/* * ACPI implementation * * Copyright (c) 2006 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2 as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see */ #include "hw.h" #include "pc.h" #include "pci.h" #include "qemu-timer.h" #include "sysemu.h" #include "i2c.h" #include "smbus.h" #include "kvm.h" //#define DEBUG /* i82731AB (PIIX4) compatible power management function */ #define PM_FREQ 3579545 #define ACPI_DBG_IO_ADDR 0xb044 typedef struct PIIX4PMState { PCIDevice dev; uint16_t pmsts; uint16_t pmen; uint16_t pmcntrl; uint8_t apmc; uint8_t apms; QEMUTimer *tmr_timer; int64_t tmr_overflow_time; i2c_bus *smbus; uint8_t smb_stat; uint8_t smb_ctl; uint8_t smb_cmd; uint8_t smb_addr; uint8_t smb_data0; uint8_t smb_data1; uint8_t smb_data[32]; uint8_t smb_index; qemu_irq irq; } PIIX4PMState; #define RSM_STS (1 << 15) #define PWRBTN_STS (1 << 8) #define RTC_EN (1 << 10) #define PWRBTN_EN (1 << 8) #define GBL_EN (1 << 5) #define TMROF_EN (1 << 0) #define SCI_EN (1 << 0) #define SUS_EN (1 << 13) #define ACPI_ENABLE 0xf1 #define ACPI_DISABLE 0xf0 #define SMBHSTSTS 0x00 #define SMBHSTCNT 0x02 #define SMBHSTCMD 0x03 #define SMBHSTADD 0x04 #define SMBHSTDAT0 0x05 #define SMBHSTDAT1 0x06 #define SMBBLKDAT 0x07 static PIIX4PMState *pm_state; static uint32_t get_pmtmr(PIIX4PMState *s) { uint32_t d; d = muldiv64(qemu_get_clock(vm_clock), PM_FREQ, get_ticks_per_sec()); return d & 0xffffff; } static int get_pmsts(PIIX4PMState *s) { int64_t d; int pmsts; pmsts = s->pmsts; d = muldiv64(qemu_get_clock(vm_clock), PM_FREQ, get_ticks_per_sec()); if (d >= s->tmr_overflow_time) s->pmsts |= TMROF_EN; return s->pmsts; } static void pm_update_sci(PIIX4PMState *s) { int sci_level, pmsts; int64_t expire_time; pmsts = get_pmsts(s); sci_level = (((pmsts & s->pmen) & (RTC_EN | PWRBTN_EN | GBL_EN | TMROF_EN)) != 0); qemu_set_irq(s->irq, sci_level); /* schedule a timer interruption if needed */ if ((s->pmen & TMROF_EN) && !(pmsts & TMROF_EN)) { expire_time = muldiv64(s->tmr_overflow_time, get_ticks_per_sec(), PM_FREQ); qemu_mod_timer(s->tmr_timer, expire_time); } else { qemu_del_timer(s->tmr_timer); } } static void pm_tmr_timer(void *opaque) { PIIX4PMState *s = opaque; pm_update_sci(s); } static void pm_ioport_writew(void *opaque, uint32_t addr, uint32_t val) { PIIX4PMState *s = opaque; addr &= 0x3f; switch(addr) { case 0x00: { int64_t d; int pmsts; pmsts = get_pmsts(s); if (pmsts & val & TMROF_EN) { /* if TMRSTS is reset, then compute the new overflow time */ d = muldiv64(qemu_get_clock(vm_clock), PM_FREQ, get_ticks_per_sec()); s->tmr_overflow_time = (d + 0x800000LL) & ~0x7fffffLL; } s->pmsts &= ~val; pm_update_sci(s); } break; case 0x02: s->pmen = val; pm_update_sci(s); break; case 0x04: { int sus_typ; s->pmcntrl = val & ~(SUS_EN); if (val & SUS_EN) { /* change suspend type */ sus_typ = (val >> 10) & 7; switch(sus_typ) { case 0: /* soft power off */ qemu_system_shutdown_request(); break; case 1: /* RSM_STS should be set on resume. Pretend that resume was caused by power button */ s->pmsts |= (RSM_STS | PWRBTN_STS); qemu_system_reset_request(); #if defined(TARGET_I386) cmos_set_s3_resume(); #endif default: break; } } } break; default: break; } #ifdef DEBUG printf("PM writew port=0x%04x val=0x%04x\n", addr, val); #endif } static uint32_t pm_ioport_readw(void *opaque, uint32_t addr) { PIIX4PMState *s = opaque; uint32_t val; addr &= 0x3f; switch(addr) { case 0x00: val = get_pmsts(s); break; case 0x02: val = s->pmen; break; case 0x04: val = s->pmcntrl; break; default: val = 0; break; } #ifdef DEBUG printf("PM readw port=0x%04x val=0x%04x\n", addr, val); #endif return val; } static void pm_ioport_writel(void *opaque, uint32_t addr, uint32_t val) { // PIIX4PMState *s = opaque; addr &= 0x3f; #ifdef DEBUG printf("PM writel port=0x%04x val=0x%08x\n", addr, val); #endif } static uint32_t pm_ioport_readl(void *opaque, uint32_t addr) { PIIX4PMState *s = opaque; uint32_t val; addr &= 0x3f; switch(addr) { case 0x08: val = get_pmtmr(s); break; default: val = 0; break; } #ifdef DEBUG printf("PM readl port=0x%04x val=0x%08x\n", addr, val); #endif return val; } static void pm_smi_writeb(void *opaque, uint32_t addr, uint32_t val) { PIIX4PMState *s = opaque; addr &= 1; #ifdef DEBUG printf("pm_smi_writeb addr=0x%x val=0x%02x\n", addr, val); #endif if (addr == 0) { s->apmc = val; /* ACPI specs 3.0, 4.7.2.5 */ if (val == ACPI_ENABLE) { s->pmcntrl |= SCI_EN; } else if (val == ACPI_DISABLE) { s->pmcntrl &= ~SCI_EN; } if (s->dev.config[0x5b] & (1 << 1)) { cpu_interrupt(first_cpu, CPU_INTERRUPT_SMI); } } else { s->apms = val; } } static uint32_t pm_smi_readb(void *opaque, uint32_t addr) { PIIX4PMState *s = opaque; uint32_t val; addr &= 1; if (addr == 0) { val = s->apmc; } else { val = s->apms; } #ifdef DEBUG printf("pm_smi_readb addr=0x%x val=0x%02x\n", addr, val); #endif return val; } static void acpi_dbg_writel(void *opaque, uint32_t addr, uint32_t val) { #if defined(DEBUG) printf("ACPI: DBG: 0x%08x\n", val); #endif } static void smb_transaction(PIIX4PMState *s) { uint8_t prot = (s->smb_ctl >> 2) & 0x07; uint8_t read = s->smb_addr & 0x01; uint8_t cmd = s->smb_cmd; uint8_t addr = s->smb_addr >> 1; i2c_bus *bus = s->smbus; #ifdef DEBUG printf("SMBus trans addr=0x%02x prot=0x%02x\n", addr, prot); #endif switch(prot) { case 0x0: smbus_quick_command(bus, addr, read); break; case 0x1: if (read) { s->smb_data0 = smbus_receive_byte(bus, addr); } else { smbus_send_byte(bus, addr, cmd); } break; case 0x2: if (read) { s->smb_data0 = smbus_read_byte(bus, addr, cmd); } else { smbus_write_byte(bus, addr, cmd, s->smb_data0); } break; case 0x3: if (read) { uint16_t val; val = smbus_read_word(bus, addr, cmd); s->smb_data0 = val; s->smb_data1 = val >> 8; } else { smbus_write_word(bus, addr, cmd, (s->smb_data1 << 8) | s->smb_data0); } break; case 0x5: if (read) { s->smb_data0 = smbus_read_block(bus, addr, cmd, s->smb_data); } else { smbus_write_block(bus, addr, cmd, s->smb_data, s->smb_data0); } break; default: goto error; } return; error: s->smb_stat |= 0x04; } static void smb_ioport_writeb(void *opaque, uint32_t addr, uint32_t val) { PIIX4PMState *s = opaque; addr &= 0x3f; #ifdef DEBUG printf("SMB writeb port=0x%04x val=0x%02x\n", addr, val); #endif switch(addr) { case SMBHSTSTS: s->smb_stat = 0; s->smb_index = 0; break; case SMBHSTCNT: s->smb_ctl = val; if (val & 0x40) smb_transaction(s); break; case SMBHSTCMD: s->smb_cmd = val; break; case SMBHSTADD: s->smb_addr = val; break; case SMBHSTDAT0: s->smb_data0 = val; break; case SMBHSTDAT1: s->smb_data1 = val; break; case SMBBLKDAT: s->smb_data[s->smb_index++] = val; if (s->smb_index > 31) s->smb_index = 0; break; default: break; } } static uint32_t smb_ioport_readb(void *opaque, uint32_t addr) { PIIX4PMState *s = opaque; uint32_t val; addr &= 0x3f; switch(addr) { case SMBHSTSTS: val = s->smb_stat; break; case SMBHSTCNT: s->smb_index = 0; val = s->smb_ctl & 0x1f; break; case SMBHSTCMD: val = s->smb_cmd; break; case SMBHSTADD: val = s->smb_addr; break; case SMBHSTDAT0: val = s->smb_data0; break; case SMBHSTDAT1: val = s->smb_data1; break; case SMBBLKDAT: val = s->smb_data[s->smb_index++]; if (s->smb_index > 31) s->smb_index = 0; break; default: val = 0; break; } #ifdef DEBUG printf("SMB readb port=0x%04x val=0x%02x\n", addr, val); #endif return val; } static void pm_io_space_update(PIIX4PMState *s) { uint32_t pm_io_base; if (s->dev.config[0x80] & 1) { pm_io_base = le32_to_cpu(*(uint32_t *)(s->dev.config + 0x40)); pm_io_base &= 0xffc0; /* XXX: need to improve memory and ioport allocation */ #if defined(DEBUG) printf("PM: mapping to 0x%x\n", pm_io_base); #endif register_ioport_write(pm_io_base, 64, 2, pm_ioport_writew, s); register_ioport_read(pm_io_base, 64, 2, pm_ioport_readw, s); register_ioport_write(pm_io_base, 64, 4, pm_ioport_writel, s); register_ioport_read(pm_io_base, 64, 4, pm_ioport_readl, s); } } static void pm_write_config(PCIDevice *d, uint32_t address, uint32_t val, int len) { pci_default_write_config(d, address, val, len); if (address == 0x80) pm_io_space_update((PIIX4PMState *)d); } static int vmstate_acpi_after_load(void *opaque) { PIIX4PMState *s = opaque; pm_io_space_update(s); return 0; } static const VMStateDescription vmstate_acpi = { .name = "piix4_pm", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .run_after_load = vmstate_acpi_after_load, .fields = (VMStateField []) { VMSTATE_PCI_DEVICE(dev, PIIX4PMState), VMSTATE_UINT16(pmsts, PIIX4PMState), VMSTATE_UINT16(pmen, PIIX4PMState), VMSTATE_UINT16(pmcntrl, PIIX4PMState), VMSTATE_UINT8(apmc, PIIX4PMState), VMSTATE_UINT8(apms, PIIX4PMState), VMSTATE_TIMER(tmr_timer, PIIX4PMState), VMSTATE_INT64(tmr_overflow_time, PIIX4PMState), VMSTATE_END_OF_LIST() } }; static void piix4_reset(void *opaque) { PIIX4PMState *s = opaque; uint8_t *pci_conf = s->dev.config; pci_conf[0x58] = 0; pci_conf[0x59] = 0; pci_conf[0x5a] = 0; pci_conf[0x5b] = 0; if (kvm_enabled()) { /* Mark SMM as already inited (until KVM supports SMM). */ pci_conf[0x5B] = 0x02; } } static void piix4_powerdown(void *opaque, int irq, int power_failing) { #if defined(TARGET_I386) PIIX4PMState *s = opaque; if (!s) { qemu_system_shutdown_request(); } else if (s->pmen & PWRBTN_EN) { s->pmsts |= PWRBTN_EN; pm_update_sci(s); } #endif } i2c_bus *piix4_pm_init(PCIBus *bus, int devfn, uint32_t smb_io_base, qemu_irq sci_irq) { PIIX4PMState *s; uint8_t *pci_conf; s = (PIIX4PMState *)pci_register_device(bus, "PM", sizeof(PIIX4PMState), devfn, NULL, pm_write_config); pm_state = s; pci_conf = s->dev.config; pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82371AB_3); pci_conf[0x06] = 0x80; pci_conf[0x07] = 0x02; pci_conf[0x08] = 0x03; // revision number pci_conf[0x09] = 0x00; pci_config_set_class(pci_conf, PCI_CLASS_BRIDGE_OTHER); pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type pci_conf[0x3d] = 0x01; // interrupt pin 1 pci_conf[0x40] = 0x01; /* PM io base read only bit */ register_ioport_write(0xb2, 2, 1, pm_smi_writeb, s); register_ioport_read(0xb2, 2, 1, pm_smi_readb, s); register_ioport_write(ACPI_DBG_IO_ADDR, 4, 4, acpi_dbg_writel, s); if (kvm_enabled()) { /* Mark SMM as already inited to prevent SMM from running. KVM does not * support SMM mode. */ pci_conf[0x5B] = 0x02; } /* XXX: which specification is used ? The i82731AB has different mappings */ pci_conf[0x5f] = (parallel_hds[0] != NULL ? 0x80 : 0) | 0x10; pci_conf[0x63] = 0x60; pci_conf[0x67] = (serial_hds[0] != NULL ? 0x08 : 0) | (serial_hds[1] != NULL ? 0x90 : 0); pci_conf[0x90] = smb_io_base | 1; pci_conf[0x91] = smb_io_base >> 8; pci_conf[0xd2] = 0x09; register_ioport_write(smb_io_base, 64, 1, smb_ioport_writeb, s); register_ioport_read(smb_io_base, 64, 1, smb_ioport_readb, s); s->tmr_timer = qemu_new_timer(vm_clock, pm_tmr_timer, s); qemu_system_powerdown = *qemu_allocate_irqs(piix4_powerdown, s, 1); vmstate_register(0, &vmstate_acpi, s); s->smbus = i2c_init_bus(NULL, "i2c"); s->irq = sci_irq; qemu_register_reset(piix4_reset, s); return s->smbus; } #define GPE_BASE 0xafe0 #define PCI_BASE 0xae00 #define PCI_EJ_BASE 0xae08 struct gpe_regs { uint16_t sts; /* status */ uint16_t en; /* enabled */ }; struct pci_status { uint32_t up; uint32_t down; }; static struct gpe_regs gpe; static struct pci_status pci0_status; static uint32_t gpe_read_val(uint16_t val, uint32_t addr) { if (addr & 1) return (val >> 8) & 0xff; return val & 0xff; } static uint32_t gpe_readb(void *opaque, uint32_t addr) { uint32_t val = 0; struct gpe_regs *g = opaque; switch (addr) { case GPE_BASE: case GPE_BASE + 1: val = gpe_read_val(g->sts, addr); break; case GPE_BASE + 2: case GPE_BASE + 3: val = gpe_read_val(g->en, addr); break; default: break; } #if defined(DEBUG) printf("gpe read %x == %x\n", addr, val); #endif return val; } static void gpe_write_val(uint16_t *cur, int addr, uint32_t val) { if (addr & 1) *cur = (*cur & 0xff) | (val << 8); else *cur = (*cur & 0xff00) | (val & 0xff); } static void gpe_reset_val(uint16_t *cur, int addr, uint32_t val) { uint16_t x1, x0 = val & 0xff; int shift = (addr & 1) ? 8 : 0; x1 = (*cur >> shift) & 0xff; x1 = x1 & ~x0; *cur = (*cur & (0xff << (8 - shift))) | (x1 << shift); } static void gpe_writeb(void *opaque, uint32_t addr, uint32_t val) { struct gpe_regs *g = opaque; switch (addr) { case GPE_BASE: case GPE_BASE + 1: gpe_reset_val(&g->sts, addr, val); break; case GPE_BASE + 2: case GPE_BASE + 3: gpe_write_val(&g->en, addr, val); break; default: break; } #if defined(DEBUG) printf("gpe write %x <== %d\n", addr, val); #endif } static uint32_t pcihotplug_read(void *opaque, uint32_t addr) { uint32_t val = 0; struct pci_status *g = opaque; switch (addr) { case PCI_BASE: val = g->up; break; case PCI_BASE + 4: val = g->down; break; default: break; } #if defined(DEBUG) printf("pcihotplug read %x == %x\n", addr, val); #endif return val; } static void pcihotplug_write(void *opaque, uint32_t addr, uint32_t val) { struct pci_status *g = opaque; switch (addr) { case PCI_BASE: g->up = val; break; case PCI_BASE + 4: g->down = val; break; } #if defined(DEBUG) printf("pcihotplug write %x <== %d\n", addr, val); #endif } static uint32_t pciej_read(void *opaque, uint32_t addr) { #if defined(DEBUG) printf("pciej read %x\n", addr); #endif return 0; } static void pciej_write(void *opaque, uint32_t addr, uint32_t val) { #if defined (TARGET_I386) int slot = ffs(val) - 1; pci_device_hot_remove_success(0, slot); #endif #if defined(DEBUG) printf("pciej write %x <== %d\n", addr, val); #endif } static void piix4_device_hot_add(int bus, int slot, int state); void piix4_acpi_system_hot_add_init(void) { register_ioport_write(GPE_BASE, 4, 1, gpe_writeb, &gpe); register_ioport_read(GPE_BASE, 4, 1, gpe_readb, &gpe); register_ioport_write(PCI_BASE, 8, 4, pcihotplug_write, &pci0_status); register_ioport_read(PCI_BASE, 8, 4, pcihotplug_read, &pci0_status); register_ioport_write(PCI_EJ_BASE, 4, 4, pciej_write, NULL); register_ioport_read(PCI_EJ_BASE, 4, 4, pciej_read, NULL); qemu_system_device_hot_add_register(piix4_device_hot_add); } static void enable_device(struct pci_status *p, struct gpe_regs *g, int slot) { g->sts |= 2; p->up |= (1 << slot); } static void disable_device(struct pci_status *p, struct gpe_regs *g, int slot) { g->sts |= 2; p->down |= (1 << slot); } static void piix4_device_hot_add(int bus, int slot, int state) { pci0_status.up = 0; pci0_status.down = 0; if (state) enable_device(&pci0_status, &gpe, slot); else disable_device(&pci0_status, &gpe, slot); if (gpe.en & 2) { qemu_set_irq(pm_state->irq, 1); qemu_set_irq(pm_state->irq, 0); } } static qemu_system_device_hot_add_t device_hot_add_callback; void qemu_system_device_hot_add_register(qemu_system_device_hot_add_t callback) { device_hot_add_callback = callback; } void qemu_system_device_hot_add(int pcibus, int slot, int state) { if (device_hot_add_callback) device_hot_add_callback(pcibus, slot, state); } struct acpi_table_header { char signature [4]; /* ACPI signature (4 ASCII characters) */ uint32_t length; /* Length of table, in bytes, including header */ uint8_t revision; /* ACPI Specification minor version # */ uint8_t checksum; /* To make sum of entire table == 0 */ char oem_id [6]; /* OEM identification */ char oem_table_id [8]; /* OEM table identification */ uint32_t oem_revision; /* OEM revision number */ char asl_compiler_id [4]; /* ASL compiler vendor ID */ uint32_t asl_compiler_revision; /* ASL compiler revision number */ } __attribute__((packed)); char *acpi_tables; size_t acpi_tables_len; static int acpi_checksum(const uint8_t *data, int len) { int sum, i; sum = 0; for(i = 0; i < len; i++) sum += data[i]; return (-sum) & 0xff; } int acpi_table_add(const char *t) { static const char *dfl_id = "QEMUQEMU"; char buf[1024], *p, *f; struct acpi_table_header acpi_hdr; unsigned long val; size_t off; memset(&acpi_hdr, 0, sizeof(acpi_hdr)); if (get_param_value(buf, sizeof(buf), "sig", t)) { strncpy(acpi_hdr.signature, buf, 4); } else { strncpy(acpi_hdr.signature, dfl_id, 4); } if (get_param_value(buf, sizeof(buf), "rev", t)) { val = strtoul(buf, &p, 10); if (val > 255 || *p != '\0') goto out; } else { val = 1; } acpi_hdr.revision = (int8_t)val; if (get_param_value(buf, sizeof(buf), "oem_id", t)) { strncpy(acpi_hdr.oem_id, buf, 6); } else { strncpy(acpi_hdr.oem_id, dfl_id, 6); } if (get_param_value(buf, sizeof(buf), "oem_table_id", t)) { strncpy(acpi_hdr.oem_table_id, buf, 8); } else { strncpy(acpi_hdr.oem_table_id, dfl_id, 8); } if (get_param_value(buf, sizeof(buf), "oem_rev", t)) { val = strtol(buf, &p, 10); if(*p != '\0') goto out; } else { val = 1; } acpi_hdr.oem_revision = cpu_to_le32(val); if (get_param_value(buf, sizeof(buf), "asl_compiler_id", t)) { strncpy(acpi_hdr.asl_compiler_id, buf, 4); } else { strncpy(acpi_hdr.asl_compiler_id, dfl_id, 4); } if (get_param_value(buf, sizeof(buf), "asl_compiler_rev", t)) { val = strtol(buf, &p, 10); if(*p != '\0') goto out; } else { val = 1; } acpi_hdr.asl_compiler_revision = cpu_to_le32(val); if (!get_param_value(buf, sizeof(buf), "data", t)) { buf[0] = '\0'; } acpi_hdr.length = sizeof(acpi_hdr); f = buf; while (buf[0]) { struct stat s; char *n = strchr(f, ':'); if (n) *n = '\0'; if(stat(f, &s) < 0) { fprintf(stderr, "Can't stat file '%s': %s\n", f, strerror(errno)); goto out; } acpi_hdr.length += s.st_size; if (!n) break; *n = ':'; f = n + 1; } if (!acpi_tables) { acpi_tables_len = sizeof(uint16_t); acpi_tables = qemu_mallocz(acpi_tables_len); } p = acpi_tables + acpi_tables_len; acpi_tables_len += sizeof(uint16_t) + acpi_hdr.length; acpi_tables = qemu_realloc(acpi_tables, acpi_tables_len); acpi_hdr.length = cpu_to_le32(acpi_hdr.length); *(uint16_t*)p = acpi_hdr.length; p += sizeof(uint16_t); memcpy(p, &acpi_hdr, sizeof(acpi_hdr)); off = sizeof(acpi_hdr); f = buf; while (buf[0]) { struct stat s; int fd; char *n = strchr(f, ':'); if (n) *n = '\0'; fd = open(f, O_RDONLY); if(fd < 0) goto out; if(fstat(fd, &s) < 0) { close(fd); goto out; } do { int r; r = read(fd, p + off, s.st_size); if (r > 0) { off += r; s.st_size -= r; } else if ((r < 0 && errno != EINTR) || r == 0) { close(fd); goto out; } } while(s.st_size); close(fd); if (!n) break; f = n + 1; } ((struct acpi_table_header*)p)->checksum = acpi_checksum((uint8_t*)p, off); /* increase number of tables */ (*(uint16_t*)acpi_tables) = cpu_to_le32(le32_to_cpu(*(uint16_t*)acpi_tables) + 1); return 0; out: if (acpi_tables) { free(acpi_tables); acpi_tables = NULL; } return -1; }