/* * QEMU Ultrasparc APB PCI host * * Copyright (c) 2006 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* XXX This file and most of its contents are somewhat misnamed. The Ultrasparc PCI host is called the PCI Bus Module (PBM). The APB is the secondary PCI bridge. */ #include "sysbus.h" #include "pci.h" /* debug APB */ //#define DEBUG_APB #ifdef DEBUG_APB #define APB_DPRINTF(fmt, ...) \ do { printf("APB: " fmt , ## __VA_ARGS__); } while (0) #else #define APB_DPRINTF(fmt, ...) #endif /* * Chipset docs: * PBM: "UltraSPARC IIi User's Manual", * http://www.sun.com/processors/manuals/805-0087.pdf * * APB: "Advanced PCI Bridge (APB) User's Manual", * http://www.sun.com/processors/manuals/805-1251.pdf */ typedef target_phys_addr_t pci_addr_t; #include "pci_host.h" typedef struct APBState { SysBusDevice busdev; PCIHostState host_state; } APBState; static void pci_apb_config_writel (void *opaque, target_phys_addr_t addr, uint32_t val) { APBState *s = opaque; #ifdef TARGET_WORDS_BIGENDIAN val = bswap32(val); #endif APB_DPRINTF("config_writel addr " TARGET_FMT_plx " val %x\n", addr, val); s->host_state.config_reg = val; } static uint32_t pci_apb_config_readl (void *opaque, target_phys_addr_t addr) { APBState *s = opaque; uint32_t val; val = s->host_state.config_reg; #ifdef TARGET_WORDS_BIGENDIAN val = bswap32(val); #endif APB_DPRINTF("config_readl addr " TARGET_FMT_plx " val %x\n", addr, val); return val; } static CPUWriteMemoryFunc * const pci_apb_config_write[] = { &pci_apb_config_writel, &pci_apb_config_writel, &pci_apb_config_writel, }; static CPUReadMemoryFunc * const pci_apb_config_read[] = { &pci_apb_config_readl, &pci_apb_config_readl, &pci_apb_config_readl, }; static void apb_config_writel (void *opaque, target_phys_addr_t addr, uint32_t val) { //PCIBus *s = opaque; switch (addr & 0x3f) { case 0x00: // Control/Status case 0x10: // AFSR case 0x18: // AFAR case 0x20: // Diagnostic case 0x28: // Target address space // XXX default: break; } } static uint32_t apb_config_readl (void *opaque, target_phys_addr_t addr) { //PCIBus *s = opaque; uint32_t val; switch (addr & 0x3f) { case 0x00: // Control/Status case 0x10: // AFSR case 0x18: // AFAR case 0x20: // Diagnostic case 0x28: // Target address space // XXX default: val = 0; break; } return val; } static CPUWriteMemoryFunc * const apb_config_write[] = { &apb_config_writel, &apb_config_writel, &apb_config_writel, }; static CPUReadMemoryFunc * const apb_config_read[] = { &apb_config_readl, &apb_config_readl, &apb_config_readl, }; static CPUWriteMemoryFunc * const pci_apb_write[] = { &pci_host_data_writeb, &pci_host_data_writew, &pci_host_data_writel, }; static CPUReadMemoryFunc * const pci_apb_read[] = { &pci_host_data_readb, &pci_host_data_readw, &pci_host_data_readl, }; static void pci_apb_iowriteb (void *opaque, target_phys_addr_t addr, uint32_t val) { cpu_outb(addr & IOPORTS_MASK, val); } static void pci_apb_iowritew (void *opaque, target_phys_addr_t addr, uint32_t val) { cpu_outw(addr & IOPORTS_MASK, val); } static void pci_apb_iowritel (void *opaque, target_phys_addr_t addr, uint32_t val) { cpu_outl(addr & IOPORTS_MASK, val); } static uint32_t pci_apb_ioreadb (void *opaque, target_phys_addr_t addr) { uint32_t val; val = cpu_inb(addr & IOPORTS_MASK); return val; } static uint32_t pci_apb_ioreadw (void *opaque, target_phys_addr_t addr) { uint32_t val; val = cpu_inw(addr & IOPORTS_MASK); return val; } static uint32_t pci_apb_ioreadl (void *opaque, target_phys_addr_t addr) { uint32_t val; val = cpu_inl(addr & IOPORTS_MASK); return val; } static CPUWriteMemoryFunc * const pci_apb_iowrite[] = { &pci_apb_iowriteb, &pci_apb_iowritew, &pci_apb_iowritel, }; static CPUReadMemoryFunc * const pci_apb_ioread[] = { &pci_apb_ioreadb, &pci_apb_ioreadw, &pci_apb_ioreadl, }; /* The APB host has an IRQ line for each IRQ line of each slot. */ static int pci_apb_map_irq(PCIDevice *pci_dev, int irq_num) { return ((pci_dev->devfn & 0x18) >> 1) + irq_num; } static int pci_pbm_map_irq(PCIDevice *pci_dev, int irq_num) { int bus_offset; if (pci_dev->devfn & 1) bus_offset = 16; else bus_offset = 0; return bus_offset + irq_num; } static void pci_apb_set_irq(void *opaque, int irq_num, int level) { qemu_irq *pic = opaque; /* PCI IRQ map onto the first 32 INO. */ qemu_set_irq(pic[irq_num], level); } PCIBus *pci_apb_init(target_phys_addr_t special_base, target_phys_addr_t mem_base, qemu_irq *pic, PCIBus **bus2, PCIBus **bus3) { DeviceState *dev; SysBusDevice *s; APBState *d; /* Ultrasparc PBM main bus */ dev = qdev_create(NULL, "pbm"); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); /* apb_config */ sysbus_mmio_map(s, 0, special_base + 0x2000ULL); /* pci_ioport */ sysbus_mmio_map(s, 1, special_base + 0x2000000ULL); /* mem_config: XXX size should be 4G-prom */ sysbus_mmio_map(s, 2, special_base + 0x1000000ULL); /* mem_data */ sysbus_mmio_map(s, 3, mem_base); d = FROM_SYSBUS(APBState, s); d->host_state.bus = pci_register_bus(&d->busdev.qdev, "pci", pci_apb_set_irq, pci_pbm_map_irq, pic, 0, 32); pci_create_simple(d->host_state.bus, 0, "pbm"); /* APB secondary busses */ *bus2 = pci_bridge_init(d->host_state.bus, PCI_DEVFN(1, 0), PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_SIMBA, pci_apb_map_irq, "Advanced PCI Bus secondary bridge 1"); *bus3 = pci_bridge_init(d->host_state.bus, PCI_DEVFN(1, 1), PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_SIMBA, pci_apb_map_irq, "Advanced PCI Bus secondary bridge 2"); return d->host_state.bus; } static int pci_pbm_init_device(SysBusDevice *dev) { APBState *s; int pci_mem_config, pci_mem_data, apb_config, pci_ioport; s = FROM_SYSBUS(APBState, dev); /* apb_config */ apb_config = cpu_register_io_memory(apb_config_read, apb_config_write, s); sysbus_init_mmio(dev, 0x40ULL, apb_config); /* pci_ioport */ pci_ioport = cpu_register_io_memory(pci_apb_ioread, pci_apb_iowrite, s); sysbus_init_mmio(dev, 0x10000ULL, pci_ioport); /* mem_config */ pci_mem_config = cpu_register_io_memory(pci_apb_config_read, pci_apb_config_write, s); sysbus_init_mmio(dev, 0x10ULL, pci_mem_config); /* mem_data */ pci_mem_data = cpu_register_io_memory(pci_apb_read, pci_apb_write, &s->host_state); sysbus_init_mmio(dev, 0x10000000ULL, pci_mem_data); return 0; } static int pbm_pci_host_init(PCIDevice *d) { pci_config_set_vendor_id(d->config, PCI_VENDOR_ID_SUN); pci_config_set_device_id(d->config, PCI_DEVICE_ID_SUN_SABRE); d->config[0x04] = 0x06; // command = bus master, pci mem d->config[0x05] = 0x00; d->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error d->config[0x07] = 0x03; // status = medium devsel d->config[0x08] = 0x00; // revision d->config[0x09] = 0x00; // programming i/f pci_config_set_class(d->config, PCI_CLASS_BRIDGE_HOST); d->config[0x0D] = 0x10; // latency_timer d->config[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type return 0; } static PCIDeviceInfo pbm_pci_host_info = { .qdev.name = "pbm", .qdev.size = sizeof(PCIDevice), .init = pbm_pci_host_init, }; static void pbm_register_devices(void) { sysbus_register_dev("pbm", sizeof(APBState), pci_pbm_init_device); pci_qdev_register(&pbm_pci_host_info); } device_init(pbm_register_devices)