/* Native implementation of soft float functions */ #include <math.h> #if (defined(_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS) #include <ieeefp.h> #define fabsf(f) ((float)fabs(f)) #else #include <fenv.h> #endif #if defined(__OpenBSD__) || defined(__NetBSD__) #include <sys/param.h> #endif /* * Define some C99-7.12.3 classification macros and * some C99-.12.4 for Solaris systems OS less than 10, * or Solaris 10 systems running GCC 3.x or less. * Solaris 10 with GCC4 does not need these macros as they * are defined in <iso/math_c99.h> with a compiler directive */ #if defined(HOST_SOLARIS) && (( HOST_SOLARIS <= 9 ) || ((HOST_SOLARIS >= 10) \ && (__GNUC__ <= 4))) \ || (defined(__OpenBSD__) && (OpenBSD < 200811)) /* * C99 7.12.3 classification macros * and * C99 7.12.14 comparison macros * * ... do not work on Solaris 10 using GNU CC 3.4.x. * Try to workaround the missing / broken C99 math macros. */ #if defined(__OpenBSD__) #define unordered(x, y) (isnan(x) || isnan(y)) #endif #ifdef __NetBSD__ #ifndef isgreater #define isgreater(x, y) __builtin_isgreater(x, y) #endif #ifndef isgreaterequal #define isgreaterequal(x, y) __builtin_isgreaterequal(x, y) #endif #ifndef isless #define isless(x, y) __builtin_isless(x, y) #endif #ifndef islessequal #define islessequal(x, y) __builtin_islessequal(x, y) #endif #ifndef isunordered #define isunordered(x, y) __builtin_isunordered(x, y) #endif #endif #define isnormal(x) (fpclass(x) >= FP_NZERO) #define isgreater(x, y) ((!unordered(x, y)) && ((x) > (y))) #define isgreaterequal(x, y) ((!unordered(x, y)) && ((x) >= (y))) #define isless(x, y) ((!unordered(x, y)) && ((x) < (y))) #define islessequal(x, y) ((!unordered(x, y)) && ((x) <= (y))) #define isunordered(x,y) unordered(x, y) #endif #if defined(__sun__) && !defined(NEED_LIBSUNMATH) #ifndef isnan # define isnan(x) \ (sizeof (x) == sizeof (long double) ? isnan_ld (x) \ : sizeof (x) == sizeof (double) ? isnan_d (x) \ : isnan_f (x)) static inline int isnan_f (float x) { return x != x; } static inline int isnan_d (double x) { return x != x; } static inline int isnan_ld (long double x) { return x != x; } #endif #ifndef isinf # define isinf(x) \ (sizeof (x) == sizeof (long double) ? isinf_ld (x) \ : sizeof (x) == sizeof (double) ? isinf_d (x) \ : isinf_f (x)) static inline int isinf_f (float x) { return isnan (x - x); } static inline int isinf_d (double x) { return isnan (x - x); } static inline int isinf_ld (long double x) { return isnan (x - x); } #endif #endif typedef float float32; typedef double float64; #ifdef FLOATX80 typedef long double floatx80; #endif typedef union { float32 f; uint32_t i; } float32u; typedef union { float64 f; uint64_t i; } float64u; #ifdef FLOATX80 typedef union { floatx80 f; struct { uint64_t low; uint16_t high; } i; } floatx80u; #endif /*---------------------------------------------------------------------------- | Software IEC/IEEE floating-point rounding mode. *----------------------------------------------------------------------------*/ #if (defined(_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS) #if defined(__OpenBSD__) #define FE_RM FP_RM #define FE_RP FP_RP #define FE_RZ FP_RZ #endif enum { float_round_nearest_even = FP_RN, float_round_down = FP_RM, float_round_up = FP_RP, float_round_to_zero = FP_RZ }; #elif defined(__arm__) enum { float_round_nearest_even = 0, float_round_down = 1, float_round_up = 2, float_round_to_zero = 3 }; #else enum { float_round_nearest_even = FE_TONEAREST, float_round_down = FE_DOWNWARD, float_round_up = FE_UPWARD, float_round_to_zero = FE_TOWARDZERO }; #endif typedef struct float_status { signed char float_rounding_mode; #ifdef FLOATX80 signed char floatx80_rounding_precision; #endif } float_status; void set_float_rounding_mode(int val STATUS_PARAM); #ifdef FLOATX80 void set_floatx80_rounding_precision(int val STATUS_PARAM); #endif /*---------------------------------------------------------------------------- | Software IEC/IEEE integer-to-floating-point conversion routines. *----------------------------------------------------------------------------*/ float32 int32_to_float32( int STATUS_PARAM); float32 uint32_to_float32( unsigned int STATUS_PARAM); float64 int32_to_float64( int STATUS_PARAM); float64 uint32_to_float64( unsigned int STATUS_PARAM); #ifdef FLOATX80 floatx80 int32_to_floatx80( int STATUS_PARAM); #endif #ifdef FLOAT128 float128 int32_to_float128( int STATUS_PARAM); #endif float32 int64_to_float32( int64_t STATUS_PARAM); float32 uint64_to_float32( uint64_t STATUS_PARAM); float64 int64_to_float64( int64_t STATUS_PARAM); float64 uint64_to_float64( uint64_t v STATUS_PARAM); #ifdef FLOATX80 floatx80 int64_to_floatx80( int64_t STATUS_PARAM); #endif #ifdef FLOAT128 float128 int64_to_float128( int64_t STATUS_PARAM); #endif /*---------------------------------------------------------------------------- | Software IEC/IEEE single-precision conversion routines. *----------------------------------------------------------------------------*/ int float32_to_int32( float32 STATUS_PARAM); int float32_to_int32_round_to_zero( float32 STATUS_PARAM); unsigned int float32_to_uint32( float32 a STATUS_PARAM); unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM); int64_t float32_to_int64( float32 STATUS_PARAM); int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM); float64 float32_to_float64( float32 STATUS_PARAM); #ifdef FLOATX80 floatx80 float32_to_floatx80( float32 STATUS_PARAM); #endif #ifdef FLOAT128 float128 float32_to_float128( float32 STATUS_PARAM); #endif /*---------------------------------------------------------------------------- | Software IEC/IEEE single-precision operations. *----------------------------------------------------------------------------*/ float32 float32_round_to_int( float32 STATUS_PARAM); INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM) { return a + b; } INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM) { return a - b; } INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM) { return a * b; } INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM) { return a / b; } float32 float32_rem( float32, float32 STATUS_PARAM); float32 float32_sqrt( float32 STATUS_PARAM); INLINE int float32_eq( float32 a, float32 b STATUS_PARAM) { return a == b; } INLINE int float32_le( float32 a, float32 b STATUS_PARAM) { return a <= b; } INLINE int float32_lt( float32 a, float32 b STATUS_PARAM) { return a < b; } INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM) { return a <= b && a >= b; } INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM) { return islessequal(a, b); } INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM) { return isless(a, b); } INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM) { return isunordered(a, b); } int float32_compare( float32, float32 STATUS_PARAM ); int float32_compare_quiet( float32, float32 STATUS_PARAM ); int float32_is_signaling_nan( float32 ); int float32_is_nan( float32 ); INLINE float32 float32_abs(float32 a) { return fabsf(a); } INLINE float32 float32_chs(float32 a) { return -a; } INLINE float32 float32_scalbn(float32 a, int n) { return scalbnf(a, n); } /*---------------------------------------------------------------------------- | Software IEC/IEEE double-precision conversion routines. *----------------------------------------------------------------------------*/ int float64_to_int32( float64 STATUS_PARAM ); int float64_to_int32_round_to_zero( float64 STATUS_PARAM ); unsigned int float64_to_uint32( float64 STATUS_PARAM ); unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM ); int64_t float64_to_int64( float64 STATUS_PARAM ); int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM ); uint64_t float64_to_uint64( float64 STATUS_PARAM ); uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM ); float32 float64_to_float32( float64 STATUS_PARAM ); #ifdef FLOATX80 floatx80 float64_to_floatx80( float64 STATUS_PARAM ); #endif #ifdef FLOAT128 float128 float64_to_float128( float64 STATUS_PARAM ); #endif /*---------------------------------------------------------------------------- | Software IEC/IEEE double-precision operations. *----------------------------------------------------------------------------*/ float64 float64_round_to_int( float64 STATUS_PARAM ); float64 float64_trunc_to_int( float64 STATUS_PARAM ); INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM) { return a + b; } INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM) { return a - b; } INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM) { return a * b; } INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM) { return a / b; } float64 float64_rem( float64, float64 STATUS_PARAM ); float64 float64_sqrt( float64 STATUS_PARAM ); INLINE int float64_eq( float64 a, float64 b STATUS_PARAM) { return a == b; } INLINE int float64_le( float64 a, float64 b STATUS_PARAM) { return a <= b; } INLINE int float64_lt( float64 a, float64 b STATUS_PARAM) { return a < b; } INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM) { return a <= b && a >= b; } INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM) { return islessequal(a, b); } INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM) { return isless(a, b); } INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM) { return isunordered(a, b); } int float64_compare( float64, float64 STATUS_PARAM ); int float64_compare_quiet( float64, float64 STATUS_PARAM ); int float64_is_signaling_nan( float64 ); int float64_is_nan( float64 ); INLINE float64 float64_abs(float64 a) { return fabs(a); } INLINE float64 float64_chs(float64 a) { return -a; } INLINE float64 float64_scalbn(float64 a, int n) { return scalbn(a, n); } #ifdef FLOATX80 /*---------------------------------------------------------------------------- | Software IEC/IEEE extended double-precision conversion routines. *----------------------------------------------------------------------------*/ int floatx80_to_int32( floatx80 STATUS_PARAM ); int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM ); int64_t floatx80_to_int64( floatx80 STATUS_PARAM); int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM); float32 floatx80_to_float32( floatx80 STATUS_PARAM ); float64 floatx80_to_float64( floatx80 STATUS_PARAM ); #ifdef FLOAT128 float128 floatx80_to_float128( floatx80 STATUS_PARAM ); #endif /*---------------------------------------------------------------------------- | Software IEC/IEEE extended double-precision operations. *----------------------------------------------------------------------------*/ floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM ); INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM) { return a + b; } INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM) { return a - b; } INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM) { return a * b; } INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM) { return a / b; } floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM ); floatx80 floatx80_sqrt( floatx80 STATUS_PARAM ); INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM) { return a == b; } INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM) { return a <= b; } INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM) { return a < b; } INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM) { return a <= b && a >= b; } INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM) { return islessequal(a, b); } INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM) { return isless(a, b); } INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM) { return isunordered(a, b); } int floatx80_compare( floatx80, floatx80 STATUS_PARAM ); int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM ); int floatx80_is_signaling_nan( floatx80 ); INLINE floatx80 floatx80_abs(floatx80 a) { return fabsl(a); } INLINE floatx80 floatx80_chs(floatx80 a) { return -a; } INLINE floatx80 floatx80_scalbn(floatx80 a, int n) { return scalbnl(a, n); } #endif