else { pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn); } } static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev) { NvmeIdCtrl *id = &n->id_ctrl; uint8_t *pci_conf = pci_dev->config; id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID)); id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID)); strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' '); strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' '); strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' '); id->cntlid = cpu_to_le16(n->cntlid); id->rab = 6; if (n->params.use_intel_id) { id->ieee[0] = 0xb3; id->ieee[1] = 0x02; id->ieee[2] = 0x00; } else { id->ieee[0] = 0x00; id->ieee[1] = 0x54; id->ieee[2] = 0x52; } id->mdts = n->params.mdts; id->ver = cpu_to_le32(NVME_SPEC_VER); id->oacs = cpu_to_le16(0); id->cntrltype = 0x1; /* * Because the controller always completes the Abort command immediately, * there can never be more than one concurrently executing Abort command, * so this value is never used for anything. Note that there can easily be * many Abort commands in the queues, but they are not considered * "executing" until processed by nvme_abort. * * The specification recommends a value of 3 for Abort Command Limit (four * concurrently outstanding Abort commands), so lets use that though it is * inconsequential. */ id->acl = 3; id->aerl = n->params.aerl; id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO; id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED; /* recommended default value (~70 C) */ id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING); id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL); id->sqes = (0x6 << 4) | 0x6; id->cqes = (0x4 << 4) | 0x4; id->nn = cpu_to_le32(n->num_namespaces); id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP | NVME_ONCS_FEATURES | NVME_ONCS_DSM | NVME_ONCS_COMPARE | NVME_ONCS_COPY); /* * NOTE: If this device ever supports a command set that does NOT use 0x0 * as a Flush-equivalent operation, support for the broadcast NSID in Flush * should probably be removed. * * See comment in nvme_io_cmd. */ id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT; id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0); id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN | NVME_CTRL_SGLS_BITBUCKET); nvme_init_subnqn(n); id->psd[0].mp = cpu_to_le16(0x9c4); id->psd[0].enlat = cpu_to_le32(0x10); id->psd[0].exlat = cpu_to_le32(0x4); if (n->subsys) { id->cmic |= NVME_CMIC_MULTI_CTRL; } NVME_CAP_SET_MQES(n->bar.cap, 0x7ff); NVME_CAP_SET_CQR(n->bar.cap, 1); NVME_CAP_SET_TO(n->bar.cap, 0xf); NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_NVM); NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_CSI_SUPP); NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_ADMIN_ONLY); NVME_CAP_SET_MPSMAX(n->bar.cap, 4); NVME_CAP_SET_CMBS(n->bar.cap, n->params.cmb_size_mb ? 1 : 0); NVME_CAP_SET_PMRS(n->bar.cap, n->pmr.dev ? 1 : 0); n->bar.vs = NVME_SPEC_VER; n->bar.intmc = n->bar.intms = 0; } static int nvme_init_subsys(NvmeCtrl *n, Error **errp) { int cntlid; if (!n->subsys) { return 0; } cntlid = nvme_subsys_register_ctrl(n, errp); if (cntlid < 0) { return -1; } n->cntlid = cntlid; return 0; } static void nvme_realize(PCIDevice *pci_dev, Error **errp) { NvmeCtrl *n = NVME(pci_dev); NvmeNamespace *ns; Error *local_err = NULL; nvme_check_constraints(n, &local_err); if (local_err) { error_propagate(errp, local_err); return; } qbus_create_inplace(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, &pci_dev->qdev, n->parent_obj.qdev.id); nvme_init_state(n); if (nvme_init_pci(n, pci_dev, errp)) { return; } if (nvme_init_subsys(n, errp)) { error_propagate(errp, local_err); return; } nvme_init_ctrl(n, pci_dev); /* setup a namespace if the controller drive property was given */ if (n->namespace.blkconf.blk) { ns = &n->namespace; ns->params.nsid = 1; if (nvme_ns_setup(ns, errp)) { return; } if (nvme_register_namespace(n, ns, errp)) { return; } } } static void nvme_exit(PCIDevice *pci_dev) { NvmeCtrl *n = NVME(pci_dev); NvmeNamespace *ns; int i; nvme_ctrl_reset(n); for (i = 1; i <= n->num_namespaces; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } nvme_ns_cleanup(ns); } g_free(n->cq); g_free(n->sq); g_free(n->aer_reqs); if (n->params.cmb_size_mb) { g_free(n->cmb.buf); } if (n->pmr.dev) { host_memory_backend_set_mapped(n->pmr.dev, false); } msix_uninit_exclusive_bar(pci_dev); } static Property nvme_props[] = { DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf), DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND, HostMemoryBackend *), DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS, NvmeSubsystem *), DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial), DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0), DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0), DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64), DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65), DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3), DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64), DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7), DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false), DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false), DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0), DEFINE_PROP_END_OF_LIST(), }; static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { NvmeCtrl *n = NVME(obj); uint8_t value = n->smart_critical_warning; visit_type_uint8(v, name, &value, errp); } static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { NvmeCtrl *n = NVME(obj); uint8_t value, old_value, cap = 0, index, event; if (!visit_type_uint8(v, name, &value, errp)) { return; } cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA; if (NVME_CAP_PMRS(n->bar.cap)) { cap |= NVME_SMART_PMR_UNRELIABLE; } if ((value & cap) != value) { error_setg(errp, "unsupported smart critical warning bits: 0x%x", value & ~cap); return; } old_value = n->smart_critical_warning; n->smart_critical_warning = value; /* only inject new bits of smart critical warning */ for (index = 0; index < NVME_SMART_WARN_MAX; index++) { event = 1 << index; if (value & ~old_value & event) nvme_smart_event(n, event); } } static const VMStateDescription nvme_vmstate = { .name = "nvme", .unmigratable = 1, }; static void nvme_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc); pc->realize = nvme_realize; pc->exit = nvme_exit; pc->class_id = PCI_CLASS_STORAGE_EXPRESS; pc->revision = 2; set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); dc->desc = "Non-Volatile Memory Express"; device_class_set_props(dc, nvme_props); dc->vmsd = &nvme_vmstate; } static void nvme_instance_init(Object *obj) { NvmeCtrl *n = NVME(obj); if (n->namespace.blkconf.blk) { device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex, "bootindex", "/namespace@1,0", DEVICE(obj)); } object_property_add(obj, "smart_critical_warning", "uint8", nvme_get_smart_warning, nvme_set_smart_warning, NULL, NULL); } static const TypeInfo nvme_info = { .name = TYPE_NVME, .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(NvmeCtrl), .instance_init = nvme_instance_init, .class_init = nvme_class_init, .interfaces = (InterfaceInfo[]) { { INTERFACE_PCIE_DEVICE }, { } }, }; static const TypeInfo nvme_bus_info = { .name = TYPE_NVME_BUS, .parent = TYPE_BUS, .instance_size = sizeof(NvmeBus), }; static void nvme_register_types(void) { type_register_static(&nvme_info); type_register_static(&nvme_bus_info); } type_init(nvme_register_types)