/* * Copyright (C) 2010 Red Hat, Inc. * * written by Gerd Hoffmann * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu/atomic.h" #include "hw/hw.h" #include "hw/pci/pci.h" #include "intel-hda.h" #include "intel-hda-defs.h" #include "audio/audio.h" #include "trace.h" /* -------------------------------------------------------------------------- */ typedef struct desc_param { uint32_t id; uint32_t val; } desc_param; typedef struct desc_node { uint32_t nid; const char *name; const desc_param *params; uint32_t nparams; uint32_t config; uint32_t pinctl; uint32_t *conn; uint32_t stindex; } desc_node; typedef struct desc_codec { const char *name; uint32_t iid; const desc_node *nodes; uint32_t nnodes; } desc_codec; static const desc_param* hda_codec_find_param(const desc_node *node, uint32_t id) { int i; for (i = 0; i < node->nparams; i++) { if (node->params[i].id == id) { return &node->params[i]; } } return NULL; } static const desc_node* hda_codec_find_node(const desc_codec *codec, uint32_t nid) { int i; for (i = 0; i < codec->nnodes; i++) { if (codec->nodes[i].nid == nid) { return &codec->nodes[i]; } } return NULL; } static void hda_codec_parse_fmt(uint32_t format, struct audsettings *as) { if (format & AC_FMT_TYPE_NON_PCM) { return; } as->freq = (format & AC_FMT_BASE_44K) ? 44100 : 48000; switch ((format & AC_FMT_MULT_MASK) >> AC_FMT_MULT_SHIFT) { case 1: as->freq *= 2; break; case 2: as->freq *= 3; break; case 3: as->freq *= 4; break; } switch ((format & AC_FMT_DIV_MASK) >> AC_FMT_DIV_SHIFT) { case 1: as->freq /= 2; break; case 2: as->freq /= 3; break; case 3: as->freq /= 4; break; case 4: as->freq /= 5; break; case 5: as->freq /= 6; break; case 6: as->freq /= 7; break; case 7: as->freq /= 8; break; } switch (format & AC_FMT_BITS_MASK) { case AC_FMT_BITS_8: as->fmt = AUD_FMT_S8; break; case AC_FMT_BITS_16: as->fmt = AUD_FMT_S16; break; case AC_FMT_BITS_32: as->fmt = AUD_FMT_S32; break; } as->nchannels = ((format & AC_FMT_CHAN_MASK) >> AC_FMT_CHAN_SHIFT) + 1; } /* -------------------------------------------------------------------------- */ /* * HDA codec descriptions */ /* some defines */ #define QEMU_HDA_ID_VENDOR 0x1af4 #define QEMU_HDA_PCM_FORMATS (AC_SUPPCM_BITS_16 | \ 0x1fc /* 16 -> 96 kHz */) #define QEMU_HDA_AMP_NONE (0) #define QEMU_HDA_AMP_STEPS 0x4a #define PARAM mixemu #define HDA_MIXER #include "hda-codec-common.h" #define PARAM nomixemu #include "hda-codec-common.h" #define HDA_TIMER_TICKS (SCALE_MS) #define B_SIZE sizeof(st->buf) #define B_MASK (sizeof(st->buf) - 1) /* -------------------------------------------------------------------------- */ static const char *fmt2name[] = { [ AUD_FMT_U8 ] = "PCM-U8", [ AUD_FMT_S8 ] = "PCM-S8", [ AUD_FMT_U16 ] = "PCM-U16", [ AUD_FMT_S16 ] = "PCM-S16", [ AUD_FMT_U32 ] = "PCM-U32", [ AUD_FMT_S32 ] = "PCM-S32", }; typedef struct HDAAudioState HDAAudioState; typedef struct HDAAudioStream HDAAudioStream; struct HDAAudioStream { HDAAudioState *state; const desc_node *node; bool output, running; uint32_t stream; uint32_t channel; uint32_t format; uint32_t gain_left, gain_right; bool mute_left, mute_right; struct audsettings as; union { SWVoiceIn *in; SWVoiceOut *out; } voice; uint8_t compat_buf[HDA_BUFFER_SIZE]; uint32_t compat_bpos; uint8_t buf[8192]; /* size must be power of two */ int64_t rpos; int64_t wpos; QEMUTimer *buft; int64_t buft_start; }; #define TYPE_HDA_AUDIO "hda-audio" #define HDA_AUDIO(obj) OBJECT_CHECK(HDAAudioState, (obj), TYPE_HDA_AUDIO) struct HDAAudioState { HDACodecDevice hda; const char *name; QEMUSoundCard card; const desc_codec *desc; HDAAudioStream st[4]; bool running_compat[16]; bool running_real[2 * 16]; /* properties */ uint32_t debug; bool mixer; bool use_timer; }; static inline int64_t hda_bytes_per_second(HDAAudioStream *st) { return 2 * st->as.nchannels * st->as.freq; } static inline void hda_timer_sync_adjust(HDAAudioStream *st, int64_t target_pos) { int64_t limit = B_SIZE / 8; int64_t corr = 0; if (target_pos > limit) { corr = HDA_TIMER_TICKS; } if (target_pos < -limit) { corr = -HDA_TIMER_TICKS; } if (corr == 0) { return; } trace_hda_audio_adjust(st->node->name, target_pos); atomic_fetch_add(&st->buft_start, corr); } static void hda_audio_input_timer(void *opaque) { HDAAudioStream *st = opaque; int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); int64_t buft_start = atomic_fetch_add(&st->buft_start, 0); int64_t wpos = atomic_fetch_add(&st->wpos, 0); int64_t rpos = atomic_fetch_add(&st->rpos, 0); int64_t wanted_rpos = hda_bytes_per_second(st) * (now - buft_start) / NANOSECONDS_PER_SECOND; wanted_rpos &= -4; /* IMPORTANT! clip to frames */ if (wanted_rpos <= rpos) { /* we already transmitted the data */ goto out_timer; } int64_t to_transfer = audio_MIN(wpos - rpos, wanted_rpos - rpos); while (to_transfer) { uint32_t start = (rpos & B_MASK); uint32_t chunk = audio_MIN(B_SIZE - start, to_transfer); int rc = hda_codec_xfer( &st->state->hda, st->stream, false, st->buf + start, chunk); if (!rc) { break; } rpos += chunk; to_transfer -= chunk; atomic_fetch_add(&st->rpos, chunk); } out_timer: if (st->running) { timer_mod_anticipate_ns(st->buft, now + HDA_TIMER_TICKS); } } static void hda_audio_input_cb(void *opaque, int avail) { HDAAudioStream *st = opaque; int64_t wpos = atomic_fetch_add(&st->wpos, 0); int64_t rpos = atomic_fetch_add(&st->rpos, 0); int64_t to_transfer = audio_MIN(B_SIZE - (wpos - rpos), avail); hda_timer_sync_adjust(st, -((wpos - rpos) + to_transfer - (B_SIZE >> 1))); while (to_transfer) { uint32_t start = (uint32_t) (wpos & B_MASK); uint32_t chunk = (uint32_t) audio_MIN(B_SIZE - start, to_transfer); uint32_t read = AUD_read(st->voice.in, st->buf + start, chunk); wpos += read; to_transfer -= read; atomic_fetch_add(&st->wpos, read); if (chunk != read) { break; } } } static void hda_audio_output_timer(void *opaque) { HDAAudioStream *st = opaque; int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); int64_t buft_start = atomic_fetch_add(&st->buft_start, 0); int64_t wpos = atomic_fetch_add(&st->wpos, 0); int64_t rpos = atomic_fetch_add(&st->rpos, 0); int64_t wanted_wpos = hda_bytes_per_second(st) * (now - buft_start) / NANOSECONDS_PER_SECOND; wanted_wpos &= -4; /* IMPORTANT! clip to frames */ if (wanted_wpos <= wpos) { /* we already received the data */ goto out_timer; } int64_t to_transfer = audio_MIN(B_SIZE - (wpos - rpos), wanted_wpos - wpos); while (to_transfer) { uint32_t start = (wpos & B_MASK); uint32_t chunk = audio_MIN(B_SIZE - start, to_transfer); int rc = hda_codec_xfer( &st->state->hda, st->stream, true, st->buf + start, chunk); if (!rc) { break; } wpos += chunk; to_transfer -= chunk; atomic_fetch_add(&st->wpos, chunk); } out_timer: if (st->running) { timer_mod_anticipate_ns(st->buft, now + HDA_TIMER_TICKS); } } static void hda_audio_output_cb(void *opaque, int avail) { HDAAudioStream *st = opaque; int64_t wpos = atomic_fetch_add(&st->wpos, 0); int64_t rpos = atomic_fetch_add(&st->rpos, 0); int64_t to_transfer = audio_MIN(wpos - rpos, avail); if (wpos - rpos == B_SIZE) { /* drop buffer, reset timer adjust */ st->rpos = 0; st->wpos = 0; st->buft_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); trace_hda_audio_overrun(st->node->name); return; } hda_timer_sync_adjust(st, (wpos - rpos) - to_transfer - (B_SIZE >> 1)); while (to_transfer) { uint32_t start = (uint32_t) (rpos & B_MASK); uint32_t chunk = (uint32_t) audio_MIN(B_SIZE - start, to_transfer); uint32_t written = AUD_write(st->voice.out, st->buf + start, chunk); rpos += written; to_transfer -= written; atomic_fetch_add(&st->rpos, written); if (chunk != written) { break; } } } static void hda_audio_compat_input_cb(void *opaque, int avail) { HDAAudioStream *st = opaque; int recv = 0; int len; bool rc; while (avail - recv >= sizeof(st->compat_buf)) { if (st->compat_bpos != sizeof(st->compat_buf)) { len = AUD_read(st->voice.in, st->compat_buf + st->compat_bpos, sizeof(st->compat_buf) - st->compat_bpos); st->compat_bpos += len; recv += len; if (st->compat_bpos != sizeof(st->compat_buf)) { break; } } rc = hda_codec_xfer(&st->state->hda, st->stream, false, st->compat_buf, sizeof(st->compat_buf)); if (!rc) { break; } st->compat_bpos = 0; } } static void hda_audio_compat_output_cb(void *opaque, int avail) { HDAAudioStream *st = opaque; int sent = 0; int len; bool rc; while (avail - sent >= sizeof(st->compat_buf)) { if (st->compat_bpos == sizeof(st->compat_buf)) { rc = hda_codec_xfer(&st->state->hda, st->stream, true, st->compat_buf, sizeof(st->compat_buf)); if (!rc) { break; } st->compat_bpos = 0; } len = AUD_write(st->voice.out, st->compat_buf + st->compat_bpos, sizeof(st->compat_buf) - st->compat_bpos); st->compat_bpos += len; sent += len; if (st->compat_bpos != sizeof(st->compat_buf)) { break; } } } static void hda_audio_set_running(HDAAudioStream *st, bool running) { if (st->node == NULL) { return; } if (st->running == running) { return; } st->running = running; trace_hda_audio_running(st->node->name, st->stream, st->running); if (st->state->use_timer) { if (running) { int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); st->rpos = 0; st->wpos = 0; st->buft_start = now; timer_mod_anticipate_ns(st->buft, now + HDA_TIMER_TICKS); } else { timer_del(st->buft); } } if (st->output) { AUD_set_active_out(st->voice.out, st->running); } else { AUD_set_active_in(st->voice.in, st->running); } } static void hda_audio_set_amp(HDAAudioStream *st) { bool muted; uint32_t left, right; if (st->node == NULL) { return; } muted = st->mute_left && st->mute_right; left = st->mute_left ? 0 : st->gain_left; right = st->mute_right ? 0 : st->gain_right; left = left * 255 / QEMU_HDA_AMP_STEPS; right = right * 255 / QEMU_HDA_AMP_STEPS; if (!st->state->mixer) { return; } if (st->output) { AUD_set_volume_out(st->voice.out, muted, left, right); } else { AUD_set_volume_in(st->voice.in, muted, left, right); } } static void hda_audio_setup(HDAAudioStream *st) { bool use_timer = st->state->use_timer; audio_callback_fn cb; if (st->node == NULL) { return; } trace_hda_audio_format(st->node->name, st->as.nchannels, fmt2name[st->as.fmt], st->as.freq); if (st->output) { if (use_timer) { cb = hda_audio_output_cb; st->buft = timer_new_ns(QEMU_CLOCK_VIRTUAL, hda_audio_output_timer, st); } else { cb = hda_audio_compat_output_cb; } st->voice.out = AUD_open_out(&st->state->card, st->voice.out, st->node->name, st, cb, &st->as); } else { if (use_timer) { cb = hda_audio_input_cb; st->buft = timer_new_ns(QEMU_CLOCK_VIRTUAL, hda_audio_input_timer, st); } else { cb = hda_audio_compat_input_cb; } st->voice.in = AUD_open_in(&st->state->card, st->voice.in, st->node->name, st, cb, &st->as); } } static void hda_audio_command(HDACodecDevice *hda, uint32_t nid, uint32_t data) { HDAAudioState *a = HDA_AUDIO(hda); HDAAudioStream *st; const desc_node *node = NULL; const desc_param *param; uint32_t verb, payload, response, count, shift; if ((data & 0x70000) == 0x70000) { /* 12/8 id/payload */ verb = (data >> 8) & 0xfff; payload = data & 0x00ff; } else { /* 4/16 id/payload */ verb = (data >> 8) & 0xf00; payload = data & 0xffff; } node = hda_codec_find_node(a->desc, nid); if (node == NULL) { goto fail; } dprint(a, 2, "%s: nid %d (%s), verb 0x%x, payload 0x%x\n", __func__, nid, node->name, verb, payload); switch (verb) { /* all nodes */ case AC_VERB_PARAMETERS: param = hda_codec_find_param(node, payload); if (param == NULL) { goto fail; } hda_codec_response(hda, true, param->val); break; case AC_VERB_GET_SUBSYSTEM_ID: hda_codec_response(hda, true, a->desc->iid); break; /* all functions */ case AC_VERB_GET_CONNECT_LIST: param = hda_codec_find_param(node, AC_PAR_CONNLIST_LEN); count = param ? param->val : 0; response = 0; shift = 0; while (payload < count && shift < 32) { response |= node->conn[payload] << shift; payload++; shift += 8; } hda_codec_response(hda, true, response); break; /* pin widget */ case AC_VERB_GET_CONFIG_DEFAULT: hda_codec_response(hda, true, node->config); break; case AC_VERB_GET_PIN_WIDGET_CONTROL: hda_codec_response(hda, true, node->pinctl); break; case AC_VERB_SET_PIN_WIDGET_CONTROL: if (node->pinctl != payload) { dprint(a, 1, "unhandled pin control bit\n"); } hda_codec_response(hda, true, 0); break; /* audio in/out widget */ case AC_VERB_SET_CHANNEL_STREAMID: st = a->st + node->stindex; if (st->node == NULL) { goto fail; } hda_audio_set_running(st, false); st->stream = (payload >> 4) & 0x0f; st->channel = payload & 0x0f; dprint(a, 2, "%s: stream %d, channel %d\n", st->node->name, st->stream, st->channel); hda_audio_set_running(st, a->running_real[st->output * 16 + st->stream]); hda_codec_response(hda, true, 0); break; case AC_VERB_GET_CONV: st = a->st + node->stindex; if (st->node == NULL) { goto fail; } response = st->stream << 4 | st->channel; hda_codec_response(hda, true, response); break; case AC_VERB_SET_STREAM_FORMAT: st = a->st + node->stindex; if (st->node == NULL) { goto fail; } st->format = payload; hda_codec_parse_fmt(st->format, &st->as); hda_audio_setup(st); hda_codec_response(hda, true, 0); break; case AC_VERB_GET_STREAM_FORMAT: st = a->st + node->stindex; if (st->node == NULL) { goto fail; } hda_codec_response(hda, true, st->format); break; case AC_VERB_GET_AMP_GAIN_MUTE: st = a->st + node->stindex; if (st->node == NULL) { goto fail; } if (payload & AC_AMP_GET_LEFT) { response = st->gain_left | (st->mute_left ? AC_AMP_MUTE : 0); } else { response = st->gain_right | (st->mute_right ? AC_AMP_MUTE : 0); } hda_codec_response(hda, true, response); break; case AC_VERB_SET_AMP_GAIN_MUTE: st = a->st + node->stindex; if (st->node == NULL) { goto fail; } dprint(a, 1, "amp (%s): %s%s%s%s index %d gain %3d %s\n", st->node->name, (payload & AC_AMP_SET_OUTPUT) ? "o" : "-", (payload & AC_AMP_SET_INPUT) ? "i" : "-", (payload & AC_AMP_SET_LEFT) ? "l" : "-", (payload & AC_AMP_SET_RIGHT) ? "r" : "-", (payload & AC_AMP_SET_INDEX) >> AC_AMP_SET_INDEX_SHIFT, (payload & AC_AMP_GAIN), (payload & AC_AMP_MUTE) ? "muted" : ""); if (payload & AC_AMP_SET_LEFT) { st->gain_left = payload & AC_AMP_GAIN; st->mute_left = payload & AC_AMP_MUTE; } if (payload & AC_AMP_SET_RIGHT) { st->gain_right = payload & AC_AMP_GAIN; st->mute_right = payload & AC_AMP_MUTE; } hda_audio_set_amp(st); hda_codec_response(hda, true, 0); break; /* not supported */ case AC_VERB_SET_POWER_STATE: case AC_VERB_GET_POWER_STATE: case AC_VERB_GET_SDI_SELECT: hda_codec_response(hda, true, 0); break; default: goto fail; } return; fail: dprint(a, 1, "%s: not handled: nid %d (%s), verb 0x%x, payload 0x%x\n", __func__, nid, node ? node->name : "?", verb, payload); hda_codec_response(hda, true, 0); } static void hda_audio_stream(HDACodecDevice *hda, uint32_t stnr, bool running, bool output) { HDAAudioState *a = HDA_AUDIO(hda); int s; a->running_compat[stnr] = running; a->running_real[output * 16 + stnr] = running; for (s = 0; s < ARRAY_SIZE(a->st); s++) { if (a->st[s].node == NULL) { continue; } if (a->st[s].output != output) { continue; } if (a->st[s].stream != stnr) { continue; } hda_audio_set_running(&a->st[s], running); } } static int hda_audio_init(HDACodecDevice *hda, const struct desc_codec *desc) { HDAAudioState *a = HDA_AUDIO(hda); HDAAudioStream *st; const desc_node *node; const desc_param *param; uint32_t i, type; a->desc = desc; a->name = object_get_typename(OBJECT(a)); dprint(a, 1, "%s: cad %d\n", __func__, a->hda.cad); AUD_register_card("hda", &a->card); for (i = 0; i < a->desc->nnodes; i++) { node = a->desc->nodes + i; param = hda_codec_find_param(node, AC_PAR_AUDIO_WIDGET_CAP); if (param == NULL) { continue; } type = (param->val & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT; switch (type) { case AC_WID_AUD_OUT: case AC_WID_AUD_IN: assert(node->stindex < ARRAY_SIZE(a->st)); st = a->st + node->stindex; st->state = a; st->node = node; if (type == AC_WID_AUD_OUT) { /* unmute output by default */ st->gain_left = QEMU_HDA_AMP_STEPS; st->gain_right = QEMU_HDA_AMP_STEPS; st->compat_bpos = sizeof(st->compat_buf); st->output = true; } else { st->output = false; } st->format = AC_FMT_TYPE_PCM | AC_FMT_BITS_16 | (1 << AC_FMT_CHAN_SHIFT); hda_codec_parse_fmt(st->format, &st->as); hda_audio_setup(st); break; } } return 0; } static void hda_audio_exit(HDACodecDevice *hda) { HDAAudioState *a = HDA_AUDIO(hda); HDAAudioStream *st; int i; dprint(a, 1, "%s\n", __func__); for (i = 0; i < ARRAY_SIZE(a->st); i++) { st = a->st + i; if (st->node == NULL) { continue; } if (a->use_timer) { timer_del(st->buft); } if (st->output) { AUD_close_out(&a->card, st->voice.out); } else { AUD_close_in(&a->card, st->voice.in); } } AUD_remove_card(&a->card); } static int hda_audio_post_load(void *opaque, int version) { HDAAudioState *a = opaque; HDAAudioStream *st; int i; dprint(a, 1, "%s\n", __func__); if (version == 1) { /* assume running_compat[] is for output streams */ for (i = 0; i < ARRAY_SIZE(a->running_compat); i++) a->running_real[16 + i] = a->running_compat[i]; } for (i = 0; i < ARRAY_SIZE(a->st); i++) { st = a->st + i; if (st->node == NULL) continue; hda_codec_parse_fmt(st->format, &st->as); hda_audio_setup(st); hda_audio_set_amp(st); hda_audio_set_running(st, a->running_real[st->output * 16 + st->stream]); } return 0; } static void hda_audio_reset(DeviceState *dev) { HDAAudioState *a = HDA_AUDIO(dev); HDAAudioStream *st; int i; dprint(a, 1, "%s\n", __func__); for (i = 0; i < ARRAY_SIZE(a->st); i++) { st = a->st + i; if (st->node != NULL) { hda_audio_set_running(st, false); } } } static bool vmstate_hda_audio_stream_buf_needed(void *opaque) { HDAAudioStream *st = opaque; return st->state->use_timer; } static const VMStateDescription vmstate_hda_audio_stream_buf = { .name = "hda-audio-stream/buffer", .version_id = 1, .needed = vmstate_hda_audio_stream_buf_needed, .fields = (VMStateField[]) { VMSTATE_BUFFER(buf, HDAAudioStream), VMSTATE_INT64(rpos, HDAAudioStream), VMSTATE_INT64(wpos, HDAAudioStream), VMSTATE_TIMER_PTR(buft, HDAAudioStream), VMSTATE_INT64(buft_start, HDAAudioStream), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_hda_audio_stream = { .name = "hda-audio-stream", .version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(stream, HDAAudioStream), VMSTATE_UINT32(channel, HDAAudioStream), VMSTATE_UINT32(format, HDAAudioStream), VMSTATE_UINT32(gain_left, HDAAudioStream), VMSTATE_UINT32(gain_right, HDAAudioStream), VMSTATE_BOOL(mute_left, HDAAudioStream), VMSTATE_BOOL(mute_right, HDAAudioStream), VMSTATE_UINT32(compat_bpos, HDAAudioStream), VMSTATE_BUFFER(compat_buf, HDAAudioStream), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription * []) { &vmstate_hda_audio_stream_buf, NULL } }; static const VMStateDescription vmstate_hda_audio = { .name = "hda-audio", .version_id = 2, .post_load = hda_audio_post_load, .fields = (VMStateField[]) { VMSTATE_STRUCT_ARRAY(st, HDAAudioState, 4, 0, vmstate_hda_audio_stream, HDAAudioStream), VMSTATE_BOOL_ARRAY(running_compat, HDAAudioState, 16), VMSTATE_BOOL_ARRAY_V(running_real, HDAAudioState, 2 * 16, 2), VMSTATE_END_OF_LIST() } }; static Property hda_audio_properties[] = { DEFINE_PROP_UINT32("debug", HDAAudioState, debug, 0), DEFINE_PROP_BOOL("mixer", HDAAudioState, mixer, true), DEFINE_PROP_BOOL("use-timer", HDAAudioState, use_timer, false), DEFINE_PROP_END_OF_LIST(), }; static int hda_audio_init_output(HDACodecDevice *hda) { HDAAudioState *a = HDA_AUDIO(hda); if (!a->mixer) { return hda_audio_init(hda, &output_nomixemu); } else { return hda_audio_init(hda, &output_mixemu); } } static int hda_audio_init_duplex(HDACodecDevice *hda) { HDAAudioState *a = HDA_AUDIO(hda); if (!a->mixer) { return hda_audio_init(hda, &duplex_nomixemu); } else { return hda_audio_init(hda, &duplex_mixemu); } } static int hda_audio_init_micro(HDACodecDevice *hda) { HDAAudioState *a = HDA_AUDIO(hda); if (!a->mixer) { return hda_audio_init(hda, µ_nomixemu); } else { return hda_audio_init(hda, µ_mixemu); } } static void hda_audio_base_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); HDACodecDeviceClass *k = HDA_CODEC_DEVICE_CLASS(klass); k->exit = hda_audio_exit; k->command = hda_audio_command; k->stream = hda_audio_stream; set_bit(DEVICE_CATEGORY_SOUND, dc->categories); dc->reset = hda_audio_reset; dc->vmsd = &vmstate_hda_audio; dc->props = hda_audio_properties; } static const TypeInfo hda_audio_info = { .name = TYPE_HDA_AUDIO, .parent = TYPE_HDA_CODEC_DEVICE, .class_init = hda_audio_base_class_init, .abstract = true, }; static void hda_audio_output_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); HDACodecDeviceClass *k = HDA_CODEC_DEVICE_CLASS(klass); k->init = hda_audio_init_output; dc->desc = "HDA Audio Codec, output-only (line-out)"; } static const TypeInfo hda_audio_output_info = { .name = "hda-output", .parent = TYPE_HDA_AUDIO, .instance_size = sizeof(HDAAudioState), .class_init = hda_audio_output_class_init, }; static void hda_audio_duplex_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); HDACodecDeviceClass *k = HDA_CODEC_DEVICE_CLASS(klass); k->init = hda_audio_init_duplex; dc->desc = "HDA Audio Codec, duplex (line-out, line-in)"; } static const TypeInfo hda_audio_duplex_info = { .name = "hda-duplex", .parent = TYPE_HDA_AUDIO, .instance_size = sizeof(HDAAudioState), .class_init = hda_audio_duplex_class_init, }; static void hda_audio_micro_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); HDACodecDeviceClass *k = HDA_CODEC_DEVICE_CLASS(klass); k->init = hda_audio_init_micro; dc->desc = "HDA Audio Codec, duplex (speaker, microphone)"; } static const TypeInfo hda_audio_micro_info = { .name = "hda-micro", .parent = TYPE_HDA_AUDIO, .instance_size = sizeof(HDAAudioState), .class_init = hda_audio_micro_class_init, }; static void hda_audio_register_types(void) { type_register_static(&hda_audio_info); type_register_static(&hda_audio_output_info); type_register_static(&hda_audio_duplex_info); type_register_static(&hda_audio_micro_info); } type_init(hda_audio_register_types)