/* * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP * * Copyright (c) 2006-2007 CodeSourcery. * Copyright (c) 2011 Linaro Limited * Written by Paul Brook, Peter Maydell * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see <http://www.gnu.org/licenses/>. */ #include "hw/sysbus.h" #include "qemu/timer.h" /* This device implements the per-cpu private timer and watchdog block * which is used in both the ARM11MPCore and Cortex-A9MP. */ #define MAX_CPUS 4 /* State of a single timer or watchdog block */ typedef struct { uint32_t count; uint32_t load; uint32_t control; uint32_t status; int64_t tick; QEMUTimer *timer; qemu_irq irq; MemoryRegion iomem; } TimerBlock; typedef struct { SysBusDevice busdev; uint32_t num_cpu; TimerBlock timerblock[MAX_CPUS]; MemoryRegion iomem; } ARMMPTimerState; static inline int get_current_cpu(ARMMPTimerState *s) { CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env); if (cpu_single_cpu->cpu_index >= s->num_cpu) { hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n", s->num_cpu, cpu_single_cpu->cpu_index); } return cpu_single_cpu->cpu_index; } static inline void timerblock_update_irq(TimerBlock *tb) { qemu_set_irq(tb->irq, tb->status); } /* Return conversion factor from mpcore timer ticks to qemu timer ticks. */ static inline uint32_t timerblock_scale(TimerBlock *tb) { return (((tb->control >> 8) & 0xff) + 1) * 10; } static void timerblock_reload(TimerBlock *tb, int restart) { if (tb->count == 0) { return; } if (restart) { tb->tick = qemu_get_clock_ns(vm_clock); } tb->tick += (int64_t)tb->count * timerblock_scale(tb); qemu_mod_timer(tb->timer, tb->tick); } static void timerblock_tick(void *opaque) { TimerBlock *tb = (TimerBlock *)opaque; tb->status = 1; if (tb->control & 2) { tb->count = tb->load; timerblock_reload(tb, 0); } else { tb->count = 0; } timerblock_update_irq(tb); } static uint64_t timerblock_read(void *opaque, hwaddr addr, unsigned size) { TimerBlock *tb = (TimerBlock *)opaque; int64_t val; switch (addr) { case 0: /* Load */ return tb->load; case 4: /* Counter. */ if (((tb->control & 1) == 0) || (tb->count == 0)) { return 0; } /* Slow and ugly, but hopefully won't happen too often. */ val = tb->tick - qemu_get_clock_ns(vm_clock); val /= timerblock_scale(tb); if (val < 0) { val = 0; } return val; case 8: /* Control. */ return tb->control; case 12: /* Interrupt status. */ return tb->status; default: return 0; } } static void timerblock_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { TimerBlock *tb = (TimerBlock *)opaque; int64_t old; switch (addr) { case 0: /* Load */ tb->load = value; /* Fall through. */ case 4: /* Counter. */ if ((tb->control & 1) && tb->count) { /* Cancel the previous timer. */ qemu_del_timer(tb->timer); } tb->count = value; if (tb->control & 1) { timerblock_reload(tb, 1); } break; case 8: /* Control. */ old = tb->control; tb->control = value; if (((old & 1) == 0) && (value & 1)) { if (tb->count == 0 && (tb->control & 2)) { tb->count = tb->load; } timerblock_reload(tb, 1); } break; case 12: /* Interrupt status. */ tb->status &= ~value; timerblock_update_irq(tb); break; } } /* Wrapper functions to implement the "read timer/watchdog for * the current CPU" memory regions. */ static uint64_t arm_thistimer_read(void *opaque, hwaddr addr, unsigned size) { ARMMPTimerState *s = (ARMMPTimerState *)opaque; int id = get_current_cpu(s); return timerblock_read(&s->timerblock[id], addr, size); } static void arm_thistimer_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { ARMMPTimerState *s = (ARMMPTimerState *)opaque; int id = get_current_cpu(s); timerblock_write(&s->timerblock[id], addr, value, size); } static const MemoryRegionOps arm_thistimer_ops = { .read = arm_thistimer_read, .write = arm_thistimer_write, .valid = { .min_access_size = 4, .max_access_size = 4, }, .endianness = DEVICE_NATIVE_ENDIAN, }; static const MemoryRegionOps timerblock_ops = { .read = timerblock_read, .write = timerblock_write, .valid = { .min_access_size = 4, .max_access_size = 4, }, .endianness = DEVICE_NATIVE_ENDIAN, }; static void timerblock_reset(TimerBlock *tb) { tb->count = 0; tb->load = 0; tb->control = 0; tb->status = 0; tb->tick = 0; if (tb->timer) { qemu_del_timer(tb->timer); } } static void arm_mptimer_reset(DeviceState *dev) { ARMMPTimerState *s = FROM_SYSBUS(ARMMPTimerState, SYS_BUS_DEVICE(dev)); int i; for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) { timerblock_reset(&s->timerblock[i]); } } static int arm_mptimer_init(SysBusDevice *dev) { ARMMPTimerState *s = FROM_SYSBUS(ARMMPTimerState, dev); int i; if (s->num_cpu < 1 || s->num_cpu > MAX_CPUS) { hw_error("%s: num-cpu must be between 1 and %d\n", __func__, MAX_CPUS); } /* We implement one timer block per CPU, and expose multiple MMIO regions: * * region 0 is "timer for this core" * * region 1 is "timer for core 0" * * region 2 is "timer for core 1" * and so on. * The outgoing interrupt lines are * * timer for core 0 * * timer for core 1 * and so on. */ memory_region_init_io(&s->iomem, &arm_thistimer_ops, s, "arm_mptimer_timer", 0x20); sysbus_init_mmio(dev, &s->iomem); for (i = 0; i < s->num_cpu; i++) { TimerBlock *tb = &s->timerblock[i]; tb->timer = qemu_new_timer_ns(vm_clock, timerblock_tick, tb); sysbus_init_irq(dev, &tb->irq); memory_region_init_io(&tb->iomem, &timerblock_ops, tb, "arm_mptimer_timerblock", 0x20); sysbus_init_mmio(dev, &tb->iomem); } return 0; } static const VMStateDescription vmstate_timerblock = { .name = "arm_mptimer_timerblock", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(count, TimerBlock), VMSTATE_UINT32(load, TimerBlock), VMSTATE_UINT32(control, TimerBlock), VMSTATE_UINT32(status, TimerBlock), VMSTATE_INT64(tick, TimerBlock), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_arm_mptimer = { .name = "arm_mptimer", .version_id = 2, .minimum_version_id = 2, .fields = (VMStateField[]) { VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu, 2, vmstate_timerblock, TimerBlock), VMSTATE_END_OF_LIST() } }; static Property arm_mptimer_properties[] = { DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0), DEFINE_PROP_END_OF_LIST() }; static void arm_mptimer_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SysBusDeviceClass *sbc = SYS_BUS_DEVICE_CLASS(klass); sbc->init = arm_mptimer_init; dc->vmsd = &vmstate_arm_mptimer; dc->reset = arm_mptimer_reset; dc->no_user = 1; dc->props = arm_mptimer_properties; } static const TypeInfo arm_mptimer_info = { .name = "arm_mptimer", .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(ARMMPTimerState), .class_init = arm_mptimer_class_init, }; static void arm_mptimer_register_types(void) { type_register_static(&arm_mptimer_info); } type_init(arm_mptimer_register_types)