/* * ACPI implementation * * Copyright (c) 2006 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2 as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see */ #include "hw.h" #include "pc.h" #include "apm.h" #include "pm_smbus.h" #include "pci.h" #include "acpi.h" #include "sysemu.h" #include "range.h" //#define DEBUG #ifdef DEBUG # define PIIX4_DPRINTF(format, ...) printf(format, ## __VA_ARGS__) #else # define PIIX4_DPRINTF(format, ...) do { } while (0) #endif #define ACPI_DBG_IO_ADDR 0xb044 #define GPE_BASE 0xafe0 #define PCI_BASE 0xae00 #define PCI_EJ_BASE 0xae08 #define PIIX4_PCI_HOTPLUG_STATUS 2 struct gpe_regs { uint16_t sts; /* status */ uint16_t en; /* enabled */ }; struct pci_status { uint32_t up; uint32_t down; }; typedef struct PIIX4PMState { PCIDevice dev; uint16_t pmsts; uint16_t pmen; uint16_t pmcntrl; APMState apm; QEMUTimer *tmr_timer; int64_t tmr_overflow_time; PMSMBus smb; uint32_t smb_io_base; qemu_irq irq; qemu_irq cmos_s3; qemu_irq smi_irq; int kvm_enabled; /* for pci hotplug */ struct gpe_regs gpe; struct pci_status pci0_status; } PIIX4PMState; static void piix4_acpi_system_hot_add_init(PCIBus *bus, PIIX4PMState *s); #define ACPI_ENABLE 0xf1 #define ACPI_DISABLE 0xf0 static uint32_t get_pmtmr(PIIX4PMState *s) { uint32_t d; d = muldiv64(qemu_get_clock(vm_clock), PM_TIMER_FREQUENCY, get_ticks_per_sec()); return d & 0xffffff; } static int get_pmsts(PIIX4PMState *s) { int64_t d; d = muldiv64(qemu_get_clock(vm_clock), PM_TIMER_FREQUENCY, get_ticks_per_sec()); if (d >= s->tmr_overflow_time) s->pmsts |= ACPI_BITMASK_TIMER_STATUS; return s->pmsts; } static void pm_update_sci(PIIX4PMState *s) { int sci_level, pmsts; int64_t expire_time; pmsts = get_pmsts(s); sci_level = (((pmsts & s->pmen) & (ACPI_BITMASK_RT_CLOCK_ENABLE | ACPI_BITMASK_POWER_BUTTON_ENABLE | ACPI_BITMASK_GLOBAL_LOCK_ENABLE | ACPI_BITMASK_TIMER_ENABLE)) != 0) || (((s->gpe.sts & s->gpe.en) & PIIX4_PCI_HOTPLUG_STATUS) != 0); qemu_set_irq(s->irq, sci_level); /* schedule a timer interruption if needed */ if ((s->pmen & ACPI_BITMASK_TIMER_ENABLE) && !(pmsts & ACPI_BITMASK_TIMER_STATUS)) { expire_time = muldiv64(s->tmr_overflow_time, get_ticks_per_sec(), PM_TIMER_FREQUENCY); qemu_mod_timer(s->tmr_timer, expire_time); } else { qemu_del_timer(s->tmr_timer); } } static void pm_tmr_timer(void *opaque) { PIIX4PMState *s = opaque; pm_update_sci(s); } static void pm_ioport_writew(void *opaque, uint32_t addr, uint32_t val) { PIIX4PMState *s = opaque; addr &= 0x3f; switch(addr) { case 0x00: { int64_t d; int pmsts; pmsts = get_pmsts(s); if (pmsts & val & ACPI_BITMASK_TIMER_STATUS) { /* if TMRSTS is reset, then compute the new overflow time */ d = muldiv64(qemu_get_clock(vm_clock), PM_TIMER_FREQUENCY, get_ticks_per_sec()); s->tmr_overflow_time = (d + 0x800000LL) & ~0x7fffffLL; } s->pmsts &= ~val; pm_update_sci(s); } break; case 0x02: s->pmen = val; pm_update_sci(s); break; case 0x04: { int sus_typ; s->pmcntrl = val & ~(ACPI_BITMASK_SLEEP_ENABLE); if (val & ACPI_BITMASK_SLEEP_ENABLE) { /* change suspend type */ sus_typ = (val >> 10) & 7; switch(sus_typ) { case 0: /* soft power off */ qemu_system_shutdown_request(); break; case 1: /* ACPI_BITMASK_WAKE_STATUS should be set on resume. Pretend that resume was caused by power button */ s->pmsts |= (ACPI_BITMASK_WAKE_STATUS | ACPI_BITMASK_POWER_BUTTON_STATUS); qemu_system_reset_request(); if (s->cmos_s3) { qemu_irq_raise(s->cmos_s3); } default: break; } } } break; default: break; } PIIX4_DPRINTF("PM writew port=0x%04x val=0x%04x\n", addr, val); } static uint32_t pm_ioport_readw(void *opaque, uint32_t addr) { PIIX4PMState *s = opaque; uint32_t val; addr &= 0x3f; switch(addr) { case 0x00: val = get_pmsts(s); break; case 0x02: val = s->pmen; break; case 0x04: val = s->pmcntrl; break; default: val = 0; break; } PIIX4_DPRINTF("PM readw port=0x%04x val=0x%04x\n", addr, val); return val; } static void pm_ioport_writel(void *opaque, uint32_t addr, uint32_t val) { // PIIX4PMState *s = opaque; PIIX4_DPRINTF("PM writel port=0x%04x val=0x%08x\n", addr & 0x3f, val); } static uint32_t pm_ioport_readl(void *opaque, uint32_t addr) { PIIX4PMState *s = opaque; uint32_t val; addr &= 0x3f; switch(addr) { case 0x08: val = get_pmtmr(s); break; default: val = 0; break; } PIIX4_DPRINTF("PM readl port=0x%04x val=0x%08x\n", addr, val); return val; } static void apm_ctrl_changed(uint32_t val, void *arg) { PIIX4PMState *s = arg; /* ACPI specs 3.0, 4.7.2.5 */ if (val == ACPI_ENABLE) { s->pmcntrl |= ACPI_BITMASK_SCI_ENABLE; } else if (val == ACPI_DISABLE) { s->pmcntrl &= ~ACPI_BITMASK_SCI_ENABLE; } if (s->dev.config[0x5b] & (1 << 1)) { if (s->smi_irq) { qemu_irq_raise(s->smi_irq); } } } static void acpi_dbg_writel(void *opaque, uint32_t addr, uint32_t val) { PIIX4_DPRINTF("ACPI: DBG: 0x%08x\n", val); } static void pm_io_space_update(PIIX4PMState *s) { uint32_t pm_io_base; if (s->dev.config[0x80] & 1) { pm_io_base = le32_to_cpu(*(uint32_t *)(s->dev.config + 0x40)); pm_io_base &= 0xffc0; /* XXX: need to improve memory and ioport allocation */ PIIX4_DPRINTF("PM: mapping to 0x%x\n", pm_io_base); register_ioport_write(pm_io_base, 64, 2, pm_ioport_writew, s); register_ioport_read(pm_io_base, 64, 2, pm_ioport_readw, s); register_ioport_write(pm_io_base, 64, 4, pm_ioport_writel, s); register_ioport_read(pm_io_base, 64, 4, pm_ioport_readl, s); } } static void pm_write_config(PCIDevice *d, uint32_t address, uint32_t val, int len) { pci_default_write_config(d, address, val, len); if (range_covers_byte(address, len, 0x80)) pm_io_space_update((PIIX4PMState *)d); } static int vmstate_acpi_post_load(void *opaque, int version_id) { PIIX4PMState *s = opaque; pm_io_space_update(s); return 0; } static const VMStateDescription vmstate_gpe = { .name = "gpe", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField []) { VMSTATE_UINT16(sts, struct gpe_regs), VMSTATE_UINT16(en, struct gpe_regs), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_pci_status = { .name = "pci_status", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField []) { VMSTATE_UINT32(up, struct pci_status), VMSTATE_UINT32(down, struct pci_status), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_acpi = { .name = "piix4_pm", .version_id = 2, .minimum_version_id = 1, .minimum_version_id_old = 1, .post_load = vmstate_acpi_post_load, .fields = (VMStateField []) { VMSTATE_PCI_DEVICE(dev, PIIX4PMState), VMSTATE_UINT16(pmsts, PIIX4PMState), VMSTATE_UINT16(pmen, PIIX4PMState), VMSTATE_UINT16(pmcntrl, PIIX4PMState), VMSTATE_STRUCT(apm, PIIX4PMState, 0, vmstate_apm, APMState), VMSTATE_TIMER(tmr_timer, PIIX4PMState), VMSTATE_INT64(tmr_overflow_time, PIIX4PMState), VMSTATE_STRUCT(gpe, PIIX4PMState, 2, vmstate_gpe, struct gpe_regs), VMSTATE_STRUCT(pci0_status, PIIX4PMState, 2, vmstate_pci_status, struct pci_status), VMSTATE_END_OF_LIST() } }; static void piix4_reset(void *opaque) { PIIX4PMState *s = opaque; uint8_t *pci_conf = s->dev.config; pci_conf[0x58] = 0; pci_conf[0x59] = 0; pci_conf[0x5a] = 0; pci_conf[0x5b] = 0; if (s->kvm_enabled) { /* Mark SMM as already inited (until KVM supports SMM). */ pci_conf[0x5B] = 0x02; } } static void piix4_powerdown(void *opaque, int irq, int power_failing) { PIIX4PMState *s = opaque; if (!s) { qemu_system_shutdown_request(); } else if (s->pmen & ACPI_BITMASK_POWER_BUTTON_ENABLE) { s->pmsts |= ACPI_BITMASK_POWER_BUTTON_STATUS; pm_update_sci(s); } } static int piix4_pm_initfn(PCIDevice *dev) { PIIX4PMState *s = DO_UPCAST(PIIX4PMState, dev, dev); uint8_t *pci_conf; pci_conf = s->dev.config; pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82371AB_3); pci_conf[0x06] = 0x80; pci_conf[0x07] = 0x02; pci_conf[0x08] = 0x03; // revision number pci_conf[0x09] = 0x00; pci_config_set_class(pci_conf, PCI_CLASS_BRIDGE_OTHER); pci_conf[0x3d] = 0x01; // interrupt pin 1 pci_conf[0x40] = 0x01; /* PM io base read only bit */ /* APM */ apm_init(&s->apm, apm_ctrl_changed, s); register_ioport_write(ACPI_DBG_IO_ADDR, 4, 4, acpi_dbg_writel, s); if (s->kvm_enabled) { /* Mark SMM as already inited to prevent SMM from running. KVM does not * support SMM mode. */ pci_conf[0x5B] = 0x02; } /* XXX: which specification is used ? The i82731AB has different mappings */ pci_conf[0x5f] = (parallel_hds[0] != NULL ? 0x80 : 0) | 0x10; pci_conf[0x63] = 0x60; pci_conf[0x67] = (serial_hds[0] != NULL ? 0x08 : 0) | (serial_hds[1] != NULL ? 0x90 : 0); pci_conf[0x90] = s->smb_io_base | 1; pci_conf[0x91] = s->smb_io_base >> 8; pci_conf[0xd2] = 0x09; register_ioport_write(s->smb_io_base, 64, 1, smb_ioport_writeb, &s->smb); register_ioport_read(s->smb_io_base, 64, 1, smb_ioport_readb, &s->smb); s->tmr_timer = qemu_new_timer(vm_clock, pm_tmr_timer, s); qemu_system_powerdown = *qemu_allocate_irqs(piix4_powerdown, s, 1); pm_smbus_init(&s->dev.qdev, &s->smb); qemu_register_reset(piix4_reset, s); piix4_acpi_system_hot_add_init(dev->bus, s); return 0; } i2c_bus *piix4_pm_init(PCIBus *bus, int devfn, uint32_t smb_io_base, qemu_irq sci_irq, qemu_irq cmos_s3, qemu_irq smi_irq, int kvm_enabled) { PCIDevice *dev; PIIX4PMState *s; dev = pci_create(bus, devfn, "PIIX4_PM"); qdev_prop_set_uint32(&dev->qdev, "smb_io_base", smb_io_base); s = DO_UPCAST(PIIX4PMState, dev, dev); s->irq = sci_irq; s->cmos_s3 = cmos_s3; s->smi_irq = smi_irq; s->kvm_enabled = kvm_enabled; qdev_init_nofail(&dev->qdev); return s->smb.smbus; } static PCIDeviceInfo piix4_pm_info = { .qdev.name = "PIIX4_PM", .qdev.desc = "PM", .qdev.size = sizeof(PIIX4PMState), .qdev.vmsd = &vmstate_acpi, .init = piix4_pm_initfn, .config_write = pm_write_config, .qdev.props = (Property[]) { DEFINE_PROP_UINT32("smb_io_base", PIIX4PMState, smb_io_base, 0), DEFINE_PROP_END_OF_LIST(), } }; static void piix4_pm_register(void) { pci_qdev_register(&piix4_pm_info); } device_init(piix4_pm_register); static uint32_t gpe_read_val(uint16_t val, uint32_t addr) { if (addr & 1) return (val >> 8) & 0xff; return val & 0xff; } static uint32_t gpe_readb(void *opaque, uint32_t addr) { uint32_t val = 0; PIIX4PMState *s = opaque; struct gpe_regs *g = &s->gpe; switch (addr) { case GPE_BASE: case GPE_BASE + 1: val = gpe_read_val(g->sts, addr); break; case GPE_BASE + 2: case GPE_BASE + 3: val = gpe_read_val(g->en, addr); break; default: break; } PIIX4_DPRINTF("gpe read %x == %x\n", addr, val); return val; } static void gpe_write_val(uint16_t *cur, int addr, uint32_t val) { if (addr & 1) *cur = (*cur & 0xff) | (val << 8); else *cur = (*cur & 0xff00) | (val & 0xff); } static void gpe_reset_val(uint16_t *cur, int addr, uint32_t val) { uint16_t x1, x0 = val & 0xff; int shift = (addr & 1) ? 8 : 0; x1 = (*cur >> shift) & 0xff; x1 = x1 & ~x0; *cur = (*cur & (0xff << (8 - shift))) | (x1 << shift); } static void gpe_writeb(void *opaque, uint32_t addr, uint32_t val) { PIIX4PMState *s = opaque; struct gpe_regs *g = &s->gpe; switch (addr) { case GPE_BASE: case GPE_BASE + 1: gpe_reset_val(&g->sts, addr, val); break; case GPE_BASE + 2: case GPE_BASE + 3: gpe_write_val(&g->en, addr, val); break; default: break; } pm_update_sci(s); PIIX4_DPRINTF("gpe write %x <== %d\n", addr, val); } static uint32_t pcihotplug_read(void *opaque, uint32_t addr) { uint32_t val = 0; struct pci_status *g = opaque; switch (addr) { case PCI_BASE: val = g->up; break; case PCI_BASE + 4: val = g->down; break; default: break; } PIIX4_DPRINTF("pcihotplug read %x == %x\n", addr, val); return val; } static void pcihotplug_write(void *opaque, uint32_t addr, uint32_t val) { struct pci_status *g = opaque; switch (addr) { case PCI_BASE: g->up = val; break; case PCI_BASE + 4: g->down = val; break; } PIIX4_DPRINTF("pcihotplug write %x <== %d\n", addr, val); } static uint32_t pciej_read(void *opaque, uint32_t addr) { PIIX4_DPRINTF("pciej read %x\n", addr); return 0; } static void pciej_write(void *opaque, uint32_t addr, uint32_t val) { BusState *bus = opaque; DeviceState *qdev, *next; PCIDevice *dev; int slot = ffs(val) - 1; QLIST_FOREACH_SAFE(qdev, &bus->children, sibling, next) { dev = DO_UPCAST(PCIDevice, qdev, qdev); if (PCI_SLOT(dev->devfn) == slot) { qdev_free(qdev); } } PIIX4_DPRINTF("pciej write %x <== %d\n", addr, val); } static int piix4_device_hotplug(DeviceState *qdev, PCIDevice *dev, int state); static void piix4_acpi_system_hot_add_init(PCIBus *bus, PIIX4PMState *s) { struct pci_status *pci0_status = &s->pci0_status; register_ioport_write(GPE_BASE, 4, 1, gpe_writeb, s); register_ioport_read(GPE_BASE, 4, 1, gpe_readb, s); register_ioport_write(PCI_BASE, 8, 4, pcihotplug_write, pci0_status); register_ioport_read(PCI_BASE, 8, 4, pcihotplug_read, pci0_status); register_ioport_write(PCI_EJ_BASE, 4, 4, pciej_write, bus); register_ioport_read(PCI_EJ_BASE, 4, 4, pciej_read, bus); pci_bus_hotplug(bus, piix4_device_hotplug, &s->dev.qdev); } static void enable_device(PIIX4PMState *s, int slot) { s->gpe.sts |= PIIX4_PCI_HOTPLUG_STATUS; s->pci0_status.up |= (1 << slot); } static void disable_device(PIIX4PMState *s, int slot) { s->gpe.sts |= PIIX4_PCI_HOTPLUG_STATUS; s->pci0_status.down |= (1 << slot); } static int piix4_device_hotplug(DeviceState *qdev, PCIDevice *dev, int state) { int slot = PCI_SLOT(dev->devfn); PIIX4PMState *s = DO_UPCAST(PIIX4PMState, dev, DO_UPCAST(PCIDevice, qdev, qdev)); s->pci0_status.up = 0; s->pci0_status.down = 0; if (state) { enable_device(s, slot); } else { disable_device(s, slot); } pm_update_sci(s); return 0; }