/* * APIC support * * Copyright (c) 2004-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see */ #include "hw.h" #include "apic.h" #include "msix.h" #include "qemu-timer.h" #include "host-utils.h" #include "sysbus.h" //#define DEBUG_APIC //#define DEBUG_COALESCING #ifdef DEBUG_APIC #define DPRINTF(fmt, ...) \ do { printf("apic: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) #endif #ifdef DEBUG_COALESCING #define DPRINTF_C(fmt, ...) \ do { printf("apic: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF_C(fmt, ...) #endif /* APIC Local Vector Table */ #define APIC_LVT_TIMER 0 #define APIC_LVT_THERMAL 1 #define APIC_LVT_PERFORM 2 #define APIC_LVT_LINT0 3 #define APIC_LVT_LINT1 4 #define APIC_LVT_ERROR 5 #define APIC_LVT_NB 6 /* APIC delivery modes */ #define APIC_DM_FIXED 0 #define APIC_DM_LOWPRI 1 #define APIC_DM_SMI 2 #define APIC_DM_NMI 4 #define APIC_DM_INIT 5 #define APIC_DM_SIPI 6 #define APIC_DM_EXTINT 7 /* APIC destination mode */ #define APIC_DESTMODE_FLAT 0xf #define APIC_DESTMODE_CLUSTER 1 #define APIC_TRIGGER_EDGE 0 #define APIC_TRIGGER_LEVEL 1 #define APIC_LVT_TIMER_PERIODIC (1<<17) #define APIC_LVT_MASKED (1<<16) #define APIC_LVT_LEVEL_TRIGGER (1<<15) #define APIC_LVT_REMOTE_IRR (1<<14) #define APIC_INPUT_POLARITY (1<<13) #define APIC_SEND_PENDING (1<<12) #define ESR_ILLEGAL_ADDRESS (1 << 7) #define APIC_SV_ENABLE (1 << 8) #define MAX_APICS 255 #define MAX_APIC_WORDS 8 /* Intel APIC constants: from include/asm/msidef.h */ #define MSI_DATA_VECTOR_SHIFT 0 #define MSI_DATA_VECTOR_MASK 0x000000ff #define MSI_DATA_DELIVERY_MODE_SHIFT 8 #define MSI_DATA_TRIGGER_SHIFT 15 #define MSI_DATA_LEVEL_SHIFT 14 #define MSI_ADDR_DEST_MODE_SHIFT 2 #define MSI_ADDR_DEST_ID_SHIFT 12 #define MSI_ADDR_DEST_ID_MASK 0x00ffff0 #define MSI_ADDR_BASE 0xfee00000 #define MSI_ADDR_SIZE 0x100000 struct APICState { SysBusDevice busdev; void *cpu_env; uint32_t apicbase; uint8_t id; uint8_t arb_id; uint8_t tpr; uint32_t spurious_vec; uint8_t log_dest; uint8_t dest_mode; uint32_t isr[8]; /* in service register */ uint32_t tmr[8]; /* trigger mode register */ uint32_t irr[8]; /* interrupt request register */ uint32_t lvt[APIC_LVT_NB]; uint32_t esr; /* error register */ uint32_t icr[2]; uint32_t divide_conf; int count_shift; uint32_t initial_count; int64_t initial_count_load_time, next_time; uint32_t idx; QEMUTimer *timer; int sipi_vector; int wait_for_sipi; }; static APICState *local_apics[MAX_APICS + 1]; static int apic_irq_delivered; static void apic_set_irq(APICState *s, int vector_num, int trigger_mode); static void apic_update_irq(APICState *s); static void apic_get_delivery_bitmask(uint32_t *deliver_bitmask, uint8_t dest, uint8_t dest_mode); /* Find first bit starting from msb */ static int fls_bit(uint32_t value) { return 31 - clz32(value); } /* Find first bit starting from lsb */ static int ffs_bit(uint32_t value) { return ctz32(value); } static inline void set_bit(uint32_t *tab, int index) { int i, mask; i = index >> 5; mask = 1 << (index & 0x1f); tab[i] |= mask; } static inline void reset_bit(uint32_t *tab, int index) { int i, mask; i = index >> 5; mask = 1 << (index & 0x1f); tab[i] &= ~mask; } static inline int get_bit(uint32_t *tab, int index) { int i, mask; i = index >> 5; mask = 1 << (index & 0x1f); return !!(tab[i] & mask); } static void apic_local_deliver(APICState *s, int vector) { uint32_t lvt = s->lvt[vector]; int trigger_mode; DPRINTF("%s: vector %d delivery mode %d\n", __func__, vector, (lvt >> 8) & 7); if (lvt & APIC_LVT_MASKED) return; switch ((lvt >> 8) & 7) { case APIC_DM_SMI: cpu_interrupt(s->cpu_env, CPU_INTERRUPT_SMI); break; case APIC_DM_NMI: cpu_interrupt(s->cpu_env, CPU_INTERRUPT_NMI); break; case APIC_DM_EXTINT: cpu_interrupt(s->cpu_env, CPU_INTERRUPT_HARD); break; case APIC_DM_FIXED: trigger_mode = APIC_TRIGGER_EDGE; if ((vector == APIC_LVT_LINT0 || vector == APIC_LVT_LINT1) && (lvt & APIC_LVT_LEVEL_TRIGGER)) trigger_mode = APIC_TRIGGER_LEVEL; apic_set_irq(s, lvt & 0xff, trigger_mode); } } void apic_deliver_pic_intr(APICState *s, int level) { if (level) { apic_local_deliver(s, APIC_LVT_LINT0); } else { uint32_t lvt = s->lvt[APIC_LVT_LINT0]; switch ((lvt >> 8) & 7) { case APIC_DM_FIXED: if (!(lvt & APIC_LVT_LEVEL_TRIGGER)) break; reset_bit(s->irr, lvt & 0xff); /* fall through */ case APIC_DM_EXTINT: cpu_reset_interrupt(s->cpu_env, CPU_INTERRUPT_HARD); break; } } } #define foreach_apic(apic, deliver_bitmask, code) \ {\ int __i, __j, __mask;\ for(__i = 0; __i < MAX_APIC_WORDS; __i++) {\ __mask = deliver_bitmask[__i];\ if (__mask) {\ for(__j = 0; __j < 32; __j++) {\ if (__mask & (1 << __j)) {\ apic = local_apics[__i * 32 + __j];\ if (apic) {\ code;\ }\ }\ }\ }\ }\ } static void apic_bus_deliver(const uint32_t *deliver_bitmask, uint8_t delivery_mode, uint8_t vector_num, uint8_t polarity, uint8_t trigger_mode) { APICState *apic_iter; switch (delivery_mode) { case APIC_DM_LOWPRI: /* XXX: search for focus processor, arbitration */ { int i, d; d = -1; for(i = 0; i < MAX_APIC_WORDS; i++) { if (deliver_bitmask[i]) { d = i * 32 + ffs_bit(deliver_bitmask[i]); break; } } if (d >= 0) { apic_iter = local_apics[d]; if (apic_iter) { apic_set_irq(apic_iter, vector_num, trigger_mode); } } } return; case APIC_DM_FIXED: break; case APIC_DM_SMI: foreach_apic(apic_iter, deliver_bitmask, cpu_interrupt(apic_iter->cpu_env, CPU_INTERRUPT_SMI) ); return; case APIC_DM_NMI: foreach_apic(apic_iter, deliver_bitmask, cpu_interrupt(apic_iter->cpu_env, CPU_INTERRUPT_NMI) ); return; case APIC_DM_INIT: /* normal INIT IPI sent to processors */ foreach_apic(apic_iter, deliver_bitmask, cpu_interrupt(apic_iter->cpu_env, CPU_INTERRUPT_INIT) ); return; case APIC_DM_EXTINT: /* handled in I/O APIC code */ break; default: return; } foreach_apic(apic_iter, deliver_bitmask, apic_set_irq(apic_iter, vector_num, trigger_mode) ); } void apic_deliver_irq(uint8_t dest, uint8_t dest_mode, uint8_t delivery_mode, uint8_t vector_num, uint8_t polarity, uint8_t trigger_mode) { uint32_t deliver_bitmask[MAX_APIC_WORDS]; DPRINTF("%s: dest %d dest_mode %d delivery_mode %d vector %d" " polarity %d trigger_mode %d\n", __func__, dest, dest_mode, delivery_mode, vector_num, polarity, trigger_mode); apic_get_delivery_bitmask(deliver_bitmask, dest, dest_mode); apic_bus_deliver(deliver_bitmask, delivery_mode, vector_num, polarity, trigger_mode); } void cpu_set_apic_base(APICState *s, uint64_t val) { DPRINTF("cpu_set_apic_base: %016" PRIx64 "\n", val); if (!s) return; s->apicbase = (val & 0xfffff000) | (s->apicbase & (MSR_IA32_APICBASE_BSP | MSR_IA32_APICBASE_ENABLE)); /* if disabled, cannot be enabled again */ if (!(val & MSR_IA32_APICBASE_ENABLE)) { s->apicbase &= ~MSR_IA32_APICBASE_ENABLE; cpu_clear_apic_feature(s->cpu_env); s->spurious_vec &= ~APIC_SV_ENABLE; } } uint64_t cpu_get_apic_base(APICState *s) { DPRINTF("cpu_get_apic_base: %016" PRIx64 "\n", s ? (uint64_t)s->apicbase: 0); return s ? s->apicbase : 0; } void cpu_set_apic_tpr(APICState *s, uint8_t val) { if (!s) return; s->tpr = (val & 0x0f) << 4; apic_update_irq(s); } uint8_t cpu_get_apic_tpr(APICState *s) { return s ? s->tpr >> 4 : 0; } /* return -1 if no bit is set */ static int get_highest_priority_int(uint32_t *tab) { int i; for(i = 7; i >= 0; i--) { if (tab[i] != 0) { return i * 32 + fls_bit(tab[i]); } } return -1; } static int apic_get_ppr(APICState *s) { int tpr, isrv, ppr; tpr = (s->tpr >> 4); isrv = get_highest_priority_int(s->isr); if (isrv < 0) isrv = 0; isrv >>= 4; if (tpr >= isrv) ppr = s->tpr; else ppr = isrv << 4; return ppr; } static int apic_get_arb_pri(APICState *s) { /* XXX: arbitration */ return 0; } /* signal the CPU if an irq is pending */ static void apic_update_irq(APICState *s) { int irrv, ppr; if (!(s->spurious_vec & APIC_SV_ENABLE)) return; irrv = get_highest_priority_int(s->irr); if (irrv < 0) return; ppr = apic_get_ppr(s); if (ppr && (irrv & 0xf0) <= (ppr & 0xf0)) return; cpu_interrupt(s->cpu_env, CPU_INTERRUPT_HARD); } void apic_reset_irq_delivered(void) { DPRINTF_C("%s: old coalescing %d\n", __func__, apic_irq_delivered); apic_irq_delivered = 0; } int apic_get_irq_delivered(void) { DPRINTF_C("%s: returning coalescing %d\n", __func__, apic_irq_delivered); return apic_irq_delivered; } static void apic_set_irq(APICState *s, int vector_num, int trigger_mode) { apic_irq_delivered += !get_bit(s->irr, vector_num); DPRINTF_C("%s: coalescing %d\n", __func__, apic_irq_delivered); set_bit(s->irr, vector_num); if (trigger_mode) set_bit(s->tmr, vector_num); else reset_bit(s->tmr, vector_num); apic_update_irq(s); } static void apic_eoi(APICState *s) { int isrv; isrv = get_highest_priority_int(s->isr); if (isrv < 0) return; reset_bit(s->isr, isrv); /* XXX: send the EOI packet to the APIC bus to allow the I/O APIC to set the remote IRR bit for level triggered interrupts. */ apic_update_irq(s); } static int apic_find_dest(uint8_t dest) { APICState *apic = local_apics[dest]; int i; if (apic && apic->id == dest) return dest; /* shortcut in case apic->id == apic->idx */ for (i = 0; i < MAX_APICS; i++) { apic = local_apics[i]; if (apic && apic->id == dest) return i; } return -1; } static void apic_get_delivery_bitmask(uint32_t *deliver_bitmask, uint8_t dest, uint8_t dest_mode) { APICState *apic_iter; int i; if (dest_mode == 0) { if (dest == 0xff) { memset(deliver_bitmask, 0xff, MAX_APIC_WORDS * sizeof(uint32_t)); } else { int idx = apic_find_dest(dest); memset(deliver_bitmask, 0x00, MAX_APIC_WORDS * sizeof(uint32_t)); if (idx >= 0) set_bit(deliver_bitmask, idx); } } else { /* XXX: cluster mode */ memset(deliver_bitmask, 0x00, MAX_APIC_WORDS * sizeof(uint32_t)); for(i = 0; i < MAX_APICS; i++) { apic_iter = local_apics[i]; if (apic_iter) { if (apic_iter->dest_mode == 0xf) { if (dest & apic_iter->log_dest) set_bit(deliver_bitmask, i); } else if (apic_iter->dest_mode == 0x0) { if ((dest & 0xf0) == (apic_iter->log_dest & 0xf0) && (dest & apic_iter->log_dest & 0x0f)) { set_bit(deliver_bitmask, i); } } } } } } void apic_init_reset(APICState *s) { int i; if (!s) return; s->tpr = 0; s->spurious_vec = 0xff; s->log_dest = 0; s->dest_mode = 0xf; memset(s->isr, 0, sizeof(s->isr)); memset(s->tmr, 0, sizeof(s->tmr)); memset(s->irr, 0, sizeof(s->irr)); for(i = 0; i < APIC_LVT_NB; i++) s->lvt[i] = 1 << 16; /* mask LVT */ s->esr = 0; memset(s->icr, 0, sizeof(s->icr)); s->divide_conf = 0; s->count_shift = 0; s->initial_count = 0; s->initial_count_load_time = 0; s->next_time = 0; s->wait_for_sipi = 1; } static void apic_startup(APICState *s, int vector_num) { s->sipi_vector = vector_num; cpu_interrupt(s->cpu_env, CPU_INTERRUPT_SIPI); } void apic_sipi(APICState *s) { cpu_reset_interrupt(s->cpu_env, CPU_INTERRUPT_SIPI); if (!s->wait_for_sipi) return; cpu_x86_load_seg_cache_sipi(s->cpu_env, s->sipi_vector); s->wait_for_sipi = 0; } static void apic_deliver(APICState *s, uint8_t dest, uint8_t dest_mode, uint8_t delivery_mode, uint8_t vector_num, uint8_t polarity, uint8_t trigger_mode) { uint32_t deliver_bitmask[MAX_APIC_WORDS]; int dest_shorthand = (s->icr[0] >> 18) & 3; APICState *apic_iter; switch (dest_shorthand) { case 0: apic_get_delivery_bitmask(deliver_bitmask, dest, dest_mode); break; case 1: memset(deliver_bitmask, 0x00, sizeof(deliver_bitmask)); set_bit(deliver_bitmask, s->idx); break; case 2: memset(deliver_bitmask, 0xff, sizeof(deliver_bitmask)); break; case 3: memset(deliver_bitmask, 0xff, sizeof(deliver_bitmask)); reset_bit(deliver_bitmask, s->idx); break; } switch (delivery_mode) { case APIC_DM_INIT: { int trig_mode = (s->icr[0] >> 15) & 1; int level = (s->icr[0] >> 14) & 1; if (level == 0 && trig_mode == 1) { foreach_apic(apic_iter, deliver_bitmask, apic_iter->arb_id = apic_iter->id ); return; } } break; case APIC_DM_SIPI: foreach_apic(apic_iter, deliver_bitmask, apic_startup(apic_iter, vector_num) ); return; } apic_bus_deliver(deliver_bitmask, delivery_mode, vector_num, polarity, trigger_mode); } int apic_get_interrupt(APICState *s) { int intno; /* if the APIC is installed or enabled, we let the 8259 handle the IRQs */ if (!s) return -1; if (!(s->spurious_vec & APIC_SV_ENABLE)) return -1; /* XXX: spurious IRQ handling */ intno = get_highest_priority_int(s->irr); if (intno < 0) return -1; if (s->tpr && intno <= s->tpr) return s->spurious_vec & 0xff; reset_bit(s->irr, intno); set_bit(s->isr, intno); apic_update_irq(s); return intno; } int apic_accept_pic_intr(APICState *s) { uint32_t lvt0; if (!s) return -1; lvt0 = s->lvt[APIC_LVT_LINT0]; if ((s->apicbase & MSR_IA32_APICBASE_ENABLE) == 0 || (lvt0 & APIC_LVT_MASKED) == 0) return 1; return 0; } static uint32_t apic_get_current_count(APICState *s) { int64_t d; uint32_t val; d = (qemu_get_clock(vm_clock) - s->initial_count_load_time) >> s->count_shift; if (s->lvt[APIC_LVT_TIMER] & APIC_LVT_TIMER_PERIODIC) { /* periodic */ val = s->initial_count - (d % ((uint64_t)s->initial_count + 1)); } else { if (d >= s->initial_count) val = 0; else val = s->initial_count - d; } return val; } static void apic_timer_update(APICState *s, int64_t current_time) { int64_t next_time, d; if (!(s->lvt[APIC_LVT_TIMER] & APIC_LVT_MASKED)) { d = (current_time - s->initial_count_load_time) >> s->count_shift; if (s->lvt[APIC_LVT_TIMER] & APIC_LVT_TIMER_PERIODIC) { if (!s->initial_count) goto no_timer; d = ((d / ((uint64_t)s->initial_count + 1)) + 1) * ((uint64_t)s->initial_count + 1); } else { if (d >= s->initial_count) goto no_timer; d = (uint64_t)s->initial_count + 1; } next_time = s->initial_count_load_time + (d << s->count_shift); qemu_mod_timer(s->timer, next_time); s->next_time = next_time; } else { no_timer: qemu_del_timer(s->timer); } } static void apic_timer(void *opaque) { APICState *s = opaque; apic_local_deliver(s, APIC_LVT_TIMER); apic_timer_update(s, s->next_time); } static uint32_t apic_mem_readb(void *opaque, target_phys_addr_t addr) { return 0; } static uint32_t apic_mem_readw(void *opaque, target_phys_addr_t addr) { return 0; } static void apic_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { } static void apic_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) { } static uint32_t apic_mem_readl(void *opaque, target_phys_addr_t addr) { APICState *s; uint32_t val; int index; s = cpu_get_current_apic(); if (!s) { return 0; } index = (addr >> 4) & 0xff; switch(index) { case 0x02: /* id */ val = s->id << 24; break; case 0x03: /* version */ val = 0x11 | ((APIC_LVT_NB - 1) << 16); /* version 0x11 */ break; case 0x08: val = s->tpr; break; case 0x09: val = apic_get_arb_pri(s); break; case 0x0a: /* ppr */ val = apic_get_ppr(s); break; case 0x0b: val = 0; break; case 0x0d: val = s->log_dest << 24; break; case 0x0e: val = s->dest_mode << 28; break; case 0x0f: val = s->spurious_vec; break; case 0x10 ... 0x17: val = s->isr[index & 7]; break; case 0x18 ... 0x1f: val = s->tmr[index & 7]; break; case 0x20 ... 0x27: val = s->irr[index & 7]; break; case 0x28: val = s->esr; break; case 0x30: case 0x31: val = s->icr[index & 1]; break; case 0x32 ... 0x37: val = s->lvt[index - 0x32]; break; case 0x38: val = s->initial_count; break; case 0x39: val = apic_get_current_count(s); break; case 0x3e: val = s->divide_conf; break; default: s->esr |= ESR_ILLEGAL_ADDRESS; val = 0; break; } DPRINTF("read: " TARGET_FMT_plx " = %08x\n", addr, val); return val; } static void apic_send_msi(target_phys_addr_t addr, uint32 data) { uint8_t dest = (addr & MSI_ADDR_DEST_ID_MASK) >> MSI_ADDR_DEST_ID_SHIFT; uint8_t vector = (data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT; uint8_t dest_mode = (addr >> MSI_ADDR_DEST_MODE_SHIFT) & 0x1; uint8_t trigger_mode = (data >> MSI_DATA_TRIGGER_SHIFT) & 0x1; uint8_t delivery = (data >> MSI_DATA_DELIVERY_MODE_SHIFT) & 0x7; /* XXX: Ignore redirection hint. */ apic_deliver_irq(dest, dest_mode, delivery, vector, 0, trigger_mode); } static void apic_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { APICState *s; int index = (addr >> 4) & 0xff; if (addr > 0xfff || !index) { /* MSI and MMIO APIC are at the same memory location, * but actually not on the global bus: MSI is on PCI bus * APIC is connected directly to the CPU. * Mapping them on the global bus happens to work because * MSI registers are reserved in APIC MMIO and vice versa. */ apic_send_msi(addr, val); return; } s = cpu_get_current_apic(); if (!s) { return; } DPRINTF("write: " TARGET_FMT_plx " = %08x\n", addr, val); switch(index) { case 0x02: s->id = (val >> 24); break; case 0x03: break; case 0x08: s->tpr = val; apic_update_irq(s); break; case 0x09: case 0x0a: break; case 0x0b: /* EOI */ apic_eoi(s); break; case 0x0d: s->log_dest = val >> 24; break; case 0x0e: s->dest_mode = val >> 28; break; case 0x0f: s->spurious_vec = val & 0x1ff; apic_update_irq(s); break; case 0x10 ... 0x17: case 0x18 ... 0x1f: case 0x20 ... 0x27: case 0x28: break; case 0x30: s->icr[0] = val; apic_deliver(s, (s->icr[1] >> 24) & 0xff, (s->icr[0] >> 11) & 1, (s->icr[0] >> 8) & 7, (s->icr[0] & 0xff), (s->icr[0] >> 14) & 1, (s->icr[0] >> 15) & 1); break; case 0x31: s->icr[1] = val; break; case 0x32 ... 0x37: { int n = index - 0x32; s->lvt[n] = val; if (n == APIC_LVT_TIMER) apic_timer_update(s, qemu_get_clock(vm_clock)); } break; case 0x38: s->initial_count = val; s->initial_count_load_time = qemu_get_clock(vm_clock); apic_timer_update(s, s->initial_count_load_time); break; case 0x39: break; case 0x3e: { int v; s->divide_conf = val & 0xb; v = (s->divide_conf & 3) | ((s->divide_conf >> 1) & 4); s->count_shift = (v + 1) & 7; } break; default: s->esr |= ESR_ILLEGAL_ADDRESS; break; } } /* This function is only used for old state version 1 and 2 */ static int apic_load_old(QEMUFile *f, void *opaque, int version_id) { APICState *s = opaque; int i; if (version_id > 2) return -EINVAL; /* XXX: what if the base changes? (registered memory regions) */ qemu_get_be32s(f, &s->apicbase); qemu_get_8s(f, &s->id); qemu_get_8s(f, &s->arb_id); qemu_get_8s(f, &s->tpr); qemu_get_be32s(f, &s->spurious_vec); qemu_get_8s(f, &s->log_dest); qemu_get_8s(f, &s->dest_mode); for (i = 0; i < 8; i++) { qemu_get_be32s(f, &s->isr[i]); qemu_get_be32s(f, &s->tmr[i]); qemu_get_be32s(f, &s->irr[i]); } for (i = 0; i < APIC_LVT_NB; i++) { qemu_get_be32s(f, &s->lvt[i]); } qemu_get_be32s(f, &s->esr); qemu_get_be32s(f, &s->icr[0]); qemu_get_be32s(f, &s->icr[1]); qemu_get_be32s(f, &s->divide_conf); s->count_shift=qemu_get_be32(f); qemu_get_be32s(f, &s->initial_count); s->initial_count_load_time=qemu_get_be64(f); s->next_time=qemu_get_be64(f); if (version_id >= 2) qemu_get_timer(f, s->timer); return 0; } static const VMStateDescription vmstate_apic = { .name = "apic", .version_id = 3, .minimum_version_id = 3, .minimum_version_id_old = 1, .load_state_old = apic_load_old, .fields = (VMStateField []) { VMSTATE_UINT32(apicbase, APICState), VMSTATE_UINT8(id, APICState), VMSTATE_UINT8(arb_id, APICState), VMSTATE_UINT8(tpr, APICState), VMSTATE_UINT32(spurious_vec, APICState), VMSTATE_UINT8(log_dest, APICState), VMSTATE_UINT8(dest_mode, APICState), VMSTATE_UINT32_ARRAY(isr, APICState, 8), VMSTATE_UINT32_ARRAY(tmr, APICState, 8), VMSTATE_UINT32_ARRAY(irr, APICState, 8), VMSTATE_UINT32_ARRAY(lvt, APICState, APIC_LVT_NB), VMSTATE_UINT32(esr, APICState), VMSTATE_UINT32_ARRAY(icr, APICState, 2), VMSTATE_UINT32(divide_conf, APICState), VMSTATE_INT32(count_shift, APICState), VMSTATE_UINT32(initial_count, APICState), VMSTATE_INT64(initial_count_load_time, APICState), VMSTATE_INT64(next_time, APICState), VMSTATE_TIMER(timer, APICState), VMSTATE_END_OF_LIST() } }; static void apic_reset(DeviceState *d) { APICState *s = DO_UPCAST(APICState, busdev.qdev, d); int bsp; bsp = cpu_is_bsp(s->cpu_env); s->apicbase = 0xfee00000 | (bsp ? MSR_IA32_APICBASE_BSP : 0) | MSR_IA32_APICBASE_ENABLE; apic_init_reset(s); if (bsp) { /* * LINT0 delivery mode on CPU #0 is set to ExtInt at initialization * time typically by BIOS, so PIC interrupt can be delivered to the * processor when local APIC is enabled. */ s->lvt[APIC_LVT_LINT0] = 0x700; } } static CPUReadMemoryFunc * const apic_mem_read[3] = { apic_mem_readb, apic_mem_readw, apic_mem_readl, }; static CPUWriteMemoryFunc * const apic_mem_write[3] = { apic_mem_writeb, apic_mem_writew, apic_mem_writel, }; APICState *apic_init(void *env, uint8_t apic_id) { DeviceState *dev; SysBusDevice *d; APICState *s; static int apic_mapped; dev = qdev_create(NULL, "apic"); qdev_prop_set_uint8(dev, "id", apic_id); qdev_prop_set_ptr(dev, "cpu_env", env); qdev_init_nofail(dev); d = sysbus_from_qdev(dev); /* XXX: mapping more APICs at the same memory location */ if (apic_mapped == 0) { /* NOTE: the APIC is directly connected to the CPU - it is not on the global memory bus. */ /* XXX: what if the base changes? */ sysbus_mmio_map(d, 0, MSI_ADDR_BASE); apic_mapped = 1; } msix_supported = 1; s = DO_UPCAST(APICState, busdev.qdev, dev); return s; } static int apic_init1(SysBusDevice *dev) { APICState *s = FROM_SYSBUS(APICState, dev); int apic_io_memory; static int last_apic_idx; if (last_apic_idx >= MAX_APICS) { return -1; } apic_io_memory = cpu_register_io_memory(apic_mem_read, apic_mem_write, NULL); sysbus_init_mmio(dev, MSI_ADDR_SIZE, apic_io_memory); s->timer = qemu_new_timer(vm_clock, apic_timer, s); s->idx = last_apic_idx++; local_apics[s->idx] = s; return 0; } static SysBusDeviceInfo apic_info = { .init = apic_init1, .qdev.name = "apic", .qdev.size = sizeof(APICState), .qdev.vmsd = &vmstate_apic, .qdev.reset = apic_reset, .qdev.no_user = 1, .qdev.props = (Property[]) { DEFINE_PROP_UINT8("id", APICState, id, -1), DEFINE_PROP_PTR("cpu_env", APICState, cpu_env), DEFINE_PROP_END_OF_LIST(), } }; static void apic_register_devices(void) { sysbus_register_withprop(&apic_info); } device_init(apic_register_devices)