/* * Raspberry Pi emulation (c) 2012 Gregory Estrade * Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous * * Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft * Written by Andrew Baumann * * Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti * Upstream code cleanup (c) 2018 Pekka Enberg * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/cutils.h" #include "qapi/error.h" #include "hw/arm/boot.h" #include "hw/arm/bcm2836.h" #include "hw/arm/raspi_platform.h" #include "hw/registerfields.h" #include "qemu/error-report.h" #include "hw/boards.h" #include "hw/loader.h" #include "hw/arm/boot.h" #include "qom/object.h" #define TYPE_RASPI_MACHINE MACHINE_TYPE_NAME("raspi-common") OBJECT_DECLARE_SIMPLE_TYPE(RaspiMachineState, RASPI_MACHINE) #define SMPBOOT_ADDR 0x300 /* this should leave enough space for ATAGS */ #define MVBAR_ADDR 0x400 /* secure vectors */ #define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */ #define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */ #define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */ #define SPINTABLE_ADDR 0xd8 /* Pi 3 bootloader spintable */ /* Registered machine type (matches RPi Foundation bootloader and U-Boot) */ #define MACH_TYPE_BCM2708 3138 struct RaspiMachineState { /*< private >*/ RaspiBaseMachineState parent_obj; /*< public >*/ BCM283XState soc; }; /* * Board revision codes: * www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/ */ FIELD(REV_CODE, REVISION, 0, 4); FIELD(REV_CODE, TYPE, 4, 8); FIELD(REV_CODE, PROCESSOR, 12, 4); FIELD(REV_CODE, MANUFACTURER, 16, 4); FIELD(REV_CODE, MEMORY_SIZE, 20, 3); FIELD(REV_CODE, STYLE, 23, 1); typedef enum RaspiProcessorId { PROCESSOR_ID_BCM2835 = 0, PROCESSOR_ID_BCM2836 = 1, PROCESSOR_ID_BCM2837 = 2, } RaspiProcessorId; static const struct { const char *type; int cores_count; } soc_property[] = { [PROCESSOR_ID_BCM2835] = {TYPE_BCM2835, 1}, [PROCESSOR_ID_BCM2836] = {TYPE_BCM2836, BCM283X_NCPUS}, [PROCESSOR_ID_BCM2837] = {TYPE_BCM2837, BCM283X_NCPUS}, }; static void raspi_base_machine_init(MachineState *machine, BCM283XBaseState *soc); static void raspi_machine_class_common_init(MachineClass *mc, uint32_t board_rev); static uint64_t board_ram_size(uint32_t board_rev) { assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */ return 256 * MiB << FIELD_EX32(board_rev, REV_CODE, MEMORY_SIZE); } static RaspiProcessorId board_processor_id(uint32_t board_rev) { int proc_id = FIELD_EX32(board_rev, REV_CODE, PROCESSOR); assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */ assert(proc_id < ARRAY_SIZE(soc_property) && soc_property[proc_id].type); return proc_id; } static const char *board_soc_type(uint32_t board_rev) { return soc_property[board_processor_id(board_rev)].type; } static int cores_count(uint32_t board_rev) { return soc_property[board_processor_id(board_rev)].cores_count; } static const char *board_type(uint32_t board_rev) { static const char *types[] = { "A", "B", "A+", "B+", "2B", "Alpha", "CM1", NULL, "3B", "Zero", "CM3", NULL, "Zero W", "3B+", "3A+", NULL, "CM3+", "4B", }; assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */ int bt = FIELD_EX32(board_rev, REV_CODE, TYPE); if (bt >= ARRAY_SIZE(types) || !types[bt]) { return "Unknown"; } return types[bt]; } static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info) { static const ARMInsnFixup smpboot[] = { { 0xe1a0e00f }, /* mov lr, pc */ { 0xe3a0fe00 + (BOARDSETUP_ADDR >> 4) }, /* mov pc, BOARDSETUP_ADDR */ { 0xee100fb0 }, /* mrc p15, 0, r0, c0, c0, 5;get core ID */ { 0xe7e10050 }, /* ubfx r0, r0, #0, #2 ;extract LSB */ { 0xe59f5014 }, /* ldr r5, =0x400000CC ;load mbox base */ { 0xe320f001 }, /* 1: yield */ { 0xe7953200 }, /* ldr r3, [r5, r0, lsl #4] ;read mbox for our core */ { 0xe3530000 }, /* cmp r3, #0 ;spin while zero */ { 0x0afffffb }, /* beq 1b */ { 0xe7853200 }, /* str r3, [r5, r0, lsl #4] ;clear mbox */ { 0xe12fff13 }, /* bx r3 ;jump to target */ { 0x400000cc }, /* (constant: mailbox 3 read/clear base) */ { 0, FIXUP_TERMINATOR } }; static const uint32_t fixupcontext[FIXUP_MAX] = { 0 }; /* check that we don't overrun board setup vectors */ QEMU_BUILD_BUG_ON(SMPBOOT_ADDR + sizeof(smpboot) > MVBAR_ADDR); /* check that board setup address is correctly relocated */ QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR & 0xf) != 0 || (BOARDSETUP_ADDR >> 4) >= 0x100); arm_write_bootloader("raspi_smpboot", arm_boot_address_space(cpu, info), info->smp_loader_start, smpboot, fixupcontext); } static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info) { AddressSpace *as = arm_boot_address_space(cpu, info); /* Unlike the AArch32 version we don't need to call the board setup hook. * The mechanism for doing the spin-table is also entirely different. * We must have four 64-bit fields at absolute addresses * 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for * our CPUs, and which we must ensure are zero initialized before * the primary CPU goes into the kernel. We put these variables inside * a rom blob, so that the reset for ROM contents zeroes them for us. */ static const ARMInsnFixup smpboot[] = { { 0xd2801b05 }, /* mov x5, 0xd8 */ { 0xd53800a6 }, /* mrs x6, mpidr_el1 */ { 0x924004c6 }, /* and x6, x6, #0x3 */ { 0xd503205f }, /* spin: wfe */ { 0xf86678a4 }, /* ldr x4, [x5,x6,lsl #3] */ { 0xb4ffffc4 }, /* cbz x4, spin */ { 0xd2800000 }, /* mov x0, #0x0 */ { 0xd2800001 }, /* mov x1, #0x0 */ { 0xd2800002 }, /* mov x2, #0x0 */ { 0xd2800003 }, /* mov x3, #0x0 */ { 0xd61f0080 }, /* br x4 */ { 0, FIXUP_TERMINATOR } }; static const uint32_t fixupcontext[FIXUP_MAX] = { 0 }; static const uint64_t spintables[] = { 0, 0, 0, 0 }; arm_write_bootloader("raspi_smpboot", as, info->smp_loader_start, smpboot, fixupcontext); rom_add_blob_fixed_as("raspi_spintables", spintables, sizeof(spintables), SPINTABLE_ADDR, as); } static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info) { arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR); } static void reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info) { CPUState *cs = CPU(cpu); cpu_set_pc(cs, info->smp_loader_start); } static void setup_boot(MachineState *machine, ARMCPU *cpu, RaspiProcessorId processor_id, size_t ram_size) { RaspiBaseMachineState *s = RASPI_BASE_MACHINE(machine); int r; s->binfo.ram_size = ram_size; if (processor_id <= PROCESSOR_ID_BCM2836) { /* * The BCM2835 and BCM2836 require some custom setup code to run * in Secure mode before booting a kernel (to set up the SMC vectors * so that we get a no-op SMC; this is used by Linux to call the * firmware for some cache maintenance operations. * The BCM2837 doesn't need this. */ s->binfo.board_setup_addr = BOARDSETUP_ADDR; s->binfo.write_board_setup = write_board_setup; s->binfo.secure_board_setup = true; s->binfo.secure_boot = true; } /* BCM2836 and BCM2837 requires SMP setup */ if (processor_id >= PROCESSOR_ID_BCM2836) { s->binfo.smp_loader_start = SMPBOOT_ADDR; if (processor_id == PROCESSOR_ID_BCM2836) { s->binfo.write_secondary_boot = write_smpboot; } else { s->binfo.write_secondary_boot = write_smpboot64; } s->binfo.secondary_cpu_reset_hook = reset_secondary; } /* If the user specified a "firmware" image (e.g. UEFI), we bypass * the normal Linux boot process */ if (machine->firmware) { hwaddr firmware_addr = processor_id <= PROCESSOR_ID_BCM2836 ? FIRMWARE_ADDR_2 : FIRMWARE_ADDR_3; /* load the firmware image (typically kernel.img) */ r = load_image_targphys(machine->firmware, firmware_addr, ram_size - firmware_addr); if (r < 0) { error_report("Failed to load firmware from %s", machine->firmware); exit(1); } s->binfo.entry = firmware_addr; s->binfo.firmware_loaded = true; } arm_load_kernel(cpu, machine, &s->binfo); } static void raspi_base_machine_init(MachineState *machine, BCM283XBaseState *soc) { RaspiBaseMachineClass *mc = RASPI_BASE_MACHINE_GET_CLASS(machine); uint32_t board_rev = mc->board_rev; uint64_t ram_size = board_ram_size(board_rev); uint32_t vcram_size; DriveInfo *di; BlockBackend *blk; BusState *bus; DeviceState *carddev; if (machine->ram_size != ram_size) { char *size_str = size_to_str(ram_size); error_report("Invalid RAM size, should be %s", size_str); g_free(size_str); exit(1); } /* FIXME: Remove when we have custom CPU address space support */ memory_region_add_subregion_overlap(get_system_memory(), 0, machine->ram, 0); /* Setup the SOC */ object_property_add_const_link(OBJECT(soc), "ram", OBJECT(machine->ram)); object_property_set_int(OBJECT(soc), "board-rev", board_rev, &error_abort); object_property_set_str(OBJECT(soc), "command-line", machine->kernel_cmdline, &error_abort); qdev_realize(DEVICE(soc), NULL, &error_fatal); /* Create and plug in the SD cards */ di = drive_get(IF_SD, 0, 0); blk = di ? blk_by_legacy_dinfo(di) : NULL; bus = qdev_get_child_bus(DEVICE(soc), "sd-bus"); if (bus == NULL) { error_report("No SD bus found in SOC object"); exit(1); } carddev = qdev_new(TYPE_SD_CARD); qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal); qdev_realize_and_unref(carddev, bus, &error_fatal); vcram_size = object_property_get_uint(OBJECT(soc), "vcram-size", &error_abort); setup_boot(machine, &soc->cpu[0].core, board_processor_id(board_rev), machine->ram_size - vcram_size); } static void raspi_machine_init(MachineState *machine) { RaspiMachineState *s = RASPI_MACHINE(machine); RaspiBaseMachineState *s_base = RASPI_BASE_MACHINE(machine); RaspiBaseMachineClass *mc = RASPI_BASE_MACHINE_GET_CLASS(machine); BCM283XState *soc = &s->soc; s_base->binfo.board_id = MACH_TYPE_BCM2708; object_initialize_child(OBJECT(machine), "soc", soc, board_soc_type(mc->board_rev)); raspi_base_machine_init(machine, &soc->parent_obj); } void raspi_machine_class_common_init(MachineClass *mc, uint32_t board_rev) { mc->desc = g_strdup_printf("Raspberry Pi %s (revision 1.%u)", board_type(board_rev), FIELD_EX32(board_rev, REV_CODE, REVISION)); mc->block_default_type = IF_SD; mc->no_parallel = 1; mc->no_floppy = 1; mc->no_cdrom = 1; mc->default_cpus = mc->min_cpus = mc->max_cpus = cores_count(board_rev); mc->default_ram_size = board_ram_size(board_rev); mc->default_ram_id = "ram"; }; static void raspi_machine_class_init(MachineClass *mc, uint32_t board_rev) { raspi_machine_class_common_init(mc, board_rev); mc->init = raspi_machine_init; }; static void raspi0_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); RaspiBaseMachineClass *rmc = RASPI_BASE_MACHINE_CLASS(oc); rmc->board_rev = 0x920092; /* Revision 1.2 */ raspi_machine_class_init(mc, rmc->board_rev); }; static void raspi1ap_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); RaspiBaseMachineClass *rmc = RASPI_BASE_MACHINE_CLASS(oc); rmc->board_rev = 0x900021; /* Revision 1.1 */ raspi_machine_class_init(mc, rmc->board_rev); }; static void raspi2b_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); RaspiBaseMachineClass *rmc = RASPI_BASE_MACHINE_CLASS(oc); rmc->board_rev = 0xa21041; raspi_machine_class_init(mc, rmc->board_rev); }; #ifdef TARGET_AARCH64 static void raspi3ap_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); RaspiBaseMachineClass *rmc = RASPI_BASE_MACHINE_CLASS(oc); rmc->board_rev = 0x9020e0; /* Revision 1.0 */ raspi_machine_class_init(mc, rmc->board_rev); }; static void raspi3b_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); RaspiBaseMachineClass *rmc = RASPI_BASE_MACHINE_CLASS(oc); rmc->board_rev = 0xa02082; raspi_machine_class_init(mc, rmc->board_rev); }; #endif /* TARGET_AARCH64 */ static const TypeInfo raspi_machine_types[] = { { .name = MACHINE_TYPE_NAME("raspi0"), .parent = TYPE_RASPI_MACHINE, .class_init = raspi0_machine_class_init, }, { .name = MACHINE_TYPE_NAME("raspi1ap"), .parent = TYPE_RASPI_MACHINE, .class_init = raspi1ap_machine_class_init, }, { .name = MACHINE_TYPE_NAME("raspi2b"), .parent = TYPE_RASPI_MACHINE, .class_init = raspi2b_machine_class_init, #ifdef TARGET_AARCH64 }, { .name = MACHINE_TYPE_NAME("raspi3ap"), .parent = TYPE_RASPI_MACHINE, .class_init = raspi3ap_machine_class_init, }, { .name = MACHINE_TYPE_NAME("raspi3b"), .parent = TYPE_RASPI_MACHINE, .class_init = raspi3b_machine_class_init, #endif }, { .name = TYPE_RASPI_MACHINE, .parent = TYPE_RASPI_BASE_MACHINE, .instance_size = sizeof(RaspiMachineState), .abstract = true, }, { .name = TYPE_RASPI_BASE_MACHINE, .parent = TYPE_MACHINE, .instance_size = sizeof(RaspiBaseMachineState), .class_size = sizeof(RaspiBaseMachineClass), .abstract = true, } }; DEFINE_TYPES(raspi_machine_types)