/* * gdb server stub - softmmu specific bits * * Debug integration depends on support from the individual * accelerators so most of this involves calling the ops helpers. * * Copyright (c) 2003-2005 Fabrice Bellard * Copyright (c) 2022 Linaro Ltd * * SPDX-License-Identifier: LGPL-2.0+ */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "qemu/cutils.h" #include "exec/gdbstub.h" #include "exec/hwaddr.h" #include "exec/tb-flush.h" #include "sysemu/cpus.h" #include "sysemu/runstate.h" #include "sysemu/replay.h" #include "hw/core/cpu.h" #include "hw/cpu/cluster.h" #include "hw/boards.h" #include "chardev/char.h" #include "chardev/char-fe.h" #include "monitor/monitor.h" #include "trace.h" #include "internals.h" /* System emulation specific state */ typedef struct { CharBackend chr; Chardev *mon_chr; } GDBSystemState; GDBSystemState gdbserver_system_state; static void reset_gdbserver_state(void) { g_free(gdbserver_state.processes); gdbserver_state.processes = NULL; gdbserver_state.process_num = 0; } /* * Return the GDB index for a given vCPU state. * * In system mode GDB numbers CPUs from 1 as 0 is reserved as an "any * cpu" index. */ int gdb_get_cpu_index(CPUState *cpu) { return cpu->cpu_index + 1; } /* * We check the status of the last message in the chardev receive code */ bool gdb_got_immediate_ack(void) { return true; } /* * GDB Connection management. For system emulation we do all of this * via our existing Chardev infrastructure which allows us to support * network and unix sockets. */ void gdb_put_buffer(const uint8_t *buf, int len) { /* * XXX this blocks entire thread. Rewrite to use * qemu_chr_fe_write and background I/O callbacks */ qemu_chr_fe_write_all(&gdbserver_system_state.chr, buf, len); } static void gdb_chr_event(void *opaque, QEMUChrEvent event) { int i; GDBState *s = (GDBState *) opaque; switch (event) { case CHR_EVENT_OPENED: /* Start with first process attached, others detached */ for (i = 0; i < s->process_num; i++) { s->processes[i].attached = !i; } s->c_cpu = gdb_first_attached_cpu(); s->g_cpu = s->c_cpu; vm_stop(RUN_STATE_PAUSED); replay_gdb_attached(); gdb_has_xml = false; break; default: break; } } static void gdb_vm_state_change(void *opaque, bool running, RunState state) { CPUState *cpu = gdbserver_state.c_cpu; g_autoptr(GString) buf = g_string_new(NULL); g_autoptr(GString) tid = g_string_new(NULL); const char *type; int ret; if (running || gdbserver_state.state == RS_INACTIVE) { return; } /* Is there a GDB syscall waiting to be sent? */ if (gdbserver_state.current_syscall_cb) { gdb_put_packet(gdbserver_state.syscall_buf); return; } if (cpu == NULL) { /* No process attached */ return; } gdb_append_thread_id(cpu, tid); switch (state) { case RUN_STATE_DEBUG: if (cpu->watchpoint_hit) { switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) { case BP_MEM_READ: type = "r"; break; case BP_MEM_ACCESS: type = "a"; break; default: type = ""; break; } trace_gdbstub_hit_watchpoint(type, gdb_get_cpu_index(cpu), cpu->watchpoint_hit->vaddr); g_string_printf(buf, "T%02xthread:%s;%swatch:%" VADDR_PRIx ";", GDB_SIGNAL_TRAP, tid->str, type, cpu->watchpoint_hit->vaddr); cpu->watchpoint_hit = NULL; goto send_packet; } else { trace_gdbstub_hit_break(); } tb_flush(cpu); ret = GDB_SIGNAL_TRAP; break; case RUN_STATE_PAUSED: trace_gdbstub_hit_paused(); ret = GDB_SIGNAL_INT; break; case RUN_STATE_SHUTDOWN: trace_gdbstub_hit_shutdown(); ret = GDB_SIGNAL_QUIT; break; case RUN_STATE_IO_ERROR: trace_gdbstub_hit_io_error(); ret = GDB_SIGNAL_IO; break; case RUN_STATE_WATCHDOG: trace_gdbstub_hit_watchdog(); ret = GDB_SIGNAL_ALRM; break; case RUN_STATE_INTERNAL_ERROR: trace_gdbstub_hit_internal_error(); ret = GDB_SIGNAL_ABRT; break; case RUN_STATE_SAVE_VM: case RUN_STATE_RESTORE_VM: return; case RUN_STATE_FINISH_MIGRATE: ret = GDB_SIGNAL_XCPU; break; default: trace_gdbstub_hit_unknown(state); ret = GDB_SIGNAL_UNKNOWN; break; } gdb_set_stop_cpu(cpu); g_string_printf(buf, "T%02xthread:%s;", ret, tid->str); send_packet: gdb_put_packet(buf->str); /* disable single step if it was enabled */ cpu_single_step(cpu, 0); } #ifndef _WIN32 static void gdb_sigterm_handler(int signal) { if (runstate_is_running()) { vm_stop(RUN_STATE_PAUSED); } } #endif static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len) { g_autoptr(GString) hex_buf = g_string_new("O"); gdb_memtohex(hex_buf, buf, len); gdb_put_packet(hex_buf->str); return len; } static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend, bool *be_opened, Error **errp) { *be_opened = false; } static void char_gdb_class_init(ObjectClass *oc, void *data) { ChardevClass *cc = CHARDEV_CLASS(oc); cc->internal = true; cc->open = gdb_monitor_open; cc->chr_write = gdb_monitor_write; } #define TYPE_CHARDEV_GDB "chardev-gdb" static const TypeInfo char_gdb_type_info = { .name = TYPE_CHARDEV_GDB, .parent = TYPE_CHARDEV, .class_init = char_gdb_class_init, }; static int gdb_chr_can_receive(void *opaque) { /* * We can handle an arbitrarily large amount of data. * Pick the maximum packet size, which is as good as anything. */ return MAX_PACKET_LENGTH; } static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size) { int i; for (i = 0; i < size; i++) { gdb_read_byte(buf[i]); } } static int find_cpu_clusters(Object *child, void *opaque) { if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) { GDBState *s = (GDBState *) opaque; CPUClusterState *cluster = CPU_CLUSTER(child); GDBProcess *process; s->processes = g_renew(GDBProcess, s->processes, ++s->process_num); process = &s->processes[s->process_num - 1]; /* * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at * runtime, we enforce here that the machine does not use a cluster ID * that would lead to PID 0. */ assert(cluster->cluster_id != UINT32_MAX); process->pid = cluster->cluster_id + 1; process->attached = false; process->target_xml[0] = '\0'; return 0; } return object_child_foreach(child, find_cpu_clusters, opaque); } static int pid_order(const void *a, const void *b) { GDBProcess *pa = (GDBProcess *) a; GDBProcess *pb = (GDBProcess *) b; if (pa->pid < pb->pid) { return -1; } else if (pa->pid > pb->pid) { return 1; } else { return 0; } } static void create_processes(GDBState *s) { object_child_foreach(object_get_root(), find_cpu_clusters, s); if (gdbserver_state.processes) { /* Sort by PID */ qsort(gdbserver_state.processes, gdbserver_state.process_num, sizeof(gdbserver_state.processes[0]), pid_order); } gdb_create_default_process(s); } int gdbserver_start(const char *device) { trace_gdbstub_op_start(device); char gdbstub_device_name[128]; Chardev *chr = NULL; Chardev *mon_chr; if (!first_cpu) { error_report("gdbstub: meaningless to attach gdb to a " "machine without any CPU."); return -1; } if (!gdb_supports_guest_debug()) { error_report("gdbstub: current accelerator doesn't " "support guest debugging"); return -1; } if (!device) { return -1; } if (strcmp(device, "none") != 0) { if (strstart(device, "tcp:", NULL)) { /* enforce required TCP attributes */ snprintf(gdbstub_device_name, sizeof(gdbstub_device_name), "%s,wait=off,nodelay=on,server=on", device); device = gdbstub_device_name; } #ifndef _WIN32 else if (strcmp(device, "stdio") == 0) { struct sigaction act; memset(&act, 0, sizeof(act)); act.sa_handler = gdb_sigterm_handler; sigaction(SIGINT, &act, NULL); } #endif /* * FIXME: it's a bit weird to allow using a mux chardev here * and implicitly setup a monitor. We may want to break this. */ chr = qemu_chr_new_noreplay("gdb", device, true, NULL); if (!chr) { return -1; } } if (!gdbserver_state.init) { gdb_init_gdbserver_state(); qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL); /* Initialize a monitor terminal for gdb */ mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB, NULL, NULL, &error_abort); monitor_init_hmp(mon_chr, false, &error_abort); } else { qemu_chr_fe_deinit(&gdbserver_system_state.chr, true); mon_chr = gdbserver_system_state.mon_chr; reset_gdbserver_state(); } create_processes(&gdbserver_state); if (chr) { qemu_chr_fe_init(&gdbserver_system_state.chr, chr, &error_abort); qemu_chr_fe_set_handlers(&gdbserver_system_state.chr, gdb_chr_can_receive, gdb_chr_receive, gdb_chr_event, NULL, &gdbserver_state, NULL, true); } gdbserver_state.state = chr ? RS_IDLE : RS_INACTIVE; gdbserver_system_state.mon_chr = mon_chr; gdbserver_state.current_syscall_cb = NULL; return 0; } static void register_types(void) { type_register_static(&char_gdb_type_info); } type_init(register_types); /* Tell the remote gdb that the process has exited. */ void gdb_exit(int code) { char buf[4]; if (!gdbserver_state.init) { return; } trace_gdbstub_op_exiting((uint8_t)code); snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code); gdb_put_packet(buf); qemu_chr_fe_deinit(&gdbserver_system_state.chr, true); } /* * Softmmu specific command helpers */ void gdb_handle_query_rcmd(GArray *params, void *user_ctx) { const guint8 zero = 0; int len; if (!params->len) { gdb_put_packet("E22"); return; } len = strlen(get_param(params, 0)->data); if (len % 2) { gdb_put_packet("E01"); return; } g_assert(gdbserver_state.mem_buf->len == 0); len = len / 2; gdb_hextomem(gdbserver_state.mem_buf, get_param(params, 0)->data, len); g_byte_array_append(gdbserver_state.mem_buf, &zero, 1); qemu_chr_be_write(gdbserver_system_state.mon_chr, gdbserver_state.mem_buf->data, gdbserver_state.mem_buf->len); gdb_put_packet("OK"); } /* * Execution state helpers */ void gdb_handle_query_attached(GArray *params, void *user_ctx) { gdb_put_packet("1"); } void gdb_continue(void) { if (!runstate_needs_reset()) { trace_gdbstub_op_continue(); vm_start(); } } /* * Resume execution, per CPU actions. */ int gdb_continue_partial(char *newstates) { CPUState *cpu; int res = 0; int flag = 0; if (!runstate_needs_reset()) { bool step_requested = false; CPU_FOREACH(cpu) { if (newstates[cpu->cpu_index] == 's') { step_requested = true; break; } } if (vm_prepare_start(step_requested)) { return 0; } CPU_FOREACH(cpu) { switch (newstates[cpu->cpu_index]) { case 0: case 1: break; /* nothing to do here */ case 's': trace_gdbstub_op_stepping(cpu->cpu_index); cpu_single_step(cpu, gdbserver_state.sstep_flags); cpu_resume(cpu); flag = 1; break; case 'c': trace_gdbstub_op_continue_cpu(cpu->cpu_index); cpu_resume(cpu); flag = 1; break; default: res = -1; break; } } } if (flag) { qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true); } return res; } /* * Signal Handling - in system mode we only need SIGINT and SIGTRAP; other * signals are not yet supported. */ enum { TARGET_SIGINT = 2, TARGET_SIGTRAP = 5 }; int gdb_signal_to_target(int sig) { switch (sig) { case 2: return TARGET_SIGINT; case 5: return TARGET_SIGTRAP; default: return -1; } } /* * Break/Watch point helpers */ bool gdb_supports_guest_debug(void) { const AccelOpsClass *ops = cpus_get_accel(); if (ops->supports_guest_debug) { return ops->supports_guest_debug(); } return false; } int gdb_breakpoint_insert(CPUState *cs, int type, vaddr addr, vaddr len) { const AccelOpsClass *ops = cpus_get_accel(); if (ops->insert_breakpoint) { return ops->insert_breakpoint(cs, type, addr, len); } return -ENOSYS; } int gdb_breakpoint_remove(CPUState *cs, int type, vaddr addr, vaddr len) { const AccelOpsClass *ops = cpus_get_accel(); if (ops->remove_breakpoint) { return ops->remove_breakpoint(cs, type, addr, len); } return -ENOSYS; } void gdb_breakpoint_remove_all(CPUState *cs) { const AccelOpsClass *ops = cpus_get_accel(); if (ops->remove_all_breakpoints) { ops->remove_all_breakpoints(cs); } }