/* * ACPI implementation * * Copyright (c) 2006 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2 as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA */ #include "hw.h" #include "pc.h" #include "pci.h" #include "qemu-timer.h" #include "sysemu.h" #include "i2c.h" #include "smbus.h" #include "kvm.h" //#define DEBUG /* i82731AB (PIIX4) compatible power management function */ #define PM_FREQ 3579545 #define ACPI_DBG_IO_ADDR 0xb044 typedef struct PIIX4PMState { PCIDevice dev; uint16_t pmsts; uint16_t pmen; uint16_t pmcntrl; uint8_t apmc; uint8_t apms; QEMUTimer *tmr_timer; int64_t tmr_overflow_time; i2c_bus *smbus; uint8_t smb_stat; uint8_t smb_ctl; uint8_t smb_cmd; uint8_t smb_addr; uint8_t smb_data0; uint8_t smb_data1; uint8_t smb_data[32]; uint8_t smb_index; qemu_irq irq; } PIIX4PMState; #define RSM_STS (1 << 15) #define PWRBTN_STS (1 << 8) #define RTC_EN (1 << 10) #define PWRBTN_EN (1 << 8) #define GBL_EN (1 << 5) #define TMROF_EN (1 << 0) #define SCI_EN (1 << 0) #define SUS_EN (1 << 13) #define ACPI_ENABLE 0xf1 #define ACPI_DISABLE 0xf0 #define SMBHSTSTS 0x00 #define SMBHSTCNT 0x02 #define SMBHSTCMD 0x03 #define SMBHSTADD 0x04 #define SMBHSTDAT0 0x05 #define SMBHSTDAT1 0x06 #define SMBBLKDAT 0x07 static PIIX4PMState *pm_state; static uint32_t get_pmtmr(PIIX4PMState *s) { uint32_t d; d = muldiv64(qemu_get_clock(vm_clock), PM_FREQ, ticks_per_sec); return d & 0xffffff; } static int get_pmsts(PIIX4PMState *s) { int64_t d; int pmsts; pmsts = s->pmsts; d = muldiv64(qemu_get_clock(vm_clock), PM_FREQ, ticks_per_sec); if (d >= s->tmr_overflow_time) s->pmsts |= TMROF_EN; return pmsts; } static void pm_update_sci(PIIX4PMState *s) { int sci_level, pmsts; int64_t expire_time; pmsts = get_pmsts(s); sci_level = (((pmsts & s->pmen) & (RTC_EN | PWRBTN_EN | GBL_EN | TMROF_EN)) != 0); qemu_set_irq(s->irq, sci_level); /* schedule a timer interruption if needed */ if ((s->pmen & TMROF_EN) && !(pmsts & TMROF_EN)) { expire_time = muldiv64(s->tmr_overflow_time, ticks_per_sec, PM_FREQ); qemu_mod_timer(s->tmr_timer, expire_time); } else { qemu_del_timer(s->tmr_timer); } } static void pm_tmr_timer(void *opaque) { PIIX4PMState *s = opaque; pm_update_sci(s); } static void pm_ioport_writew(void *opaque, uint32_t addr, uint32_t val) { PIIX4PMState *s = opaque; addr &= 0x3f; switch(addr) { case 0x00: { int64_t d; int pmsts; pmsts = get_pmsts(s); if (pmsts & val & TMROF_EN) { /* if TMRSTS is reset, then compute the new overflow time */ d = muldiv64(qemu_get_clock(vm_clock), PM_FREQ, ticks_per_sec); s->tmr_overflow_time = (d + 0x800000LL) & ~0x7fffffLL; } s->pmsts &= ~val; pm_update_sci(s); } break; case 0x02: s->pmen = val; pm_update_sci(s); break; case 0x04: { int sus_typ; s->pmcntrl = val & ~(SUS_EN); if (val & SUS_EN) { /* change suspend type */ sus_typ = (val >> 10) & 7; switch(sus_typ) { case 0: /* soft power off */ qemu_system_shutdown_request(); break; case 1: /* RSM_STS should be set on resume. Pretend that resume was caused by power button */ s->pmsts |= (RSM_STS | PWRBTN_STS); qemu_system_reset_request(); #if defined(TARGET_I386) cmos_set_s3_resume(); #endif default: break; } } } break; default: break; } #ifdef DEBUG printf("PM writew port=0x%04x val=0x%04x\n", addr, val); #endif } static uint32_t pm_ioport_readw(void *opaque, uint32_t addr) { PIIX4PMState *s = opaque; uint32_t val; addr &= 0x3f; switch(addr) { case 0x00: val = get_pmsts(s); break; case 0x02: val = s->pmen; break; case 0x04: val = s->pmcntrl; break; default: val = 0; break; } #ifdef DEBUG printf("PM readw port=0x%04x val=0x%04x\n", addr, val); #endif return val; } static void pm_ioport_writel(void *opaque, uint32_t addr, uint32_t val) { // PIIX4PMState *s = opaque; addr &= 0x3f; #ifdef DEBUG printf("PM writel port=0x%04x val=0x%08x\n", addr, val); #endif } static uint32_t pm_ioport_readl(void *opaque, uint32_t addr) { PIIX4PMState *s = opaque; uint32_t val; addr &= 0x3f; switch(addr) { case 0x08: val = get_pmtmr(s); break; default: val = 0; break; } #ifdef DEBUG printf("PM readl port=0x%04x val=0x%08x\n", addr, val); #endif return val; } static void pm_smi_writeb(void *opaque, uint32_t addr, uint32_t val) { PIIX4PMState *s = opaque; addr &= 1; #ifdef DEBUG printf("pm_smi_writeb addr=0x%x val=0x%02x\n", addr, val); #endif if (addr == 0) { s->apmc = val; /* ACPI specs 3.0, 4.7.2.5 */ if (val == ACPI_ENABLE) { s->pmcntrl |= SCI_EN; } else if (val == ACPI_DISABLE) { s->pmcntrl &= ~SCI_EN; } if (s->dev.config[0x5b] & (1 << 1)) { cpu_interrupt(first_cpu, CPU_INTERRUPT_SMI); } } else { s->apms = val; } } static uint32_t pm_smi_readb(void *opaque, uint32_t addr) { PIIX4PMState *s = opaque; uint32_t val; addr &= 1; if (addr == 0) { val = s->apmc; } else { val = s->apms; } #ifdef DEBUG printf("pm_smi_readb addr=0x%x val=0x%02x\n", addr, val); #endif return val; } static void acpi_dbg_writel(void *opaque, uint32_t addr, uint32_t val) { #if defined(DEBUG) printf("ACPI: DBG: 0x%08x\n", val); #endif } static void smb_transaction(PIIX4PMState *s) { uint8_t prot = (s->smb_ctl >> 2) & 0x07; uint8_t read = s->smb_addr & 0x01; uint8_t cmd = s->smb_cmd; uint8_t addr = s->smb_addr >> 1; i2c_bus *bus = s->smbus; #ifdef DEBUG printf("SMBus trans addr=0x%02x prot=0x%02x\n", addr, prot); #endif switch(prot) { case 0x0: smbus_quick_command(bus, addr, read); break; case 0x1: if (read) { s->smb_data0 = smbus_receive_byte(bus, addr); } else { smbus_send_byte(bus, addr, cmd); } break; case 0x2: if (read) { s->smb_data0 = smbus_read_byte(bus, addr, cmd); } else { smbus_write_byte(bus, addr, cmd, s->smb_data0); } break; case 0x3: if (read) { uint16_t val; val = smbus_read_word(bus, addr, cmd); s->smb_data0 = val; s->smb_data1 = val >> 8; } else { smbus_write_word(bus, addr, cmd, (s->smb_data1 << 8) | s->smb_data0); } break; case 0x5: if (read) { s->smb_data0 = smbus_read_block(bus, addr, cmd, s->smb_data); } else { smbus_write_block(bus, addr, cmd, s->smb_data, s->smb_data0); } break; default: goto error; } return; error: s->smb_stat |= 0x04; } static void smb_ioport_writeb(void *opaque, uint32_t addr, uint32_t val) { PIIX4PMState *s = opaque; addr &= 0x3f; #ifdef DEBUG printf("SMB writeb port=0x%04x val=0x%02x\n", addr, val); #endif switch(addr) { case SMBHSTSTS: s->smb_stat = 0; s->smb_index = 0; break; case SMBHSTCNT: s->smb_ctl = val; if (val & 0x40) smb_transaction(s); break; case SMBHSTCMD: s->smb_cmd = val; break; case SMBHSTADD: s->smb_addr = val; break; case SMBHSTDAT0: s->smb_data0 = val; break; case SMBHSTDAT1: s->smb_data1 = val; break; case SMBBLKDAT: s->smb_data[s->smb_index++] = val; if (s->smb_index > 31) s->smb_index = 0; break; default: break; } } static uint32_t smb_ioport_readb(void *opaque, uint32_t addr) { PIIX4PMState *s = opaque; uint32_t val; addr &= 0x3f; switch(addr) { case SMBHSTSTS: val = s->smb_stat; break; case SMBHSTCNT: s->smb_index = 0; val = s->smb_ctl & 0x1f; break; case SMBHSTCMD: val = s->smb_cmd; break; case SMBHSTADD: val = s->smb_addr; break; case SMBHSTDAT0: val = s->smb_data0; break; case SMBHSTDAT1: val = s->smb_data1; break; case SMBBLKDAT: val = s->smb_data[s->smb_index++]; if (s->smb_index > 31) s->smb_index = 0; break; default: val = 0; break; } #ifdef DEBUG printf("SMB readb port=0x%04x val=0x%02x\n", addr, val); #endif return val; } static void pm_io_space_update(PIIX4PMState *s) { uint32_t pm_io_base; if (s->dev.config[0x80] & 1) { pm_io_base = le32_to_cpu(*(uint32_t *)(s->dev.config + 0x40)); pm_io_base &= 0xffc0; /* XXX: need to improve memory and ioport allocation */ #if defined(DEBUG) printf("PM: mapping to 0x%x\n", pm_io_base); #endif register_ioport_write(pm_io_base, 64, 2, pm_ioport_writew, s); register_ioport_read(pm_io_base, 64, 2, pm_ioport_readw, s); register_ioport_write(pm_io_base, 64, 4, pm_ioport_writel, s); register_ioport_read(pm_io_base, 64, 4, pm_ioport_readl, s); } } static void pm_write_config(PCIDevice *d, uint32_t address, uint32_t val, int len) { pci_default_write_config(d, address, val, len); if (address == 0x80) pm_io_space_update((PIIX4PMState *)d); } static void pm_save(QEMUFile* f,void *opaque) { PIIX4PMState *s = opaque; pci_device_save(&s->dev, f); qemu_put_be16s(f, &s->pmsts); qemu_put_be16s(f, &s->pmen); qemu_put_be16s(f, &s->pmcntrl); qemu_put_8s(f, &s->apmc); qemu_put_8s(f, &s->apms); qemu_put_timer(f, s->tmr_timer); qemu_put_be64(f, s->tmr_overflow_time); } static int pm_load(QEMUFile* f,void* opaque,int version_id) { PIIX4PMState *s = opaque; int ret; if (version_id > 1) return -EINVAL; ret = pci_device_load(&s->dev, f); if (ret < 0) return ret; qemu_get_be16s(f, &s->pmsts); qemu_get_be16s(f, &s->pmen); qemu_get_be16s(f, &s->pmcntrl); qemu_get_8s(f, &s->apmc); qemu_get_8s(f, &s->apms); qemu_get_timer(f, s->tmr_timer); s->tmr_overflow_time=qemu_get_be64(f); pm_io_space_update(s); return 0; } static void piix4_reset(void *opaque) { PIIX4PMState *s = opaque; uint8_t *pci_conf = s->dev.config; pci_conf[0x58] = 0; pci_conf[0x59] = 0; pci_conf[0x5a] = 0; pci_conf[0x5b] = 0; } i2c_bus *piix4_pm_init(PCIBus *bus, int devfn, uint32_t smb_io_base, qemu_irq sci_irq) { PIIX4PMState *s; uint8_t *pci_conf; s = (PIIX4PMState *)pci_register_device(bus, "PM", sizeof(PIIX4PMState), devfn, NULL, pm_write_config); pm_state = s; pci_conf = s->dev.config; pci_conf[0x00] = 0x86; pci_conf[0x01] = 0x80; pci_conf[0x02] = 0x13; pci_conf[0x03] = 0x71; pci_conf[0x06] = 0x80; pci_conf[0x07] = 0x02; pci_conf[0x08] = 0x03; // revision number pci_conf[0x09] = 0x00; pci_conf[0x0a] = 0x80; // other bridge device pci_conf[0x0b] = 0x06; // bridge device pci_conf[0x0e] = 0x00; // header_type pci_conf[0x3d] = 0x01; // interrupt pin 1 pci_conf[0x40] = 0x01; /* PM io base read only bit */ register_ioport_write(0xb2, 2, 1, pm_smi_writeb, s); register_ioport_read(0xb2, 2, 1, pm_smi_readb, s); register_ioport_write(ACPI_DBG_IO_ADDR, 4, 4, acpi_dbg_writel, s); if (kvm_enabled()) { /* Mark SMM as already inited to prevent SMM from running. KVM does not * support SMM mode. */ pci_conf[0x5B] = 0x02; } /* XXX: which specification is used ? The i82731AB has different mappings */ pci_conf[0x5f] = (parallel_hds[0] != NULL ? 0x80 : 0) | 0x10; pci_conf[0x63] = 0x60; pci_conf[0x67] = (serial_hds[0] != NULL ? 0x08 : 0) | (serial_hds[1] != NULL ? 0x90 : 0); pci_conf[0x90] = smb_io_base | 1; pci_conf[0x91] = smb_io_base >> 8; pci_conf[0xd2] = 0x09; register_ioport_write(smb_io_base, 64, 1, smb_ioport_writeb, s); register_ioport_read(smb_io_base, 64, 1, smb_ioport_readb, s); s->tmr_timer = qemu_new_timer(vm_clock, pm_tmr_timer, s); register_savevm("piix4_pm", 0, 1, pm_save, pm_load, s); s->smbus = i2c_init_bus(); s->irq = sci_irq; qemu_register_reset(piix4_reset, s); return s->smbus; } #if defined(TARGET_I386) void qemu_system_powerdown(void) { if (!pm_state) { qemu_system_shutdown_request(); } else if (pm_state->pmen & PWRBTN_EN) { pm_state->pmsts |= PWRBTN_EN; pm_update_sci(pm_state); } } #endif