/* * Virtual page mapping * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu/cutils.h" #include "cpu.h" #include "exec/exec-all.h" #include "exec/target_page.h" #include "tcg.h" #include "hw/qdev-core.h" #include "hw/qdev-properties.h" #if !defined(CONFIG_USER_ONLY) #include "hw/boards.h" #include "hw/xen/xen.h" #endif #include "sysemu/kvm.h" #include "sysemu/sysemu.h" #include "qemu/timer.h" #include "qemu/config-file.h" #include "qemu/error-report.h" #if defined(CONFIG_USER_ONLY) #include "qemu.h" #else /* !CONFIG_USER_ONLY */ #include "hw/hw.h" #include "exec/memory.h" #include "exec/ioport.h" #include "sysemu/dma.h" #include "sysemu/numa.h" #include "sysemu/hw_accel.h" #include "exec/address-spaces.h" #include "sysemu/xen-mapcache.h" #include "trace-root.h" #ifdef CONFIG_FALLOCATE_PUNCH_HOLE #include #endif #endif #include "qemu/rcu_queue.h" #include "qemu/main-loop.h" #include "translate-all.h" #include "sysemu/replay.h" #include "exec/memory-internal.h" #include "exec/ram_addr.h" #include "exec/log.h" #include "migration/vmstate.h" #include "qemu/range.h" #ifndef _WIN32 #include "qemu/mmap-alloc.h" #endif #include "monitor/monitor.h" //#define DEBUG_SUBPAGE #if !defined(CONFIG_USER_ONLY) /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes * are protected by the ramlist lock. */ RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; static MemoryRegion *system_memory; static MemoryRegion *system_io; AddressSpace address_space_io; AddressSpace address_space_memory; MemoryRegion io_mem_rom, io_mem_notdirty; static MemoryRegion io_mem_unassigned; #endif #ifdef TARGET_PAGE_BITS_VARY int target_page_bits; bool target_page_bits_decided; #endif struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); /* current CPU in the current thread. It is only valid inside cpu_exec() */ __thread CPUState *current_cpu; /* 0 = Do not count executed instructions. 1 = Precise instruction counting. 2 = Adaptive rate instruction counting. */ int use_icount; uintptr_t qemu_host_page_size; intptr_t qemu_host_page_mask; bool set_preferred_target_page_bits(int bits) { /* The target page size is the lowest common denominator for all * the CPUs in the system, so we can only make it smaller, never * larger. And we can't make it smaller once we've committed to * a particular size. */ #ifdef TARGET_PAGE_BITS_VARY assert(bits >= TARGET_PAGE_BITS_MIN); if (target_page_bits == 0 || target_page_bits > bits) { if (target_page_bits_decided) { return false; } target_page_bits = bits; } #endif return true; } #if !defined(CONFIG_USER_ONLY) static void finalize_target_page_bits(void) { #ifdef TARGET_PAGE_BITS_VARY if (target_page_bits == 0) { target_page_bits = TARGET_PAGE_BITS_MIN; } target_page_bits_decided = true; #endif } typedef struct PhysPageEntry PhysPageEntry; struct PhysPageEntry { /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ uint32_t skip : 6; /* index into phys_sections (!skip) or phys_map_nodes (skip) */ uint32_t ptr : 26; }; #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) /* Size of the L2 (and L3, etc) page tables. */ #define ADDR_SPACE_BITS 64 #define P_L2_BITS 9 #define P_L2_SIZE (1 << P_L2_BITS) #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) typedef PhysPageEntry Node[P_L2_SIZE]; typedef struct PhysPageMap { struct rcu_head rcu; unsigned sections_nb; unsigned sections_nb_alloc; unsigned nodes_nb; unsigned nodes_nb_alloc; Node *nodes; MemoryRegionSection *sections; } PhysPageMap; struct AddressSpaceDispatch { MemoryRegionSection *mru_section; /* This is a multi-level map on the physical address space. * The bottom level has pointers to MemoryRegionSections. */ PhysPageEntry phys_map; PhysPageMap map; }; #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) typedef struct subpage_t { MemoryRegion iomem; FlatView *fv; hwaddr base; uint16_t sub_section[]; } subpage_t; #define PHYS_SECTION_UNASSIGNED 0 #define PHYS_SECTION_NOTDIRTY 1 #define PHYS_SECTION_ROM 2 #define PHYS_SECTION_WATCH 3 static void io_mem_init(void); static void memory_map_init(void); static void tcg_commit(MemoryListener *listener); static MemoryRegion io_mem_watch; /** * CPUAddressSpace: all the information a CPU needs about an AddressSpace * @cpu: the CPU whose AddressSpace this is * @as: the AddressSpace itself * @memory_dispatch: its dispatch pointer (cached, RCU protected) * @tcg_as_listener: listener for tracking changes to the AddressSpace */ struct CPUAddressSpace { CPUState *cpu; AddressSpace *as; struct AddressSpaceDispatch *memory_dispatch; MemoryListener tcg_as_listener; }; struct DirtyBitmapSnapshot { ram_addr_t start; ram_addr_t end; unsigned long dirty[]; }; #endif #if !defined(CONFIG_USER_ONLY) static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) { static unsigned alloc_hint = 16; if (map->nodes_nb + nodes > map->nodes_nb_alloc) { map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint); map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); alloc_hint = map->nodes_nb_alloc; } } static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) { unsigned i; uint32_t ret; PhysPageEntry e; PhysPageEntry *p; ret = map->nodes_nb++; p = map->nodes[ret]; assert(ret != PHYS_MAP_NODE_NIL); assert(ret != map->nodes_nb_alloc); e.skip = leaf ? 0 : 1; e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; for (i = 0; i < P_L2_SIZE; ++i) { memcpy(&p[i], &e, sizeof(e)); } return ret; } static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, hwaddr *index, hwaddr *nb, uint16_t leaf, int level) { PhysPageEntry *p; hwaddr step = (hwaddr)1 << (level * P_L2_BITS); if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { lp->ptr = phys_map_node_alloc(map, level == 0); } p = map->nodes[lp->ptr]; lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; while (*nb && lp < &p[P_L2_SIZE]) { if ((*index & (step - 1)) == 0 && *nb >= step) { lp->skip = 0; lp->ptr = leaf; *index += step; *nb -= step; } else { phys_page_set_level(map, lp, index, nb, leaf, level - 1); } ++lp; } } static void phys_page_set(AddressSpaceDispatch *d, hwaddr index, hwaddr nb, uint16_t leaf) { /* Wildly overreserve - it doesn't matter much. */ phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); } /* Compact a non leaf page entry. Simply detect that the entry has a single child, * and update our entry so we can skip it and go directly to the destination. */ static void phys_page_compact(PhysPageEntry *lp, Node *nodes) { unsigned valid_ptr = P_L2_SIZE; int valid = 0; PhysPageEntry *p; int i; if (lp->ptr == PHYS_MAP_NODE_NIL) { return; } p = nodes[lp->ptr]; for (i = 0; i < P_L2_SIZE; i++) { if (p[i].ptr == PHYS_MAP_NODE_NIL) { continue; } valid_ptr = i; valid++; if (p[i].skip) { phys_page_compact(&p[i], nodes); } } /* We can only compress if there's only one child. */ if (valid != 1) { return; } assert(valid_ptr < P_L2_SIZE); /* Don't compress if it won't fit in the # of bits we have. */ if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { return; } lp->ptr = p[valid_ptr].ptr; if (!p[valid_ptr].skip) { /* If our only child is a leaf, make this a leaf. */ /* By design, we should have made this node a leaf to begin with so we * should never reach here. * But since it's so simple to handle this, let's do it just in case we * change this rule. */ lp->skip = 0; } else { lp->skip += p[valid_ptr].skip; } } void address_space_dispatch_compact(AddressSpaceDispatch *d) { if (d->phys_map.skip) { phys_page_compact(&d->phys_map, d->map.nodes); } } static inline bool section_covers_addr(const MemoryRegionSection *section, hwaddr addr) { /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means * the section must cover the entire address space. */ return int128_gethi(section->size) || range_covers_byte(section->offset_within_address_space, int128_getlo(section->size), addr); } static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) { PhysPageEntry lp = d->phys_map, *p; Node *nodes = d->map.nodes; MemoryRegionSection *sections = d->map.sections; hwaddr index = addr >> TARGET_PAGE_BITS; int i; for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { if (lp.ptr == PHYS_MAP_NODE_NIL) { return §ions[PHYS_SECTION_UNASSIGNED]; } p = nodes[lp.ptr]; lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; } if (section_covers_addr(§ions[lp.ptr], addr)) { return §ions[lp.ptr]; } else { return §ions[PHYS_SECTION_UNASSIGNED]; } } bool memory_region_is_unassigned(MemoryRegion *mr) { return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device && mr != &io_mem_watch; } /* Called from RCU critical section */ static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, hwaddr addr, bool resolve_subpage) { MemoryRegionSection *section = atomic_read(&d->mru_section); subpage_t *subpage; if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || !section_covers_addr(section, addr)) { section = phys_page_find(d, addr); atomic_set(&d->mru_section, section); } if (resolve_subpage && section->mr->subpage) { subpage = container_of(section->mr, subpage_t, iomem); section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; } return section; } /* Called from RCU critical section */ static MemoryRegionSection * address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, hwaddr *plen, bool resolve_subpage) { MemoryRegionSection *section; MemoryRegion *mr; Int128 diff; section = address_space_lookup_region(d, addr, resolve_subpage); /* Compute offset within MemoryRegionSection */ addr -= section->offset_within_address_space; /* Compute offset within MemoryRegion */ *xlat = addr + section->offset_within_region; mr = section->mr; /* MMIO registers can be expected to perform full-width accesses based only * on their address, without considering adjacent registers that could * decode to completely different MemoryRegions. When such registers * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO * regions overlap wildly. For this reason we cannot clamp the accesses * here. * * If the length is small (as is the case for address_space_ldl/stl), * everything works fine. If the incoming length is large, however, * the caller really has to do the clamping through memory_access_size. */ if (memory_region_is_ram(mr)) { diff = int128_sub(section->size, int128_make64(addr)); *plen = int128_get64(int128_min(diff, int128_make64(*plen))); } return section; } /** * address_space_translate_iommu - translate an address through an IOMMU * memory region and then through the target address space. * * @iommu_mr: the IOMMU memory region that we start the translation from * @addr: the address to be translated through the MMU * @xlat: the translated address offset within the destination memory region. * It cannot be %NULL. * @plen_out: valid read/write length of the translated address. It * cannot be %NULL. * @page_mask_out: page mask for the translated address. This * should only be meaningful for IOMMU translated * addresses, since there may be huge pages that this bit * would tell. It can be %NULL if we don't care about it. * @is_write: whether the translation operation is for write * @is_mmio: whether this can be MMIO, set true if it can * @target_as: the address space targeted by the IOMMU * @attrs: transaction attributes * * This function is called from RCU critical section. It is the common * part of flatview_do_translate and address_space_translate_cached. */ static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, hwaddr *xlat, hwaddr *plen_out, hwaddr *page_mask_out, bool is_write, bool is_mmio, AddressSpace **target_as, MemTxAttrs attrs) { MemoryRegionSection *section; hwaddr page_mask = (hwaddr)-1; do { hwaddr addr = *xlat; IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); int iommu_idx = 0; IOMMUTLBEntry iotlb; if (imrc->attrs_to_index) { iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); } iotlb = imrc->translate(iommu_mr, addr, is_write ? IOMMU_WO : IOMMU_RO, iommu_idx); if (!(iotlb.perm & (1 << is_write))) { goto unassigned; } addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | (addr & iotlb.addr_mask)); page_mask &= iotlb.addr_mask; *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); *target_as = iotlb.target_as; section = address_space_translate_internal( address_space_to_dispatch(iotlb.target_as), addr, xlat, plen_out, is_mmio); iommu_mr = memory_region_get_iommu(section->mr); } while (unlikely(iommu_mr)); if (page_mask_out) { *page_mask_out = page_mask; } return *section; unassigned: return (MemoryRegionSection) { .mr = &io_mem_unassigned }; } /** * flatview_do_translate - translate an address in FlatView * * @fv: the flat view that we want to translate on * @addr: the address to be translated in above address space * @xlat: the translated address offset within memory region. It * cannot be @NULL. * @plen_out: valid read/write length of the translated address. It * can be @NULL when we don't care about it. * @page_mask_out: page mask for the translated address. This * should only be meaningful for IOMMU translated * addresses, since there may be huge pages that this bit * would tell. It can be @NULL if we don't care about it. * @is_write: whether the translation operation is for write * @is_mmio: whether this can be MMIO, set true if it can * @target_as: the address space targeted by the IOMMU * @attrs: memory transaction attributes * * This function is called from RCU critical section */ static MemoryRegionSection flatview_do_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, hwaddr *plen_out, hwaddr *page_mask_out, bool is_write, bool is_mmio, AddressSpace **target_as, MemTxAttrs attrs) { MemoryRegionSection *section; IOMMUMemoryRegion *iommu_mr; hwaddr plen = (hwaddr)(-1); if (!plen_out) { plen_out = &plen; } section = address_space_translate_internal( flatview_to_dispatch(fv), addr, xlat, plen_out, is_mmio); iommu_mr = memory_region_get_iommu(section->mr); if (unlikely(iommu_mr)) { return address_space_translate_iommu(iommu_mr, xlat, plen_out, page_mask_out, is_write, is_mmio, target_as, attrs); } if (page_mask_out) { /* Not behind an IOMMU, use default page size. */ *page_mask_out = ~TARGET_PAGE_MASK; } return *section; } /* Called from RCU critical section */ IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, bool is_write, MemTxAttrs attrs) { MemoryRegionSection section; hwaddr xlat, page_mask; /* * This can never be MMIO, and we don't really care about plen, * but page mask. */ section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, NULL, &page_mask, is_write, false, &as, attrs); /* Illegal translation */ if (section.mr == &io_mem_unassigned) { goto iotlb_fail; } /* Convert memory region offset into address space offset */ xlat += section.offset_within_address_space - section.offset_within_region; return (IOMMUTLBEntry) { .target_as = as, .iova = addr & ~page_mask, .translated_addr = xlat & ~page_mask, .addr_mask = page_mask, /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ .perm = IOMMU_RW, }; iotlb_fail: return (IOMMUTLBEntry) {0}; } /* Called from RCU critical section */ MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, hwaddr *plen, bool is_write, MemTxAttrs attrs) { MemoryRegion *mr; MemoryRegionSection section; AddressSpace *as = NULL; /* This can be MMIO, so setup MMIO bit. */ section = flatview_do_translate(fv, addr, xlat, plen, NULL, is_write, true, &as, attrs); mr = section.mr; if (xen_enabled() && memory_access_is_direct(mr, is_write)) { hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; *plen = MIN(page, *plen); } return mr; } typedef struct TCGIOMMUNotifier { IOMMUNotifier n; MemoryRegion *mr; CPUState *cpu; int iommu_idx; bool active; } TCGIOMMUNotifier; static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) { TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); if (!notifier->active) { return; } tlb_flush(notifier->cpu); notifier->active = false; /* We leave the notifier struct on the list to avoid reallocating it later. * Generally the number of IOMMUs a CPU deals with will be small. * In any case we can't unregister the iommu notifier from a notify * callback. */ } static void tcg_register_iommu_notifier(CPUState *cpu, IOMMUMemoryRegion *iommu_mr, int iommu_idx) { /* Make sure this CPU has an IOMMU notifier registered for this * IOMMU/IOMMU index combination, so that we can flush its TLB * when the IOMMU tells us the mappings we've cached have changed. */ MemoryRegion *mr = MEMORY_REGION(iommu_mr); TCGIOMMUNotifier *notifier; int i; for (i = 0; i < cpu->iommu_notifiers->len; i++) { notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i); if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { break; } } if (i == cpu->iommu_notifiers->len) { /* Not found, add a new entry at the end of the array */ cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i); notifier->mr = mr; notifier->iommu_idx = iommu_idx; notifier->cpu = cpu; /* Rather than trying to register interest in the specific part * of the iommu's address space that we've accessed and then * expand it later as subsequent accesses touch more of it, we * just register interest in the whole thing, on the assumption * that iommu reconfiguration will be rare. */ iommu_notifier_init(¬ifier->n, tcg_iommu_unmap_notify, IOMMU_NOTIFIER_UNMAP, 0, HWADDR_MAX, iommu_idx); memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n); } if (!notifier->active) { notifier->active = true; } } static void tcg_iommu_free_notifier_list(CPUState *cpu) { /* Destroy the CPU's notifier list */ int i; TCGIOMMUNotifier *notifier; for (i = 0; i < cpu->iommu_notifiers->len; i++) { notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i); memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); } g_array_free(cpu->iommu_notifiers, true); } /* Called from RCU critical section */ MemoryRegionSection * address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, hwaddr *xlat, hwaddr *plen, MemTxAttrs attrs, int *prot) { MemoryRegionSection *section; IOMMUMemoryRegion *iommu_mr; IOMMUMemoryRegionClass *imrc; IOMMUTLBEntry iotlb; int iommu_idx; AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); for (;;) { section = address_space_translate_internal(d, addr, &addr, plen, false); iommu_mr = memory_region_get_iommu(section->mr); if (!iommu_mr) { break; } imrc = memory_region_get_iommu_class_nocheck(iommu_mr); iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); /* We need all the permissions, so pass IOMMU_NONE so the IOMMU * doesn't short-cut its translation table walk. */ iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | (addr & iotlb.addr_mask)); /* Update the caller's prot bits to remove permissions the IOMMU * is giving us a failure response for. If we get down to no * permissions left at all we can give up now. */ if (!(iotlb.perm & IOMMU_RO)) { *prot &= ~(PAGE_READ | PAGE_EXEC); } if (!(iotlb.perm & IOMMU_WO)) { *prot &= ~PAGE_WRITE; } if (!*prot) { goto translate_fail; } d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); } assert(!memory_region_is_iommu(section->mr)); *xlat = addr; return section; translate_fail: return &d->map.sections[PHYS_SECTION_UNASSIGNED]; } #endif #if !defined(CONFIG_USER_ONLY) static int cpu_common_post_load(void *opaque, int version_id) { CPUState *cpu = opaque; /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the version_id is increased. */ cpu->interrupt_request &= ~0x01; tlb_flush(cpu); /* loadvm has just updated the content of RAM, bypassing the * usual mechanisms that ensure we flush TBs for writes to * memory we've translated code from. So we must flush all TBs, * which will now be stale. */ tb_flush(cpu); return 0; } static int cpu_common_pre_load(void *opaque) { CPUState *cpu = opaque; cpu->exception_index = -1; return 0; } static bool cpu_common_exception_index_needed(void *opaque) { CPUState *cpu = opaque; return tcg_enabled() && cpu->exception_index != -1; } static const VMStateDescription vmstate_cpu_common_exception_index = { .name = "cpu_common/exception_index", .version_id = 1, .minimum_version_id = 1, .needed = cpu_common_exception_index_needed, .fields = (VMStateField[]) { VMSTATE_INT32(exception_index, CPUState), VMSTATE_END_OF_LIST() } }; static bool cpu_common_crash_occurred_needed(void *opaque) { CPUState *cpu = opaque; return cpu->crash_occurred; } static const VMStateDescription vmstate_cpu_common_crash_occurred = { .name = "cpu_common/crash_occurred", .version_id = 1, .minimum_version_id = 1, .needed = cpu_common_crash_occurred_needed, .fields = (VMStateField[]) { VMSTATE_BOOL(crash_occurred, CPUState), VMSTATE_END_OF_LIST() } }; const VMStateDescription vmstate_cpu_common = { .name = "cpu_common", .version_id = 1, .minimum_version_id = 1, .pre_load = cpu_common_pre_load, .post_load = cpu_common_post_load, .fields = (VMStateField[]) { VMSTATE_UINT32(halted, CPUState), VMSTATE_UINT32(interrupt_request, CPUState), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_cpu_common_exception_index, &vmstate_cpu_common_crash_occurred, NULL } }; #endif CPUState *qemu_get_cpu(int index) { CPUState *cpu; CPU_FOREACH(cpu) { if (cpu->cpu_index == index) { return cpu; } } return NULL; } #if !defined(CONFIG_USER_ONLY) void cpu_address_space_init(CPUState *cpu, int asidx, const char *prefix, MemoryRegion *mr) { CPUAddressSpace *newas; AddressSpace *as = g_new0(AddressSpace, 1); char *as_name; assert(mr); as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); address_space_init(as, mr, as_name); g_free(as_name); /* Target code should have set num_ases before calling us */ assert(asidx < cpu->num_ases); if (asidx == 0) { /* address space 0 gets the convenience alias */ cpu->as = as; } /* KVM cannot currently support multiple address spaces. */ assert(asidx == 0 || !kvm_enabled()); if (!cpu->cpu_ases) { cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); } newas = &cpu->cpu_ases[asidx]; newas->cpu = cpu; newas->as = as; if (tcg_enabled()) { newas->tcg_as_listener.commit = tcg_commit; memory_listener_register(&newas->tcg_as_listener, as); } } AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) { /* Return the AddressSpace corresponding to the specified index */ return cpu->cpu_ases[asidx].as; } #endif void cpu_exec_unrealizefn(CPUState *cpu) { CPUClass *cc = CPU_GET_CLASS(cpu); cpu_list_remove(cpu); if (cc->vmsd != NULL) { vmstate_unregister(NULL, cc->vmsd, cpu); } if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { vmstate_unregister(NULL, &vmstate_cpu_common, cpu); } #ifndef CONFIG_USER_ONLY tcg_iommu_free_notifier_list(cpu); #endif } Property cpu_common_props[] = { #ifndef CONFIG_USER_ONLY /* Create a memory property for softmmu CPU object, * so users can wire up its memory. (This can't go in qom/cpu.c * because that file is compiled only once for both user-mode * and system builds.) The default if no link is set up is to use * the system address space. */ DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION, MemoryRegion *), #endif DEFINE_PROP_END_OF_LIST(), }; void cpu_exec_initfn(CPUState *cpu) { cpu->as = NULL; cpu->num_ases = 0; #ifndef CONFIG_USER_ONLY cpu->thread_id = qemu_get_thread_id(); cpu->memory = system_memory; object_ref(OBJECT(cpu->memory)); #endif } void cpu_exec_realizefn(CPUState *cpu, Error **errp) { CPUClass *cc = CPU_GET_CLASS(cpu); static bool tcg_target_initialized; cpu_list_add(cpu); if (tcg_enabled() && !tcg_target_initialized) { tcg_target_initialized = true; cc->tcg_initialize(); } #ifndef CONFIG_USER_ONLY if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); } if (cc->vmsd != NULL) { vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); } cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier)); #endif } const char *parse_cpu_model(const char *cpu_model) { ObjectClass *oc; CPUClass *cc; gchar **model_pieces; const char *cpu_type; model_pieces = g_strsplit(cpu_model, ",", 2); oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]); if (oc == NULL) { error_report("unable to find CPU model '%s'", model_pieces[0]); g_strfreev(model_pieces); exit(EXIT_FAILURE); } cpu_type = object_class_get_name(oc); cc = CPU_CLASS(oc); cc->parse_features(cpu_type, model_pieces[1], &error_fatal); g_strfreev(model_pieces); return cpu_type; } #if defined(CONFIG_USER_ONLY) void tb_invalidate_phys_addr(target_ulong addr) { mmap_lock(); tb_invalidate_phys_page_range(addr, addr + 1, 0); mmap_unlock(); } static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) { tb_invalidate_phys_addr(pc); } #else void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs) { ram_addr_t ram_addr; MemoryRegion *mr; hwaddr l = 1; if (!tcg_enabled()) { return; } rcu_read_lock(); mr = address_space_translate(as, addr, &addr, &l, false, attrs); if (!(memory_region_is_ram(mr) || memory_region_is_romd(mr))) { rcu_read_unlock(); return; } ram_addr = memory_region_get_ram_addr(mr) + addr; tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); rcu_read_unlock(); } static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) { MemTxAttrs attrs; hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs); int asidx = cpu_asidx_from_attrs(cpu, attrs); if (phys != -1) { /* Locks grabbed by tb_invalidate_phys_addr */ tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as, phys | (pc & ~TARGET_PAGE_MASK), attrs); } } #endif #if defined(CONFIG_USER_ONLY) void cpu_watchpoint_remove_all(CPUState *cpu, int mask) { } int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, int flags) { return -ENOSYS; } void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) { } int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, int flags, CPUWatchpoint **watchpoint) { return -ENOSYS; } #else /* Add a watchpoint. */ int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, int flags, CPUWatchpoint **watchpoint) { CPUWatchpoint *wp; /* forbid ranges which are empty or run off the end of the address space */ if (len == 0 || (addr + len - 1) < addr) { error_report("tried to set invalid watchpoint at %" VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); return -EINVAL; } wp = g_malloc(sizeof(*wp)); wp->vaddr = addr; wp->len = len; wp->flags = flags; /* keep all GDB-injected watchpoints in front */ if (flags & BP_GDB) { QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); } else { QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); } tlb_flush_page(cpu, addr); if (watchpoint) *watchpoint = wp; return 0; } /* Remove a specific watchpoint. */ int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, int flags) { CPUWatchpoint *wp; QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { if (addr == wp->vaddr && len == wp->len && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { cpu_watchpoint_remove_by_ref(cpu, wp); return 0; } } return -ENOENT; } /* Remove a specific watchpoint by reference. */ void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) { QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); tlb_flush_page(cpu, watchpoint->vaddr); g_free(watchpoint); } /* Remove all matching watchpoints. */ void cpu_watchpoint_remove_all(CPUState *cpu, int mask) { CPUWatchpoint *wp, *next; QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { if (wp->flags & mask) { cpu_watchpoint_remove_by_ref(cpu, wp); } } } /* Return true if this watchpoint address matches the specified * access (ie the address range covered by the watchpoint overlaps * partially or completely with the address range covered by the * access). */ static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, vaddr addr, vaddr len) { /* We know the lengths are non-zero, but a little caution is * required to avoid errors in the case where the range ends * exactly at the top of the address space and so addr + len * wraps round to zero. */ vaddr wpend = wp->vaddr + wp->len - 1; vaddr addrend = addr + len - 1; return !(addr > wpend || wp->vaddr > addrend); } #endif /* Add a breakpoint. */ int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, CPUBreakpoint **breakpoint) { CPUBreakpoint *bp; bp = g_malloc(sizeof(*bp)); bp->pc = pc; bp->flags = flags; /* keep all GDB-injected breakpoints in front */ if (flags & BP_GDB) { QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); } else { QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); } breakpoint_invalidate(cpu, pc); if (breakpoint) { *breakpoint = bp; } return 0; } /* Remove a specific breakpoint. */ int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) { CPUBreakpoint *bp; QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { if (bp->pc == pc && bp->flags == flags) { cpu_breakpoint_remove_by_ref(cpu, bp); return 0; } } return -ENOENT; } /* Remove a specific breakpoint by reference. */ void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) { QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); breakpoint_invalidate(cpu, breakpoint->pc); g_free(breakpoint); } /* Remove all matching breakpoints. */ void cpu_breakpoint_remove_all(CPUState *cpu, int mask) { CPUBreakpoint *bp, *next; QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { if (bp->flags & mask) { cpu_breakpoint_remove_by_ref(cpu, bp); } } } /* enable or disable single step mode. EXCP_DEBUG is returned by the CPU loop after each instruction */ void cpu_single_step(CPUState *cpu, int enabled) { if (cpu->singlestep_enabled != enabled) { cpu->singlestep_enabled = enabled; if (kvm_enabled()) { kvm_update_guest_debug(cpu, 0); } else { /* must flush all the translated code to avoid inconsistencies */ /* XXX: only flush what is necessary */ tb_flush(cpu); } } } void cpu_abort(CPUState *cpu, const char *fmt, ...) { va_list ap; va_list ap2; va_start(ap, fmt); va_copy(ap2, ap); fprintf(stderr, "qemu: fatal: "); vfprintf(stderr, fmt, ap); fprintf(stderr, "\n"); cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); if (qemu_log_separate()) { qemu_log_lock(); qemu_log("qemu: fatal: "); qemu_log_vprintf(fmt, ap2); qemu_log("\n"); log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); qemu_log_flush(); qemu_log_unlock(); qemu_log_close(); } va_end(ap2); va_end(ap); replay_finish(); #if defined(CONFIG_USER_ONLY) { struct sigaction act; sigfillset(&act.sa_mask); act.sa_handler = SIG_DFL; act.sa_flags = 0; sigaction(SIGABRT, &act, NULL); } #endif abort(); } #if !defined(CONFIG_USER_ONLY) /* Called from RCU critical section */ static RAMBlock *qemu_get_ram_block(ram_addr_t addr) { RAMBlock *block; block = atomic_rcu_read(&ram_list.mru_block); if (block && addr - block->offset < block->max_length) { return block; } RAMBLOCK_FOREACH(block) { if (addr - block->offset < block->max_length) { goto found; } } fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); abort(); found: /* It is safe to write mru_block outside the iothread lock. This * is what happens: * * mru_block = xxx * rcu_read_unlock() * xxx removed from list * rcu_read_lock() * read mru_block * mru_block = NULL; * call_rcu(reclaim_ramblock, xxx); * rcu_read_unlock() * * atomic_rcu_set is not needed here. The block was already published * when it was placed into the list. Here we're just making an extra * copy of the pointer. */ ram_list.mru_block = block; return block; } static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) { CPUState *cpu; ram_addr_t start1; RAMBlock *block; ram_addr_t end; assert(tcg_enabled()); end = TARGET_PAGE_ALIGN(start + length); start &= TARGET_PAGE_MASK; rcu_read_lock(); block = qemu_get_ram_block(start); assert(block == qemu_get_ram_block(end - 1)); start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); CPU_FOREACH(cpu) { tlb_reset_dirty(cpu, start1, length); } rcu_read_unlock(); } /* Note: start and end must be within the same ram block. */ bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, ram_addr_t length, unsigned client) { DirtyMemoryBlocks *blocks; unsigned long end, page; bool dirty = false; if (length == 0) { return false; } end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; page = start >> TARGET_PAGE_BITS; rcu_read_lock(); blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); while (page < end) { unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], offset, num); page += num; } rcu_read_unlock(); if (dirty && tcg_enabled()) { tlb_reset_dirty_range_all(start, length); } return dirty; } DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty (ram_addr_t start, ram_addr_t length, unsigned client) { DirtyMemoryBlocks *blocks; unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); ram_addr_t first = QEMU_ALIGN_DOWN(start, align); ram_addr_t last = QEMU_ALIGN_UP(start + length, align); DirtyBitmapSnapshot *snap; unsigned long page, end, dest; snap = g_malloc0(sizeof(*snap) + ((last - first) >> (TARGET_PAGE_BITS + 3))); snap->start = first; snap->end = last; page = first >> TARGET_PAGE_BITS; end = last >> TARGET_PAGE_BITS; dest = 0; rcu_read_lock(); blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); while (page < end) { unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); offset >>= BITS_PER_LEVEL; bitmap_copy_and_clear_atomic(snap->dirty + dest, blocks->blocks[idx] + offset, num); page += num; dest += num >> BITS_PER_LEVEL; } rcu_read_unlock(); if (tcg_enabled()) { tlb_reset_dirty_range_all(start, length); } return snap; } bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, ram_addr_t start, ram_addr_t length) { unsigned long page, end; assert(start >= snap->start); assert(start + length <= snap->end); end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; page = (start - snap->start) >> TARGET_PAGE_BITS; while (page < end) { if (test_bit(page, snap->dirty)) { return true; } page++; } return false; } /* Called from RCU critical section */ hwaddr memory_region_section_get_iotlb(CPUState *cpu, MemoryRegionSection *section, target_ulong vaddr, hwaddr paddr, hwaddr xlat, int prot, target_ulong *address) { hwaddr iotlb; CPUWatchpoint *wp; if (memory_region_is_ram(section->mr)) { /* Normal RAM. */ iotlb = memory_region_get_ram_addr(section->mr) + xlat; if (!section->readonly) { iotlb |= PHYS_SECTION_NOTDIRTY; } else { iotlb |= PHYS_SECTION_ROM; } } else { AddressSpaceDispatch *d; d = flatview_to_dispatch(section->fv); iotlb = section - d->map.sections; iotlb += xlat; } /* Make accesses to pages with watchpoints go via the watchpoint trap routines. */ QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { /* Avoid trapping reads of pages with a write breakpoint. */ if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { iotlb = PHYS_SECTION_WATCH + paddr; *address |= TLB_MMIO; break; } } } return iotlb; } #endif /* defined(CONFIG_USER_ONLY) */ #if !defined(CONFIG_USER_ONLY) static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, uint16_t section); static subpage_t *subpage_init(FlatView *fv, hwaddr base); static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) = qemu_anon_ram_alloc; /* * Set a custom physical guest memory alloator. * Accelerators with unusual needs may need this. Hopefully, we can * get rid of it eventually. */ void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared)) { phys_mem_alloc = alloc; } static uint16_t phys_section_add(PhysPageMap *map, MemoryRegionSection *section) { /* The physical section number is ORed with a page-aligned * pointer to produce the iotlb entries. Thus it should * never overflow into the page-aligned value. */ assert(map->sections_nb < TARGET_PAGE_SIZE); if (map->sections_nb == map->sections_nb_alloc) { map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); map->sections = g_renew(MemoryRegionSection, map->sections, map->sections_nb_alloc); } map->sections[map->sections_nb] = *section; memory_region_ref(section->mr); return map->sections_nb++; } static void phys_section_destroy(MemoryRegion *mr) { bool have_sub_page = mr->subpage; memory_region_unref(mr); if (have_sub_page) { subpage_t *subpage = container_of(mr, subpage_t, iomem); object_unref(OBJECT(&subpage->iomem)); g_free(subpage); } } static void phys_sections_free(PhysPageMap *map) { while (map->sections_nb > 0) { MemoryRegionSection *section = &map->sections[--map->sections_nb]; phys_section_destroy(section->mr); } g_free(map->sections); g_free(map->nodes); } static void register_subpage(FlatView *fv, MemoryRegionSection *section) { AddressSpaceDispatch *d = flatview_to_dispatch(fv); subpage_t *subpage; hwaddr base = section->offset_within_address_space & TARGET_PAGE_MASK; MemoryRegionSection *existing = phys_page_find(d, base); MemoryRegionSection subsection = { .offset_within_address_space = base, .size = int128_make64(TARGET_PAGE_SIZE), }; hwaddr start, end; assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); if (!(existing->mr->subpage)) { subpage = subpage_init(fv, base); subsection.fv = fv; subsection.mr = &subpage->iomem; phys_page_set(d, base >> TARGET_PAGE_BITS, 1, phys_section_add(&d->map, &subsection)); } else { subpage = container_of(existing->mr, subpage_t, iomem); } start = section->offset_within_address_space & ~TARGET_PAGE_MASK; end = start + int128_get64(section->size) - 1; subpage_register(subpage, start, end, phys_section_add(&d->map, section)); } static void register_multipage(FlatView *fv, MemoryRegionSection *section) { AddressSpaceDispatch *d = flatview_to_dispatch(fv); hwaddr start_addr = section->offset_within_address_space; uint16_t section_index = phys_section_add(&d->map, section); uint64_t num_pages = int128_get64(int128_rshift(section->size, TARGET_PAGE_BITS)); assert(num_pages); phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); } void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) { MemoryRegionSection now = *section, remain = *section; Int128 page_size = int128_make64(TARGET_PAGE_SIZE); if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) - now.offset_within_address_space; now.size = int128_min(int128_make64(left), now.size); register_subpage(fv, &now); } else { now.size = int128_zero(); } while (int128_ne(remain.size, now.size)) { remain.size = int128_sub(remain.size, now.size); remain.offset_within_address_space += int128_get64(now.size); remain.offset_within_region += int128_get64(now.size); now = remain; if (int128_lt(remain.size, page_size)) { register_subpage(fv, &now); } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { now.size = page_size; register_subpage(fv, &now); } else { now.size = int128_and(now.size, int128_neg(page_size)); register_multipage(fv, &now); } } } void qemu_flush_coalesced_mmio_buffer(void) { if (kvm_enabled()) kvm_flush_coalesced_mmio_buffer(); } void qemu_mutex_lock_ramlist(void) { qemu_mutex_lock(&ram_list.mutex); } void qemu_mutex_unlock_ramlist(void) { qemu_mutex_unlock(&ram_list.mutex); } void ram_block_dump(Monitor *mon) { RAMBlock *block; char *psize; rcu_read_lock(); monitor_printf(mon, "%24s %8s %18s %18s %18s\n", "Block Name", "PSize", "Offset", "Used", "Total"); RAMBLOCK_FOREACH(block) { psize = size_to_str(block->page_size); monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 " 0x%016" PRIx64 "\n", block->idstr, psize, (uint64_t)block->offset, (uint64_t)block->used_length, (uint64_t)block->max_length); g_free(psize); } rcu_read_unlock(); } #ifdef __linux__ /* * FIXME TOCTTOU: this iterates over memory backends' mem-path, which * may or may not name the same files / on the same filesystem now as * when we actually open and map them. Iterate over the file * descriptors instead, and use qemu_fd_getpagesize(). */ static int find_max_supported_pagesize(Object *obj, void *opaque) { long *hpsize_min = opaque; if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj)); if (hpsize < *hpsize_min) { *hpsize_min = hpsize; } } return 0; } long qemu_getrampagesize(void) { long hpsize = LONG_MAX; long mainrampagesize; Object *memdev_root; mainrampagesize = qemu_mempath_getpagesize(mem_path); /* it's possible we have memory-backend objects with * hugepage-backed RAM. these may get mapped into system * address space via -numa parameters or memory hotplug * hooks. we want to take these into account, but we * also want to make sure these supported hugepage * sizes are applicable across the entire range of memory * we may boot from, so we take the min across all * backends, and assume normal pages in cases where a * backend isn't backed by hugepages. */ memdev_root = object_resolve_path("/objects", NULL); if (memdev_root) { object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize); } if (hpsize == LONG_MAX) { /* No additional memory regions found ==> Report main RAM page size */ return mainrampagesize; } /* If NUMA is disabled or the NUMA nodes are not backed with a * memory-backend, then there is at least one node using "normal" RAM, * so if its page size is smaller we have got to report that size instead. */ if (hpsize > mainrampagesize && (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) { static bool warned; if (!warned) { error_report("Huge page support disabled (n/a for main memory)."); warned = true; } return mainrampagesize; } return hpsize; } #else long qemu_getrampagesize(void) { return getpagesize(); } #endif #ifdef __linux__ static int64_t get_file_size(int fd) { int64_t size = lseek(fd, 0, SEEK_END); if (size < 0) { return -errno; } return size; } static int file_ram_open(const char *path, const char *region_name, bool *created, Error **errp) { char *filename; char *sanitized_name; char *c; int fd = -1; *created = false; for (;;) { fd = open(path, O_RDWR); if (fd >= 0) { /* @path names an existing file, use it */ break; } if (errno == ENOENT) { /* @path names a file that doesn't exist, create it */ fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); if (fd >= 0) { *created = true; break; } } else if (errno == EISDIR) { /* @path names a directory, create a file there */ /* Make name safe to use with mkstemp by replacing '/' with '_'. */ sanitized_name = g_strdup(region_name); for (c = sanitized_name; *c != '\0'; c++) { if (*c == '/') { *c = '_'; } } filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, sanitized_name); g_free(sanitized_name); fd = mkstemp(filename); if (fd >= 0) { unlink(filename); g_free(filename); break; } g_free(filename); } if (errno != EEXIST && errno != EINTR) { error_setg_errno(errp, errno, "can't open backing store %s for guest RAM", path); return -1; } /* * Try again on EINTR and EEXIST. The latter happens when * something else creates the file between our two open(). */ } return fd; } static void *file_ram_alloc(RAMBlock *block, ram_addr_t memory, int fd, bool truncate, Error **errp) { void *area; block->page_size = qemu_fd_getpagesize(fd); if (block->mr->align % block->page_size) { error_setg(errp, "alignment 0x%" PRIx64 " must be multiples of page size 0x%zx", block->mr->align, block->page_size); return NULL; } else if (block->mr->align && !is_power_of_2(block->mr->align)) { error_setg(errp, "alignment 0x%" PRIx64 " must be a power of two", block->mr->align); return NULL; } block->mr->align = MAX(block->page_size, block->mr->align); #if defined(__s390x__) if (kvm_enabled()) { block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); } #endif if (memory < block->page_size) { error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " "or larger than page size 0x%zx", memory, block->page_size); return NULL; } memory = ROUND_UP(memory, block->page_size); /* * ftruncate is not supported by hugetlbfs in older * hosts, so don't bother bailing out on errors. * If anything goes wrong with it under other filesystems, * mmap will fail. * * Do not truncate the non-empty backend file to avoid corrupting * the existing data in the file. Disabling shrinking is not * enough. For example, the current vNVDIMM implementation stores * the guest NVDIMM labels at the end of the backend file. If the * backend file is later extended, QEMU will not be able to find * those labels. Therefore, extending the non-empty backend file * is disabled as well. */ if (truncate && ftruncate(fd, memory)) { perror("ftruncate"); } area = qemu_ram_mmap(fd, memory, block->mr->align, block->flags & RAM_SHARED); if (area == MAP_FAILED) { error_setg_errno(errp, errno, "unable to map backing store for guest RAM"); return NULL; } if (mem_prealloc) { os_mem_prealloc(fd, area, memory, smp_cpus, errp); if (errp && *errp) { qemu_ram_munmap(area, memory); return NULL; } } block->fd = fd; return area; } #endif /* Allocate space within the ram_addr_t space that governs the * dirty bitmaps. * Called with the ramlist lock held. */ static ram_addr_t find_ram_offset(ram_addr_t size) { RAMBlock *block, *next_block; ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; assert(size != 0); /* it would hand out same offset multiple times */ if (QLIST_EMPTY_RCU(&ram_list.blocks)) { return 0; } RAMBLOCK_FOREACH(block) { ram_addr_t candidate, next = RAM_ADDR_MAX; /* Align blocks to start on a 'long' in the bitmap * which makes the bitmap sync'ing take the fast path. */ candidate = block->offset + block->max_length; candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); /* Search for the closest following block * and find the gap. */ RAMBLOCK_FOREACH(next_block) { if (next_block->offset >= candidate) { next = MIN(next, next_block->offset); } } /* If it fits remember our place and remember the size * of gap, but keep going so that we might find a smaller * gap to fill so avoiding fragmentation. */ if (next - candidate >= size && next - candidate < mingap) { offset = candidate; mingap = next - candidate; } trace_find_ram_offset_loop(size, candidate, offset, next, mingap); } if (offset == RAM_ADDR_MAX) { fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", (uint64_t)size); abort(); } trace_find_ram_offset(size, offset); return offset; } static unsigned long last_ram_page(void) { RAMBlock *block; ram_addr_t last = 0; rcu_read_lock(); RAMBLOCK_FOREACH(block) { last = MAX(last, block->offset + block->max_length); } rcu_read_unlock(); return last >> TARGET_PAGE_BITS; } static void qemu_ram_setup_dump(void *addr, ram_addr_t size) { int ret; /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ if (!machine_dump_guest_core(current_machine)) { ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); if (ret) { perror("qemu_madvise"); fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " "but dump_guest_core=off specified\n"); } } } const char *qemu_ram_get_idstr(RAMBlock *rb) { return rb->idstr; } bool qemu_ram_is_shared(RAMBlock *rb) { return rb->flags & RAM_SHARED; } /* Note: Only set at the start of postcopy */ bool qemu_ram_is_uf_zeroable(RAMBlock *rb) { return rb->flags & RAM_UF_ZEROPAGE; } void qemu_ram_set_uf_zeroable(RAMBlock *rb) { rb->flags |= RAM_UF_ZEROPAGE; } bool qemu_ram_is_migratable(RAMBlock *rb) { return rb->flags & RAM_MIGRATABLE; } void qemu_ram_set_migratable(RAMBlock *rb) { rb->flags |= RAM_MIGRATABLE; } void qemu_ram_unset_migratable(RAMBlock *rb) { rb->flags &= ~RAM_MIGRATABLE; } /* Called with iothread lock held. */ void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) { RAMBlock *block; assert(new_block); assert(!new_block->idstr[0]); if (dev) { char *id = qdev_get_dev_path(dev); if (id) { snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); g_free(id); } } pstrcat(new_block->idstr, sizeof(new_block->idstr), name); rcu_read_lock(); RAMBLOCK_FOREACH(block) { if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", new_block->idstr); abort(); } } rcu_read_unlock(); } /* Called with iothread lock held. */ void qemu_ram_unset_idstr(RAMBlock *block) { /* FIXME: arch_init.c assumes that this is not called throughout * migration. Ignore the problem since hot-unplug during migration * does not work anyway. */ if (block) { memset(block->idstr, 0, sizeof(block->idstr)); } } size_t qemu_ram_pagesize(RAMBlock *rb) { return rb->page_size; } /* Returns the largest size of page in use */ size_t qemu_ram_pagesize_largest(void) { RAMBlock *block; size_t largest = 0; RAMBLOCK_FOREACH(block) { largest = MAX(largest, qemu_ram_pagesize(block)); } return largest; } static int memory_try_enable_merging(void *addr, size_t len) { if (!machine_mem_merge(current_machine)) { /* disabled by the user */ return 0; } return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); } /* Only legal before guest might have detected the memory size: e.g. on * incoming migration, or right after reset. * * As memory core doesn't know how is memory accessed, it is up to * resize callback to update device state and/or add assertions to detect * misuse, if necessary. */ int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) { assert(block); newsize = HOST_PAGE_ALIGN(newsize); if (block->used_length == newsize) { return 0; } if (!(block->flags & RAM_RESIZEABLE)) { error_setg_errno(errp, EINVAL, "Length mismatch: %s: 0x" RAM_ADDR_FMT " in != 0x" RAM_ADDR_FMT, block->idstr, newsize, block->used_length); return -EINVAL; } if (block->max_length < newsize) { error_setg_errno(errp, EINVAL, "Length too large: %s: 0x" RAM_ADDR_FMT " > 0x" RAM_ADDR_FMT, block->idstr, newsize, block->max_length); return -EINVAL; } cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); block->used_length = newsize; cpu_physical_memory_set_dirty_range(block->offset, block->used_length, DIRTY_CLIENTS_ALL); memory_region_set_size(block->mr, newsize); if (block->resized) { block->resized(block->idstr, newsize, block->host); } return 0; } /* Called with ram_list.mutex held */ static void dirty_memory_extend(ram_addr_t old_ram_size, ram_addr_t new_ram_size) { ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, DIRTY_MEMORY_BLOCK_SIZE); ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, DIRTY_MEMORY_BLOCK_SIZE); int i; /* Only need to extend if block count increased */ if (new_num_blocks <= old_num_blocks) { return; } for (i = 0; i < DIRTY_MEMORY_NUM; i++) { DirtyMemoryBlocks *old_blocks; DirtyMemoryBlocks *new_blocks; int j; old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); new_blocks = g_malloc(sizeof(*new_blocks) + sizeof(new_blocks->blocks[0]) * new_num_blocks); if (old_num_blocks) { memcpy(new_blocks->blocks, old_blocks->blocks, old_num_blocks * sizeof(old_blocks->blocks[0])); } for (j = old_num_blocks; j < new_num_blocks; j++) { new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); } atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); if (old_blocks) { g_free_rcu(old_blocks, rcu); } } } static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared) { RAMBlock *block; RAMBlock *last_block = NULL; ram_addr_t old_ram_size, new_ram_size; Error *err = NULL; old_ram_size = last_ram_page(); qemu_mutex_lock_ramlist(); new_block->offset = find_ram_offset(new_block->max_length); if (!new_block->host) { if (xen_enabled()) { xen_ram_alloc(new_block->offset, new_block->max_length, new_block->mr, &err); if (err) { error_propagate(errp, err); qemu_mutex_unlock_ramlist(); return; } } else { new_block->host = phys_mem_alloc(new_block->max_length, &new_block->mr->align, shared); if (!new_block->host) { error_setg_errno(errp, errno, "cannot set up guest memory '%s'", memory_region_name(new_block->mr)); qemu_mutex_unlock_ramlist(); return; } memory_try_enable_merging(new_block->host, new_block->max_length); } } new_ram_size = MAX(old_ram_size, (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); if (new_ram_size > old_ram_size) { dirty_memory_extend(old_ram_size, new_ram_size); } /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, * QLIST (which has an RCU-friendly variant) does not have insertion at * tail, so save the last element in last_block. */ RAMBLOCK_FOREACH(block) { last_block = block; if (block->max_length < new_block->max_length) { break; } } if (block) { QLIST_INSERT_BEFORE_RCU(block, new_block, next); } else if (last_block) { QLIST_INSERT_AFTER_RCU(last_block, new_block, next); } else { /* list is empty */ QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); } ram_list.mru_block = NULL; /* Write list before version */ smp_wmb(); ram_list.version++; qemu_mutex_unlock_ramlist(); cpu_physical_memory_set_dirty_range(new_block->offset, new_block->used_length, DIRTY_CLIENTS_ALL); if (new_block->host) { qemu_ram_setup_dump(new_block->host, new_block->max_length); qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */ qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); ram_block_notify_add(new_block->host, new_block->max_length); } } #ifdef __linux__ RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, bool share, int fd, Error **errp) { RAMBlock *new_block; Error *local_err = NULL; int64_t file_size; if (xen_enabled()) { error_setg(errp, "-mem-path not supported with Xen"); return NULL; } if (kvm_enabled() && !kvm_has_sync_mmu()) { error_setg(errp, "host lacks kvm mmu notifiers, -mem-path unsupported"); return NULL; } if (phys_mem_alloc != qemu_anon_ram_alloc) { /* * file_ram_alloc() needs to allocate just like * phys_mem_alloc, but we haven't bothered to provide * a hook there. */ error_setg(errp, "-mem-path not supported with this accelerator"); return NULL; } size = HOST_PAGE_ALIGN(size); file_size = get_file_size(fd); if (file_size > 0 && file_size < size) { error_setg(errp, "backing store %s size 0x%" PRIx64 " does not match 'size' option 0x" RAM_ADDR_FMT, mem_path, file_size, size); return NULL; } new_block = g_malloc0(sizeof(*new_block)); new_block->mr = mr; new_block->used_length = size; new_block->max_length = size; new_block->flags = share ? RAM_SHARED : 0; new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp); if (!new_block->host) { g_free(new_block); return NULL; } ram_block_add(new_block, &local_err, share); if (local_err) { g_free(new_block); error_propagate(errp, local_err); return NULL; } return new_block; } RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, bool share, const char *mem_path, Error **errp) { int fd; bool created; RAMBlock *block; fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp); if (fd < 0) { return NULL; } block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp); if (!block) { if (created) { unlink(mem_path); } close(fd); return NULL; } return block; } #endif static RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, void (*resized)(const char*, uint64_t length, void *host), void *host, bool resizeable, bool share, MemoryRegion *mr, Error **errp) { RAMBlock *new_block; Error *local_err = NULL; size = HOST_PAGE_ALIGN(size); max_size = HOST_PAGE_ALIGN(max_size); new_block = g_malloc0(sizeof(*new_block)); new_block->mr = mr; new_block->resized = resized; new_block->used_length = size; new_block->max_length = max_size; assert(max_size >= size); new_block->fd = -1; new_block->page_size = getpagesize(); new_block->host = host; if (host) { new_block->flags |= RAM_PREALLOC; } if (resizeable) { new_block->flags |= RAM_RESIZEABLE; } ram_block_add(new_block, &local_err, share); if (local_err) { g_free(new_block); error_propagate(errp, local_err); return NULL; } return new_block; } RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, MemoryRegion *mr, Error **errp) { return qemu_ram_alloc_internal(size, size, NULL, host, false, false, mr, errp); } RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, MemoryRegion *mr, Error **errp) { return qemu_ram_alloc_internal(size, size, NULL, NULL, false, share, mr, errp); } RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, void (*resized)(const char*, uint64_t length, void *host), MemoryRegion *mr, Error **errp) { return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, false, mr, errp); } static void reclaim_ramblock(RAMBlock *block) { if (block->flags & RAM_PREALLOC) { ; } else if (xen_enabled()) { xen_invalidate_map_cache_entry(block->host); #ifndef _WIN32 } else if (block->fd >= 0) { qemu_ram_munmap(block->host, block->max_length); close(block->fd); #endif } else { qemu_anon_ram_free(block->host, block->max_length); } g_free(block); } void qemu_ram_free(RAMBlock *block) { if (!block) { return; } if (block->host) { ram_block_notify_remove(block->host, block->max_length); } qemu_mutex_lock_ramlist(); QLIST_REMOVE_RCU(block, next); ram_list.mru_block = NULL; /* Write list before version */ smp_wmb(); ram_list.version++; call_rcu(block, reclaim_ramblock, rcu); qemu_mutex_unlock_ramlist(); } #ifndef _WIN32 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) { RAMBlock *block; ram_addr_t offset; int flags; void *area, *vaddr; RAMBLOCK_FOREACH(block) { offset = addr - block->offset; if (offset < block->max_length) { vaddr = ramblock_ptr(block, offset); if (block->flags & RAM_PREALLOC) { ; } else if (xen_enabled()) { abort(); } else { flags = MAP_FIXED; if (block->fd >= 0) { flags |= (block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE); area = mmap(vaddr, length, PROT_READ | PROT_WRITE, flags, block->fd, offset); } else { /* * Remap needs to match alloc. Accelerators that * set phys_mem_alloc never remap. If they did, * we'd need a remap hook here. */ assert(phys_mem_alloc == qemu_anon_ram_alloc); flags |= MAP_PRIVATE | MAP_ANONYMOUS; area = mmap(vaddr, length, PROT_READ | PROT_WRITE, flags, -1, 0); } if (area != vaddr) { error_report("Could not remap addr: " RAM_ADDR_FMT "@" RAM_ADDR_FMT "", length, addr); exit(1); } memory_try_enable_merging(vaddr, length); qemu_ram_setup_dump(vaddr, length); } } } } #endif /* !_WIN32 */ /* Return a host pointer to ram allocated with qemu_ram_alloc. * This should not be used for general purpose DMA. Use address_space_map * or address_space_rw instead. For local memory (e.g. video ram) that the * device owns, use memory_region_get_ram_ptr. * * Called within RCU critical section. */ void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) { RAMBlock *block = ram_block; if (block == NULL) { block = qemu_get_ram_block(addr); addr -= block->offset; } if (xen_enabled() && block->host == NULL) { /* We need to check if the requested address is in the RAM * because we don't want to map the entire memory in QEMU. * In that case just map until the end of the page. */ if (block->offset == 0) { return xen_map_cache(addr, 0, 0, false); } block->host = xen_map_cache(block->offset, block->max_length, 1, false); } return ramblock_ptr(block, addr); } /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr * but takes a size argument. * * Called within RCU critical section. */ static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, hwaddr *size, bool lock) { RAMBlock *block = ram_block; if (*size == 0) { return NULL; } if (block == NULL) { block = qemu_get_ram_block(addr); addr -= block->offset; } *size = MIN(*size, block->max_length - addr); if (xen_enabled() && block->host == NULL) { /* We need to check if the requested address is in the RAM * because we don't want to map the entire memory in QEMU. * In that case just map the requested area. */ if (block->offset == 0) { return xen_map_cache(addr, *size, lock, lock); } block->host = xen_map_cache(block->offset, block->max_length, 1, lock); } return ramblock_ptr(block, addr); } /* Return the offset of a hostpointer within a ramblock */ ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) { ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; assert((uintptr_t)host >= (uintptr_t)rb->host); assert(res < rb->max_length); return res; } /* * Translates a host ptr back to a RAMBlock, a ram_addr and an offset * in that RAMBlock. * * ptr: Host pointer to look up * round_offset: If true round the result offset down to a page boundary * *ram_addr: set to result ram_addr * *offset: set to result offset within the RAMBlock * * Returns: RAMBlock (or NULL if not found) * * By the time this function returns, the returned pointer is not protected * by RCU anymore. If the caller is not within an RCU critical section and * does not hold the iothread lock, it must have other means of protecting the * pointer, such as a reference to the region that includes the incoming * ram_addr_t. */ RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, ram_addr_t *offset) { RAMBlock *block; uint8_t *host = ptr; if (xen_enabled()) { ram_addr_t ram_addr; rcu_read_lock(); ram_addr = xen_ram_addr_from_mapcache(ptr); block = qemu_get_ram_block(ram_addr); if (block) { *offset = ram_addr - block->offset; } rcu_read_unlock(); return block; } rcu_read_lock(); block = atomic_rcu_read(&ram_list.mru_block); if (block && block->host && host - block->host < block->max_length) { goto found; } RAMBLOCK_FOREACH(block) { /* This case append when the block is not mapped. */ if (block->host == NULL) { continue; } if (host - block->host < block->max_length) { goto found; } } rcu_read_unlock(); return NULL; found: *offset = (host - block->host); if (round_offset) { *offset &= TARGET_PAGE_MASK; } rcu_read_unlock(); return block; } /* * Finds the named RAMBlock * * name: The name of RAMBlock to find * * Returns: RAMBlock (or NULL if not found) */ RAMBlock *qemu_ram_block_by_name(const char *name) { RAMBlock *block; RAMBLOCK_FOREACH(block) { if (!strcmp(name, block->idstr)) { return block; } } return NULL; } /* Some of the softmmu routines need to translate from a host pointer (typically a TLB entry) back to a ram offset. */ ram_addr_t qemu_ram_addr_from_host(void *ptr) { RAMBlock *block; ram_addr_t offset; block = qemu_ram_block_from_host(ptr, false, &offset); if (!block) { return RAM_ADDR_INVALID; } return block->offset + offset; } /* Called within RCU critical section. */ void memory_notdirty_write_prepare(NotDirtyInfo *ndi, CPUState *cpu, vaddr mem_vaddr, ram_addr_t ram_addr, unsigned size) { ndi->cpu = cpu; ndi->ram_addr = ram_addr; ndi->mem_vaddr = mem_vaddr; ndi->size = size; ndi->pages = NULL; assert(tcg_enabled()); if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { ndi->pages = page_collection_lock(ram_addr, ram_addr + size); tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size); } } /* Called within RCU critical section. */ void memory_notdirty_write_complete(NotDirtyInfo *ndi) { if (ndi->pages) { assert(tcg_enabled()); page_collection_unlock(ndi->pages); ndi->pages = NULL; } /* Set both VGA and migration bits for simplicity and to remove * the notdirty callback faster. */ cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size, DIRTY_CLIENTS_NOCODE); /* we remove the notdirty callback only if the code has been flushed */ if (!cpu_physical_memory_is_clean(ndi->ram_addr)) { tlb_set_dirty(ndi->cpu, ndi->mem_vaddr); } } /* Called within RCU critical section. */ static void notdirty_mem_write(void *opaque, hwaddr ram_addr, uint64_t val, unsigned size) { NotDirtyInfo ndi; memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr, ram_addr, size); stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val); memory_notdirty_write_complete(&ndi); } static bool notdirty_mem_accepts(void *opaque, hwaddr addr, unsigned size, bool is_write, MemTxAttrs attrs) { return is_write; } static const MemoryRegionOps notdirty_mem_ops = { .write = notdirty_mem_write, .valid.accepts = notdirty_mem_accepts, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 8, .unaligned = false, }, .impl = { .min_access_size = 1, .max_access_size = 8, .unaligned = false, }, }; /* Generate a debug exception if a watchpoint has been hit. */ static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) { CPUState *cpu = current_cpu; CPUClass *cc = CPU_GET_CLASS(cpu); target_ulong vaddr; CPUWatchpoint *wp; assert(tcg_enabled()); if (cpu->watchpoint_hit) { /* We re-entered the check after replacing the TB. Now raise * the debug interrupt so that is will trigger after the * current instruction. */ cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); return; } vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len); QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { if (cpu_watchpoint_address_matches(wp, vaddr, len) && (wp->flags & flags)) { if (flags == BP_MEM_READ) { wp->flags |= BP_WATCHPOINT_HIT_READ; } else { wp->flags |= BP_WATCHPOINT_HIT_WRITE; } wp->hitaddr = vaddr; wp->hitattrs = attrs; if (!cpu->watchpoint_hit) { if (wp->flags & BP_CPU && !cc->debug_check_watchpoint(cpu, wp)) { wp->flags &= ~BP_WATCHPOINT_HIT; continue; } cpu->watchpoint_hit = wp; mmap_lock(); tb_check_watchpoint(cpu); if (wp->flags & BP_STOP_BEFORE_ACCESS) { cpu->exception_index = EXCP_DEBUG; mmap_unlock(); cpu_loop_exit(cpu); } else { /* Force execution of one insn next time. */ cpu->cflags_next_tb = 1 | curr_cflags(); mmap_unlock(); cpu_loop_exit_noexc(cpu); } } } else { wp->flags &= ~BP_WATCHPOINT_HIT; } } } /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, so these check for a hit then pass through to the normal out-of-line phys routines. */ static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, unsigned size, MemTxAttrs attrs) { MemTxResult res; uint64_t data; int asidx = cpu_asidx_from_attrs(current_cpu, attrs); AddressSpace *as = current_cpu->cpu_ases[asidx].as; check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); switch (size) { case 1: data = address_space_ldub(as, addr, attrs, &res); break; case 2: data = address_space_lduw(as, addr, attrs, &res); break; case 4: data = address_space_ldl(as, addr, attrs, &res); break; case 8: data = address_space_ldq(as, addr, attrs, &res); break; default: abort(); } *pdata = data; return res; } static MemTxResult watch_mem_write(void *opaque, hwaddr addr, uint64_t val, unsigned size, MemTxAttrs attrs) { MemTxResult res; int asidx = cpu_asidx_from_attrs(current_cpu, attrs); AddressSpace *as = current_cpu->cpu_ases[asidx].as; check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); switch (size) { case 1: address_space_stb(as, addr, val, attrs, &res); break; case 2: address_space_stw(as, addr, val, attrs, &res); break; case 4: address_space_stl(as, addr, val, attrs, &res); break; case 8: address_space_stq(as, addr, val, attrs, &res); break; default: abort(); } return res; } static const MemoryRegionOps watch_mem_ops = { .read_with_attrs = watch_mem_read, .write_with_attrs = watch_mem_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 8, .unaligned = false, }, .impl = { .min_access_size = 1, .max_access_size = 8, .unaligned = false, }, }; static MemTxResult flatview_read(FlatView *fv, hwaddr addr, MemTxAttrs attrs, uint8_t *buf, int len); static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, const uint8_t *buf, int len); static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len, bool is_write, MemTxAttrs attrs); static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, unsigned len, MemTxAttrs attrs) { subpage_t *subpage = opaque; uint8_t buf[8]; MemTxResult res; #if defined(DEBUG_SUBPAGE) printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, subpage, len, addr); #endif res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); if (res) { return res; } *data = ldn_p(buf, len); return MEMTX_OK; } static MemTxResult subpage_write(void *opaque, hwaddr addr, uint64_t value, unsigned len, MemTxAttrs attrs) { subpage_t *subpage = opaque; uint8_t buf[8]; #if defined(DEBUG_SUBPAGE) printf("%s: subpage %p len %u addr " TARGET_FMT_plx " value %"PRIx64"\n", __func__, subpage, len, addr, value); #endif stn_p(buf, len, value); return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); } static bool subpage_accepts(void *opaque, hwaddr addr, unsigned len, bool is_write, MemTxAttrs attrs) { subpage_t *subpage = opaque; #if defined(DEBUG_SUBPAGE) printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", __func__, subpage, is_write ? 'w' : 'r', len, addr); #endif return flatview_access_valid(subpage->fv, addr + subpage->base, len, is_write, attrs); } static const MemoryRegionOps subpage_ops = { .read_with_attrs = subpage_read, .write_with_attrs = subpage_write, .impl.min_access_size = 1, .impl.max_access_size = 8, .valid.min_access_size = 1, .valid.max_access_size = 8, .valid.accepts = subpage_accepts, .endianness = DEVICE_NATIVE_ENDIAN, }; static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, uint16_t section) { int idx, eidx; if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) return -1; idx = SUBPAGE_IDX(start); eidx = SUBPAGE_IDX(end); #if defined(DEBUG_SUBPAGE) printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", __func__, mmio, start, end, idx, eidx, section); #endif for (; idx <= eidx; idx++) { mmio->sub_section[idx] = section; } return 0; } static subpage_t *subpage_init(FlatView *fv, hwaddr base) { subpage_t *mmio; mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); mmio->fv = fv; mmio->base = base; memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, NULL, TARGET_PAGE_SIZE); mmio->iomem.subpage = true; #if defined(DEBUG_SUBPAGE) printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, mmio, base, TARGET_PAGE_SIZE); #endif subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); return mmio; } static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) { assert(fv); MemoryRegionSection section = { .fv = fv, .mr = mr, .offset_within_address_space = 0, .offset_within_region = 0, .size = int128_2_64(), }; return phys_section_add(map, §ion); } static void readonly_mem_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { /* Ignore any write to ROM. */ } static bool readonly_mem_accepts(void *opaque, hwaddr addr, unsigned size, bool is_write, MemTxAttrs attrs) { return is_write; } /* This will only be used for writes, because reads are special cased * to directly access the underlying host ram. */ static const MemoryRegionOps readonly_mem_ops = { .write = readonly_mem_write, .valid.accepts = readonly_mem_accepts, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 8, .unaligned = false, }, .impl = { .min_access_size = 1, .max_access_size = 8, .unaligned = false, }, }; MemoryRegionSection *iotlb_to_section(CPUState *cpu, hwaddr index, MemTxAttrs attrs) { int asidx = cpu_asidx_from_attrs(cpu, attrs); CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); MemoryRegionSection *sections = d->map.sections; return §ions[index & ~TARGET_PAGE_MASK]; } static void io_mem_init(void) { memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops, NULL, NULL, UINT64_MAX); memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); /* io_mem_notdirty calls tb_invalidate_phys_page_fast, * which can be called without the iothread mutex. */ memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, NULL, UINT64_MAX); memory_region_clear_global_locking(&io_mem_notdirty); memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, NULL, UINT64_MAX); } AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) { AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); uint16_t n; n = dummy_section(&d->map, fv, &io_mem_unassigned); assert(n == PHYS_SECTION_UNASSIGNED); n = dummy_section(&d->map, fv, &io_mem_notdirty); assert(n == PHYS_SECTION_NOTDIRTY); n = dummy_section(&d->map, fv, &io_mem_rom); assert(n == PHYS_SECTION_ROM); n = dummy_section(&d->map, fv, &io_mem_watch); assert(n == PHYS_SECTION_WATCH); d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; return d; } void address_space_dispatch_free(AddressSpaceDispatch *d) { phys_sections_free(&d->map); g_free(d); } static void tcg_commit(MemoryListener *listener) { CPUAddressSpace *cpuas; AddressSpaceDispatch *d; assert(tcg_enabled()); /* since each CPU stores ram addresses in its TLB cache, we must reset the modified entries */ cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); cpu_reloading_memory_map(); /* The CPU and TLB are protected by the iothread lock. * We reload the dispatch pointer now because cpu_reloading_memory_map() * may have split the RCU critical section. */ d = address_space_to_dispatch(cpuas->as); atomic_rcu_set(&cpuas->memory_dispatch, d); tlb_flush(cpuas->cpu); } static void memory_map_init(void) { system_memory = g_malloc(sizeof(*system_memory)); memory_region_init(system_memory, NULL, "system", UINT64_MAX); address_space_init(&address_space_memory, system_memory, "memory"); system_io = g_malloc(sizeof(*system_io)); memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 65536); address_space_init(&address_space_io, system_io, "I/O"); } MemoryRegion *get_system_memory(void) { return system_memory; } MemoryRegion *get_system_io(void) { return system_io; } #endif /* !defined(CONFIG_USER_ONLY) */ /* physical memory access (slow version, mainly for debug) */ #if defined(CONFIG_USER_ONLY) int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, uint8_t *buf, int len, int is_write) { int l, flags; target_ulong page; void * p; while (len > 0) { page = addr & TARGET_PAGE_MASK; l = (page + TARGET_PAGE_SIZE) - addr; if (l > len) l = len; flags = page_get_flags(page); if (!(flags & PAGE_VALID)) return -1; if (is_write) { if (!(flags & PAGE_WRITE)) return -1; /* XXX: this code should not depend on lock_user */ if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) return -1; memcpy(p, buf, l); unlock_user(p, addr, l); } else { if (!(flags & PAGE_READ)) return -1; /* XXX: this code should not depend on lock_user */ if (!(p = lock_user(VERIFY_READ, addr, l, 1))) return -1; memcpy(buf, p, l); unlock_user(p, addr, 0); } len -= l; buf += l; addr += l; } return 0; } #else static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, hwaddr length) { uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); addr += memory_region_get_ram_addr(mr); /* No early return if dirty_log_mask is or becomes 0, because * cpu_physical_memory_set_dirty_range will still call * xen_modified_memory. */ if (dirty_log_mask) { dirty_log_mask = cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); } if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { assert(tcg_enabled()); tb_invalidate_phys_range(addr, addr + length); dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); } cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); } static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) { unsigned access_size_max = mr->ops->valid.max_access_size; /* Regions are assumed to support 1-4 byte accesses unless otherwise specified. */ if (access_size_max == 0) { access_size_max = 4; } /* Bound the maximum access by the alignment of the address. */ if (!mr->ops->impl.unaligned) { unsigned align_size_max = addr & -addr; if (align_size_max != 0 && align_size_max < access_size_max) { access_size_max = align_size_max; } } /* Don't attempt accesses larger than the maximum. */ if (l > access_size_max) { l = access_size_max; } l = pow2floor(l); return l; } static bool prepare_mmio_access(MemoryRegion *mr) { bool unlocked = !qemu_mutex_iothread_locked(); bool release_lock = false; if (unlocked && mr->global_locking) { qemu_mutex_lock_iothread(); unlocked = false; release_lock = true; } if (mr->flush_coalesced_mmio) { if (unlocked) { qemu_mutex_lock_iothread(); } qemu_flush_coalesced_mmio_buffer(); if (unlocked) { qemu_mutex_unlock_iothread(); } } return release_lock; } /* Called within RCU critical section. */ static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, MemTxAttrs attrs, const uint8_t *buf, int len, hwaddr addr1, hwaddr l, MemoryRegion *mr) { uint8_t *ptr; uint64_t val; MemTxResult result = MEMTX_OK; bool release_lock = false; for (;;) { if (!memory_access_is_direct(mr, true)) { release_lock |= prepare_mmio_access(mr); l = memory_access_size(mr, l, addr1); /* XXX: could force current_cpu to NULL to avoid potential bugs */ val = ldn_p(buf, l); result |= memory_region_dispatch_write(mr, addr1, val, l, attrs); } else { /* RAM case */ ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); memcpy(ptr, buf, l); invalidate_and_set_dirty(mr, addr1, l); } if (release_lock) { qemu_mutex_unlock_iothread(); release_lock = false; } len -= l; buf += l; addr += l; if (!len) { break; } l = len; mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); } return result; } /* Called from RCU critical section. */ static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, const uint8_t *buf, int len) { hwaddr l; hwaddr addr1; MemoryRegion *mr; MemTxResult result = MEMTX_OK; l = len; mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); result = flatview_write_continue(fv, addr, attrs, buf, len, addr1, l, mr); return result; } /* Called within RCU critical section. */ MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, MemTxAttrs attrs, uint8_t *buf, int len, hwaddr addr1, hwaddr l, MemoryRegion *mr) { uint8_t *ptr; uint64_t val; MemTxResult result = MEMTX_OK; bool release_lock = false; for (;;) { if (!memory_access_is_direct(mr, false)) { /* I/O case */ release_lock |= prepare_mmio_access(mr); l = memory_access_size(mr, l, addr1); result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs); stn_p(buf, l, val); } else { /* RAM case */ ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); memcpy(buf, ptr, l); } if (release_lock) { qemu_mutex_unlock_iothread(); release_lock = false; } len -= l; buf += l; addr += l; if (!len) { break; } l = len; mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); } return result; } /* Called from RCU critical section. */ static MemTxResult flatview_read(FlatView *fv, hwaddr addr, MemTxAttrs attrs, uint8_t *buf, int len) { hwaddr l; hwaddr addr1; MemoryRegion *mr; l = len; mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); return flatview_read_continue(fv, addr, attrs, buf, len, addr1, l, mr); } MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, uint8_t *buf, int len) { MemTxResult result = MEMTX_OK; FlatView *fv; if (len > 0) { rcu_read_lock(); fv = address_space_to_flatview(as); result = flatview_read(fv, addr, attrs, buf, len); rcu_read_unlock(); } return result; } MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, const uint8_t *buf, int len) { MemTxResult result = MEMTX_OK; FlatView *fv; if (len > 0) { rcu_read_lock(); fv = address_space_to_flatview(as); result = flatview_write(fv, addr, attrs, buf, len); rcu_read_unlock(); } return result; } MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, uint8_t *buf, int len, bool is_write) { if (is_write) { return address_space_write(as, addr, attrs, buf, len); } else { return address_space_read_full(as, addr, attrs, buf, len); } } void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, int len, int is_write) { address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, buf, len, is_write); } enum write_rom_type { WRITE_DATA, FLUSH_CACHE, }; static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) { hwaddr l; uint8_t *ptr; hwaddr addr1; MemoryRegion *mr; rcu_read_lock(); while (len > 0) { l = len; mr = address_space_translate(as, addr, &addr1, &l, true, MEMTXATTRS_UNSPECIFIED); if (!(memory_region_is_ram(mr) || memory_region_is_romd(mr))) { l = memory_access_size(mr, l, addr1); } else { /* ROM/RAM case */ ptr = qemu_map_ram_ptr(mr->ram_block, addr1); switch (type) { case WRITE_DATA: memcpy(ptr, buf, l); invalidate_and_set_dirty(mr, addr1, l); break; case FLUSH_CACHE: flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); break; } } len -= l; buf += l; addr += l; } rcu_read_unlock(); } /* used for ROM loading : can write in RAM and ROM */ void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, const uint8_t *buf, int len) { cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); } void cpu_flush_icache_range(hwaddr start, int len) { /* * This function should do the same thing as an icache flush that was * triggered from within the guest. For TCG we are always cache coherent, * so there is no need to flush anything. For KVM / Xen we need to flush * the host's instruction cache at least. */ if (tcg_enabled()) { return; } cpu_physical_memory_write_rom_internal(&address_space_memory, start, NULL, len, FLUSH_CACHE); } typedef struct { MemoryRegion *mr; void *buffer; hwaddr addr; hwaddr len; bool in_use; } BounceBuffer; static BounceBuffer bounce; typedef struct MapClient { QEMUBH *bh; QLIST_ENTRY(MapClient) link; } MapClient; QemuMutex map_client_list_lock; static QLIST_HEAD(map_client_list, MapClient) map_client_list = QLIST_HEAD_INITIALIZER(map_client_list); static void cpu_unregister_map_client_do(MapClient *client) { QLIST_REMOVE(client, link); g_free(client); } static void cpu_notify_map_clients_locked(void) { MapClient *client; while (!QLIST_EMPTY(&map_client_list)) { client = QLIST_FIRST(&map_client_list); qemu_bh_schedule(client->bh); cpu_unregister_map_client_do(client); } } void cpu_register_map_client(QEMUBH *bh) { MapClient *client = g_malloc(sizeof(*client)); qemu_mutex_lock(&map_client_list_lock); client->bh = bh; QLIST_INSERT_HEAD(&map_client_list, client, link); if (!atomic_read(&bounce.in_use)) { cpu_notify_map_clients_locked(); } qemu_mutex_unlock(&map_client_list_lock); } void cpu_exec_init_all(void) { qemu_mutex_init(&ram_list.mutex); /* The data structures we set up here depend on knowing the page size, * so no more changes can be made after this point. * In an ideal world, nothing we did before we had finished the * machine setup would care about the target page size, and we could * do this much later, rather than requiring board models to state * up front what their requirements are. */ finalize_target_page_bits(); io_mem_init(); memory_map_init(); qemu_mutex_init(&map_client_list_lock); } void cpu_unregister_map_client(QEMUBH *bh) { MapClient *client; qemu_mutex_lock(&map_client_list_lock); QLIST_FOREACH(client, &map_client_list, link) { if (client->bh == bh) { cpu_unregister_map_client_do(client); break; } } qemu_mutex_unlock(&map_client_list_lock); } static void cpu_notify_map_clients(void) { qemu_mutex_lock(&map_client_list_lock); cpu_notify_map_clients_locked(); qemu_mutex_unlock(&map_client_list_lock); } static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len, bool is_write, MemTxAttrs attrs) { MemoryRegion *mr; hwaddr l, xlat; while (len > 0) { l = len; mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); if (!memory_access_is_direct(mr, is_write)) { l = memory_access_size(mr, l, addr); if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { return false; } } len -= l; addr += l; } return true; } bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write, MemTxAttrs attrs) { FlatView *fv; bool result; rcu_read_lock(); fv = address_space_to_flatview(as); result = flatview_access_valid(fv, addr, len, is_write, attrs); rcu_read_unlock(); return result; } static hwaddr flatview_extend_translation(FlatView *fv, hwaddr addr, hwaddr target_len, MemoryRegion *mr, hwaddr base, hwaddr len, bool is_write, MemTxAttrs attrs) { hwaddr done = 0; hwaddr xlat; MemoryRegion *this_mr; for (;;) { target_len -= len; addr += len; done += len; if (target_len == 0) { return done; } len = target_len; this_mr = flatview_translate(fv, addr, &xlat, &len, is_write, attrs); if (this_mr != mr || xlat != base + done) { return done; } } } /* Map a physical memory region into a host virtual address. * May map a subset of the requested range, given by and returned in *plen. * May return NULL if resources needed to perform the mapping are exhausted. * Use only for reads OR writes - not for read-modify-write operations. * Use cpu_register_map_client() to know when retrying the map operation is * likely to succeed. */ void *address_space_map(AddressSpace *as, hwaddr addr, hwaddr *plen, bool is_write, MemTxAttrs attrs) { hwaddr len = *plen; hwaddr l, xlat; MemoryRegion *mr; void *ptr; FlatView *fv; if (len == 0) { return NULL; } l = len; rcu_read_lock(); fv = address_space_to_flatview(as); mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); if (!memory_access_is_direct(mr, is_write)) { if (atomic_xchg(&bounce.in_use, true)) { rcu_read_unlock(); return NULL; } /* Avoid unbounded allocations */ l = MIN(l, TARGET_PAGE_SIZE); bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); bounce.addr = addr; bounce.len = l; memory_region_ref(mr); bounce.mr = mr; if (!is_write) { flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, bounce.buffer, l); } rcu_read_unlock(); *plen = l; return bounce.buffer; } memory_region_ref(mr); *plen = flatview_extend_translation(fv, addr, len, mr, xlat, l, is_write, attrs); ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); rcu_read_unlock(); return ptr; } /* Unmaps a memory region previously mapped by address_space_map(). * Will also mark the memory as dirty if is_write == 1. access_len gives * the amount of memory that was actually read or written by the caller. */ void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, int is_write, hwaddr access_len) { if (buffer != bounce.buffer) { MemoryRegion *mr; ram_addr_t addr1; mr = memory_region_from_host(buffer, &addr1); assert(mr != NULL); if (is_write) { invalidate_and_set_dirty(mr, addr1, access_len); } if (xen_enabled()) { xen_invalidate_map_cache_entry(buffer); } memory_region_unref(mr); return; } if (is_write) { address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, bounce.buffer, access_len); } qemu_vfree(bounce.buffer); bounce.buffer = NULL; memory_region_unref(bounce.mr); atomic_mb_set(&bounce.in_use, false); cpu_notify_map_clients(); } void *cpu_physical_memory_map(hwaddr addr, hwaddr *plen, int is_write) { return address_space_map(&address_space_memory, addr, plen, is_write, MEMTXATTRS_UNSPECIFIED); } void cpu_physical_memory_unmap(void *buffer, hwaddr len, int is_write, hwaddr access_len) { return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); } #define ARG1_DECL AddressSpace *as #define ARG1 as #define SUFFIX #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) #define RCU_READ_LOCK(...) rcu_read_lock() #define RCU_READ_UNLOCK(...) rcu_read_unlock() #include "memory_ldst.inc.c" int64_t address_space_cache_init(MemoryRegionCache *cache, AddressSpace *as, hwaddr addr, hwaddr len, bool is_write) { AddressSpaceDispatch *d; hwaddr l; MemoryRegion *mr; assert(len > 0); l = len; cache->fv = address_space_get_flatview(as); d = flatview_to_dispatch(cache->fv); cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); mr = cache->mrs.mr; memory_region_ref(mr); if (memory_access_is_direct(mr, is_write)) { /* We don't care about the memory attributes here as we're only * doing this if we found actual RAM, which behaves the same * regardless of attributes; so UNSPECIFIED is fine. */ l = flatview_extend_translation(cache->fv, addr, len, mr, cache->xlat, l, is_write, MEMTXATTRS_UNSPECIFIED); cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); } else { cache->ptr = NULL; } cache->len = l; cache->is_write = is_write; return l; } void address_space_cache_invalidate(MemoryRegionCache *cache, hwaddr addr, hwaddr access_len) { assert(cache->is_write); if (likely(cache->ptr)) { invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); } } void address_space_cache_destroy(MemoryRegionCache *cache) { if (!cache->mrs.mr) { return; } if (xen_enabled()) { xen_invalidate_map_cache_entry(cache->ptr); } memory_region_unref(cache->mrs.mr); flatview_unref(cache->fv); cache->mrs.mr = NULL; cache->fv = NULL; } /* Called from RCU critical section. This function has the same * semantics as address_space_translate, but it only works on a * predefined range of a MemoryRegion that was mapped with * address_space_cache_init. */ static inline MemoryRegion *address_space_translate_cached( MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, hwaddr *plen, bool is_write, MemTxAttrs attrs) { MemoryRegionSection section; MemoryRegion *mr; IOMMUMemoryRegion *iommu_mr; AddressSpace *target_as; assert(!cache->ptr); *xlat = addr + cache->xlat; mr = cache->mrs.mr; iommu_mr = memory_region_get_iommu(mr); if (!iommu_mr) { /* MMIO region. */ return mr; } section = address_space_translate_iommu(iommu_mr, xlat, plen, NULL, is_write, true, &target_as, attrs); return section.mr; } /* Called from RCU critical section. address_space_read_cached uses this * out of line function when the target is an MMIO or IOMMU region. */ void address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, void *buf, int len) { hwaddr addr1, l; MemoryRegion *mr; l = len; mr = address_space_translate_cached(cache, addr, &addr1, &l, false, MEMTXATTRS_UNSPECIFIED); flatview_read_continue(cache->fv, addr, MEMTXATTRS_UNSPECIFIED, buf, len, addr1, l, mr); } /* Called from RCU critical section. address_space_write_cached uses this * out of line function when the target is an MMIO or IOMMU region. */ void address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, const void *buf, int len) { hwaddr addr1, l; MemoryRegion *mr; l = len; mr = address_space_translate_cached(cache, addr, &addr1, &l, true, MEMTXATTRS_UNSPECIFIED); flatview_write_continue(cache->fv, addr, MEMTXATTRS_UNSPECIFIED, buf, len, addr1, l, mr); } #define ARG1_DECL MemoryRegionCache *cache #define ARG1 cache #define SUFFIX _cached_slow #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) #define RCU_READ_LOCK() ((void)0) #define RCU_READ_UNLOCK() ((void)0) #include "memory_ldst.inc.c" /* virtual memory access for debug (includes writing to ROM) */ int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, uint8_t *buf, int len, int is_write) { int l; hwaddr phys_addr; target_ulong page; cpu_synchronize_state(cpu); while (len > 0) { int asidx; MemTxAttrs attrs; page = addr & TARGET_PAGE_MASK; phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); asidx = cpu_asidx_from_attrs(cpu, attrs); /* if no physical page mapped, return an error */ if (phys_addr == -1) return -1; l = (page + TARGET_PAGE_SIZE) - addr; if (l > len) l = len; phys_addr += (addr & ~TARGET_PAGE_MASK); if (is_write) { cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, phys_addr, buf, l); } else { address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, MEMTXATTRS_UNSPECIFIED, buf, l, 0); } len -= l; buf += l; addr += l; } return 0; } /* * Allows code that needs to deal with migration bitmaps etc to still be built * target independent. */ size_t qemu_target_page_size(void) { return TARGET_PAGE_SIZE; } int qemu_target_page_bits(void) { return TARGET_PAGE_BITS; } int qemu_target_page_bits_min(void) { return TARGET_PAGE_BITS_MIN; } #endif /* * A helper function for the _utterly broken_ virtio device model to find out if * it's running on a big endian machine. Don't do this at home kids! */ bool target_words_bigendian(void); bool target_words_bigendian(void) { #if defined(TARGET_WORDS_BIGENDIAN) return true; #else return false; #endif } #ifndef CONFIG_USER_ONLY bool cpu_physical_memory_is_io(hwaddr phys_addr) { MemoryRegion*mr; hwaddr l = 1; bool res; rcu_read_lock(); mr = address_space_translate(&address_space_memory, phys_addr, &phys_addr, &l, false, MEMTXATTRS_UNSPECIFIED); res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); rcu_read_unlock(); return res; } int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) { RAMBlock *block; int ret = 0; rcu_read_lock(); RAMBLOCK_FOREACH(block) { ret = func(block->idstr, block->host, block->offset, block->used_length, opaque); if (ret) { break; } } rcu_read_unlock(); return ret; } int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque) { RAMBlock *block; int ret = 0; rcu_read_lock(); RAMBLOCK_FOREACH(block) { if (!qemu_ram_is_migratable(block)) { continue; } ret = func(block->idstr, block->host, block->offset, block->used_length, opaque); if (ret) { break; } } rcu_read_unlock(); return ret; } /* * Unmap pages of memory from start to start+length such that * they a) read as 0, b) Trigger whatever fault mechanism * the OS provides for postcopy. * The pages must be unmapped by the end of the function. * Returns: 0 on success, none-0 on failure * */ int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) { int ret = -1; uint8_t *host_startaddr = rb->host + start; if ((uintptr_t)host_startaddr & (rb->page_size - 1)) { error_report("ram_block_discard_range: Unaligned start address: %p", host_startaddr); goto err; } if ((start + length) <= rb->used_length) { bool need_madvise, need_fallocate; uint8_t *host_endaddr = host_startaddr + length; if ((uintptr_t)host_endaddr & (rb->page_size - 1)) { error_report("ram_block_discard_range: Unaligned end address: %p", host_endaddr); goto err; } errno = ENOTSUP; /* If we are missing MADVISE etc */ /* The logic here is messy; * madvise DONTNEED fails for hugepages * fallocate works on hugepages and shmem */ need_madvise = (rb->page_size == qemu_host_page_size); need_fallocate = rb->fd != -1; if (need_fallocate) { /* For a file, this causes the area of the file to be zero'd * if read, and for hugetlbfs also causes it to be unmapped * so a userfault will trigger. */ #ifdef CONFIG_FALLOCATE_PUNCH_HOLE ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, start, length); if (ret) { ret = -errno; error_report("ram_block_discard_range: Failed to fallocate " "%s:%" PRIx64 " +%zx (%d)", rb->idstr, start, length, ret); goto err; } #else ret = -ENOSYS; error_report("ram_block_discard_range: fallocate not available/file" "%s:%" PRIx64 " +%zx (%d)", rb->idstr, start, length, ret); goto err; #endif } if (need_madvise) { /* For normal RAM this causes it to be unmapped, * for shared memory it causes the local mapping to disappear * and to fall back on the file contents (which we just * fallocate'd away). */ #if defined(CONFIG_MADVISE) ret = madvise(host_startaddr, length, MADV_DONTNEED); if (ret) { ret = -errno; error_report("ram_block_discard_range: Failed to discard range " "%s:%" PRIx64 " +%zx (%d)", rb->idstr, start, length, ret); goto err; } #else ret = -ENOSYS; error_report("ram_block_discard_range: MADVISE not available" "%s:%" PRIx64 " +%zx (%d)", rb->idstr, start, length, ret); goto err; #endif } trace_ram_block_discard_range(rb->idstr, host_startaddr, length, need_madvise, need_fallocate, ret); } else { error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")", rb->idstr, start, length, rb->used_length); } err: return ret; } #endif void page_size_init(void) { /* NOTE: we can always suppose that qemu_host_page_size >= TARGET_PAGE_SIZE */ if (qemu_host_page_size == 0) { qemu_host_page_size = qemu_real_host_page_size; } if (qemu_host_page_size < TARGET_PAGE_SIZE) { qemu_host_page_size = TARGET_PAGE_SIZE; } qemu_host_page_mask = -(intptr_t)qemu_host_page_size; } #if !defined(CONFIG_USER_ONLY) static void mtree_print_phys_entries(fprintf_function mon, void *f, int start, int end, int skip, int ptr) { if (start == end - 1) { mon(f, "\t%3d ", start); } else { mon(f, "\t%3d..%-3d ", start, end - 1); } mon(f, " skip=%d ", skip); if (ptr == PHYS_MAP_NODE_NIL) { mon(f, " ptr=NIL"); } else if (!skip) { mon(f, " ptr=#%d", ptr); } else { mon(f, " ptr=[%d]", ptr); } mon(f, "\n"); } #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ int128_sub((size), int128_one())) : 0) void mtree_print_dispatch(fprintf_function mon, void *f, AddressSpaceDispatch *d, MemoryRegion *root) { int i; mon(f, " Dispatch\n"); mon(f, " Physical sections\n"); for (i = 0; i < d->map.sections_nb; ++i) { MemoryRegionSection *s = d->map.sections + i; const char *names[] = { " [unassigned]", " [not dirty]", " [ROM]", " [watch]" }; mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s", i, s->offset_within_address_space, s->offset_within_address_space + MR_SIZE(s->mr->size), s->mr->name ? s->mr->name : "(noname)", i < ARRAY_SIZE(names) ? names[i] : "", s->mr == root ? " [ROOT]" : "", s == d->mru_section ? " [MRU]" : "", s->mr->is_iommu ? " [iommu]" : ""); if (s->mr->alias) { mon(f, " alias=%s", s->mr->alias->name ? s->mr->alias->name : "noname"); } mon(f, "\n"); } mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); for (i = 0; i < d->map.nodes_nb; ++i) { int j, jprev; PhysPageEntry prev; Node *n = d->map.nodes + i; mon(f, " [%d]\n", i); for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { PhysPageEntry *pe = *n + j; if (pe->ptr == prev.ptr && pe->skip == prev.skip) { continue; } mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr); jprev = j; prev = *pe; } if (jprev != ARRAY_SIZE(*n)) { mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr); } } } #endif