/* * internal execution defines for qemu * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #ifndef _EXEC_ALL_H_ #define _EXEC_ALL_H_ #include "qemu-common.h" /* allow to see translation results - the slowdown should be negligible, so we leave it */ #define DEBUG_DISAS /* Page tracking code uses ram addresses in system mode, and virtual addresses in userspace mode. Define tb_page_addr_t to be an appropriate type. */ #if defined(CONFIG_USER_ONLY) typedef abi_ulong tb_page_addr_t; #else typedef ram_addr_t tb_page_addr_t; #endif /* is_jmp field values */ #define DISAS_NEXT 0 /* next instruction can be analyzed */ #define DISAS_JUMP 1 /* only pc was modified dynamically */ #define DISAS_UPDATE 2 /* cpu state was modified dynamically */ #define DISAS_TB_JUMP 3 /* only pc was modified statically */ struct TranslationBlock; typedef struct TranslationBlock TranslationBlock; /* XXX: make safe guess about sizes */ #define MAX_OP_PER_INSTR 208 #if HOST_LONG_BITS == 32 #define MAX_OPC_PARAM_PER_ARG 2 #else #define MAX_OPC_PARAM_PER_ARG 1 #endif #define MAX_OPC_PARAM_IARGS 4 #define MAX_OPC_PARAM_OARGS 1 #define MAX_OPC_PARAM_ARGS (MAX_OPC_PARAM_IARGS + MAX_OPC_PARAM_OARGS) /* A Call op needs up to 4 + 2N parameters on 32-bit archs, * and up to 4 + N parameters on 64-bit archs * (N = number of input arguments + output arguments). */ #define MAX_OPC_PARAM (4 + (MAX_OPC_PARAM_PER_ARG * MAX_OPC_PARAM_ARGS)) #define OPC_BUF_SIZE 640 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR) /* Maximum size a TCG op can expand to. This is complicated because a single op may require several host instructions and register reloads. For now take a wild guess at 192 bytes, which should allow at least a couple of fixup instructions per argument. */ #define TCG_MAX_OP_SIZE 192 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM) extern target_ulong gen_opc_pc[OPC_BUF_SIZE]; extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE]; extern uint16_t gen_opc_icount[OPC_BUF_SIZE]; #include "qemu-log.h" void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb); void gen_intermediate_code_pc(CPUArchState *env, struct TranslationBlock *tb); void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb, int pc_pos); void cpu_gen_init(void); int cpu_gen_code(CPUArchState *env, struct TranslationBlock *tb, int *gen_code_size_ptr); int cpu_restore_state(struct TranslationBlock *tb, CPUArchState *env, uintptr_t searched_pc); void QEMU_NORETURN cpu_resume_from_signal(CPUArchState *env1, void *puc); void QEMU_NORETURN cpu_io_recompile(CPUArchState *env, uintptr_t retaddr); TranslationBlock *tb_gen_code(CPUArchState *env, target_ulong pc, target_ulong cs_base, int flags, int cflags); void cpu_exec_init(CPUArchState *env); void QEMU_NORETURN cpu_loop_exit(CPUArchState *env1); int page_unprotect(target_ulong address, uintptr_t pc, void *puc); void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, int is_cpu_write_access); void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end, int is_cpu_write_access); #if !defined(CONFIG_USER_ONLY) /* cputlb.c */ void tlb_flush_page(CPUArchState *env, target_ulong addr); void tlb_flush(CPUArchState *env, int flush_global); void tlb_set_page(CPUArchState *env, target_ulong vaddr, target_phys_addr_t paddr, int prot, int mmu_idx, target_ulong size); void tb_invalidate_phys_addr(target_phys_addr_t addr); #else static inline void tlb_flush_page(CPUArchState *env, target_ulong addr) { } static inline void tlb_flush(CPUArchState *env, int flush_global) { } #endif #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ #define CODE_GEN_PHYS_HASH_BITS 15 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS) #define MIN_CODE_GEN_BUFFER_SIZE (1024 * 1024) /* estimated block size for TB allocation */ /* XXX: use a per code average code fragment size and modulate it according to the host CPU */ #if defined(CONFIG_SOFTMMU) #define CODE_GEN_AVG_BLOCK_SIZE 128 #else #define CODE_GEN_AVG_BLOCK_SIZE 64 #endif #if defined(_ARCH_PPC) || defined(__x86_64__) || defined(__arm__) || defined(__i386__) #define USE_DIRECT_JUMP #elif defined(CONFIG_TCG_INTERPRETER) #define USE_DIRECT_JUMP #endif struct TranslationBlock { target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ target_ulong cs_base; /* CS base for this block */ uint64_t flags; /* flags defining in which context the code was generated */ uint16_t size; /* size of target code for this block (1 <= size <= TARGET_PAGE_SIZE) */ uint16_t cflags; /* compile flags */ #define CF_COUNT_MASK 0x7fff #define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */ uint8_t *tc_ptr; /* pointer to the translated code */ /* next matching tb for physical address. */ struct TranslationBlock *phys_hash_next; /* first and second physical page containing code. The lower bit of the pointer tells the index in page_next[] */ struct TranslationBlock *page_next[2]; tb_page_addr_t page_addr[2]; /* the following data are used to directly call another TB from the code of this one. */ uint16_t tb_next_offset[2]; /* offset of original jump target */ #ifdef USE_DIRECT_JUMP uint16_t tb_jmp_offset[2]; /* offset of jump instruction */ #else uintptr_t tb_next[2]; /* address of jump generated code */ #endif /* list of TBs jumping to this one. This is a circular list using the two least significant bits of the pointers to tell what is the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 = jmp_first */ struct TranslationBlock *jmp_next[2]; struct TranslationBlock *jmp_first; uint32_t icount; }; static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc) { target_ulong tmp; tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK; } static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc) { target_ulong tmp; tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK) | (tmp & TB_JMP_ADDR_MASK)); } static inline unsigned int tb_phys_hash_func(tb_page_addr_t pc) { return (pc >> 2) & (CODE_GEN_PHYS_HASH_SIZE - 1); } void tb_free(TranslationBlock *tb); void tb_flush(CPUArchState *env); void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, tb_page_addr_t phys_page2); void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr); extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; #if defined(USE_DIRECT_JUMP) #if defined(CONFIG_TCG_INTERPRETER) static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) { /* patch the branch destination */ *(uint32_t *)jmp_addr = addr - (jmp_addr + 4); /* no need to flush icache explicitly */ } #elif defined(_ARCH_PPC) void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr); #define tb_set_jmp_target1 ppc_tb_set_jmp_target #elif defined(__i386__) || defined(__x86_64__) static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) { /* patch the branch destination */ *(uint32_t *)jmp_addr = addr - (jmp_addr + 4); /* no need to flush icache explicitly */ } #elif defined(__arm__) static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) { #if !QEMU_GNUC_PREREQ(4, 1) register unsigned long _beg __asm ("a1"); register unsigned long _end __asm ("a2"); register unsigned long _flg __asm ("a3"); #endif /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */ *(uint32_t *)jmp_addr = (*(uint32_t *)jmp_addr & ~0xffffff) | (((addr - (jmp_addr + 8)) >> 2) & 0xffffff); #if QEMU_GNUC_PREREQ(4, 1) __builtin___clear_cache((char *) jmp_addr, (char *) jmp_addr + 4); #else /* flush icache */ _beg = jmp_addr; _end = jmp_addr + 4; _flg = 0; __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg)); #endif } #else #error tb_set_jmp_target1 is missing #endif static inline void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) { uint16_t offset = tb->tb_jmp_offset[n]; tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr); } #else /* set the jump target */ static inline void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) { tb->tb_next[n] = addr; } #endif static inline void tb_add_jump(TranslationBlock *tb, int n, TranslationBlock *tb_next) { /* NOTE: this test is only needed for thread safety */ if (!tb->jmp_next[n]) { /* patch the native jump address */ tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr); /* add in TB jmp circular list */ tb->jmp_next[n] = tb_next->jmp_first; tb_next->jmp_first = (TranslationBlock *)((uintptr_t)(tb) | (n)); } } TranslationBlock *tb_find_pc(uintptr_t pc_ptr); #include "qemu-lock.h" extern spinlock_t tb_lock; extern int tb_invalidated_flag; /* The return address may point to the start of the next instruction. Subtracting one gets us the call instruction itself. */ #if defined(CONFIG_TCG_INTERPRETER) /* Alpha and SH4 user mode emulations and Softmmu call GETPC(). For all others, GETPC remains undefined (which makes TCI a little faster. */ # if defined(CONFIG_SOFTMMU) || defined(TARGET_ALPHA) || defined(TARGET_SH4) extern uintptr_t tci_tb_ptr; # define GETPC() tci_tb_ptr # endif #elif defined(__s390__) && !defined(__s390x__) # define GETPC() \ (((uintptr_t)__builtin_return_address(0) & 0x7fffffffUL) - 1) #elif defined(__arm__) /* Thumb return addresses have the low bit set, so we need to subtract two. This is still safe in ARM mode because instructions are 4 bytes. */ # define GETPC() ((uintptr_t)__builtin_return_address(0) - 2) #else # define GETPC() ((uintptr_t)__builtin_return_address(0) - 1) #endif #if !defined(CONFIG_USER_ONLY) struct MemoryRegion *iotlb_to_region(target_phys_addr_t index); uint64_t io_mem_read(struct MemoryRegion *mr, target_phys_addr_t addr, unsigned size); void io_mem_write(struct MemoryRegion *mr, target_phys_addr_t addr, uint64_t value, unsigned size); void tlb_fill(CPUArchState *env1, target_ulong addr, int is_write, int mmu_idx, uintptr_t retaddr); #include "softmmu_defs.h" #define ACCESS_TYPE (NB_MMU_MODES + 1) #define MEMSUFFIX _code #ifndef CONFIG_TCG_PASS_AREG0 #define env cpu_single_env #endif #define DATA_SIZE 1 #include "softmmu_header.h" #define DATA_SIZE 2 #include "softmmu_header.h" #define DATA_SIZE 4 #include "softmmu_header.h" #define DATA_SIZE 8 #include "softmmu_header.h" #undef ACCESS_TYPE #undef MEMSUFFIX #undef env #endif #if defined(CONFIG_USER_ONLY) static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) { return addr; } #else /* cputlb.c */ tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr); #endif typedef void (CPUDebugExcpHandler)(CPUArchState *env); void cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler); /* vl.c */ extern int singlestep; /* cpu-exec.c */ extern volatile sig_atomic_t exit_request; /* Deterministic execution requires that IO only be performed on the last instruction of a TB so that interrupts take effect immediately. */ static inline int can_do_io(CPUArchState *env) { if (!use_icount) { return 1; } /* If not executing code then assume we are ok. */ if (!env->current_tb) { return 1; } return env->can_do_io != 0; } #endif