/*
 * internal execution defines for qemu
 * 
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

/* allow to see translation results - the slowdown should be negligible, so we leave it */
#define DEBUG_DISAS

#ifndef glue
#define xglue(x, y) x ## y
#define glue(x, y) xglue(x, y)
#define stringify(s)	tostring(s)
#define tostring(s)	#s
#endif

#if __GNUC__ < 3
#define __builtin_expect(x, n) (x)
#endif

#ifdef __i386__
#define REGPARM(n) __attribute((regparm(n)))
#else
#define REGPARM(n)
#endif

/* is_jmp field values */
#define DISAS_NEXT    0 /* next instruction can be analyzed */
#define DISAS_JUMP    1 /* only pc was modified dynamically */
#define DISAS_UPDATE  2 /* cpu state was modified dynamically */
#define DISAS_TB_JUMP 3 /* only pc was modified statically */

struct TranslationBlock;

/* XXX: make safe guess about sizes */
#define MAX_OP_PER_INSTR 32
#define OPC_BUF_SIZE 512
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)

#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3)

extern uint16_t gen_opc_buf[OPC_BUF_SIZE];
extern uint32_t gen_opparam_buf[OPPARAM_BUF_SIZE];
extern long gen_labels[OPC_BUF_SIZE];
extern int nb_gen_labels;
extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
extern target_ulong gen_opc_jump_pc[2];
extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];

typedef void (GenOpFunc)(void);
typedef void (GenOpFunc1)(long);
typedef void (GenOpFunc2)(long, long);
typedef void (GenOpFunc3)(long, long, long);
                    
#if defined(TARGET_I386)

void optimize_flags_init(void);

#endif

extern FILE *logfile;
extern int loglevel;

int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
void dump_ops(const uint16_t *opc_buf, const uint32_t *opparam_buf);
int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
                 int max_code_size, int *gen_code_size_ptr);
int cpu_restore_state(struct TranslationBlock *tb, 
                      CPUState *env, unsigned long searched_pc,
                      void *puc);
int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
                      int max_code_size, int *gen_code_size_ptr);
int cpu_restore_state_copy(struct TranslationBlock *tb, 
                           CPUState *env, unsigned long searched_pc,
                           void *puc);
void cpu_resume_from_signal(CPUState *env1, void *puc);
void cpu_exec_init(CPUState *env);
int page_unprotect(target_ulong address, unsigned long pc, void *puc);
void tb_invalidate_phys_page_range(target_ulong start, target_ulong end, 
                                   int is_cpu_write_access);
void tb_invalidate_page_range(target_ulong start, target_ulong end);
void tlb_flush_page(CPUState *env, target_ulong addr);
void tlb_flush(CPUState *env, int flush_global);
int tlb_set_page_exec(CPUState *env, target_ulong vaddr, 
                      target_phys_addr_t paddr, int prot, 
                      int is_user, int is_softmmu);
static inline int tlb_set_page(CPUState *env, target_ulong vaddr, 
                               target_phys_addr_t paddr, int prot, 
                               int is_user, int is_softmmu)
{
    if (prot & PAGE_READ)
        prot |= PAGE_EXEC;
    return tlb_set_page_exec(env, vaddr, paddr, prot, is_user, is_softmmu);
}

#define CODE_GEN_MAX_SIZE        65536
#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */

#define CODE_GEN_PHYS_HASH_BITS     15
#define CODE_GEN_PHYS_HASH_SIZE     (1 << CODE_GEN_PHYS_HASH_BITS)

/* maximum total translate dcode allocated */

/* NOTE: the translated code area cannot be too big because on some
   archs the range of "fast" function calls is limited. Here is a
   summary of the ranges:

   i386  : signed 32 bits
   arm   : signed 26 bits
   ppc   : signed 24 bits
   sparc : signed 32 bits
   alpha : signed 23 bits
*/

#if defined(__alpha__)
#define CODE_GEN_BUFFER_SIZE     (2 * 1024 * 1024)
#elif defined(__ia64)
#define CODE_GEN_BUFFER_SIZE     (4 * 1024 * 1024)	/* range of addl */
#elif defined(__powerpc__)
#define CODE_GEN_BUFFER_SIZE     (6 * 1024 * 1024)
#else
#define CODE_GEN_BUFFER_SIZE     (16 * 1024 * 1024)
#endif

//#define CODE_GEN_BUFFER_SIZE     (128 * 1024)

/* estimated block size for TB allocation */
/* XXX: use a per code average code fragment size and modulate it
   according to the host CPU */
#if defined(CONFIG_SOFTMMU)
#define CODE_GEN_AVG_BLOCK_SIZE 128
#else
#define CODE_GEN_AVG_BLOCK_SIZE 64
#endif

#define CODE_GEN_MAX_BLOCKS    (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)

#if defined(__powerpc__) 
#define USE_DIRECT_JUMP
#endif
#if defined(__i386__) && !defined(_WIN32)
#define USE_DIRECT_JUMP
#endif

typedef struct TranslationBlock {
    target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
    target_ulong cs_base; /* CS base for this block */
    unsigned int flags; /* flags defining in which context the code was generated */
    uint16_t size;      /* size of target code for this block (1 <=
                           size <= TARGET_PAGE_SIZE) */
    uint16_t cflags;    /* compile flags */
#define CF_CODE_COPY   0x0001 /* block was generated in code copy mode */
#define CF_TB_FP_USED  0x0002 /* fp ops are used in the TB */
#define CF_FP_USED     0x0004 /* fp ops are used in the TB or in a chained TB */
#define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */

    uint8_t *tc_ptr;    /* pointer to the translated code */
    /* next matching tb for physical address. */
    struct TranslationBlock *phys_hash_next; 
    /* first and second physical page containing code. The lower bit
       of the pointer tells the index in page_next[] */
    struct TranslationBlock *page_next[2]; 
    target_ulong page_addr[2]; 

    /* the following data are used to directly call another TB from
       the code of this one. */
    uint16_t tb_next_offset[2]; /* offset of original jump target */
#ifdef USE_DIRECT_JUMP
    uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
#else
    uint32_t tb_next[2]; /* address of jump generated code */
#endif
    /* list of TBs jumping to this one. This is a circular list using
       the two least significant bits of the pointers to tell what is
       the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
       jmp_first */
    struct TranslationBlock *jmp_next[2]; 
    struct TranslationBlock *jmp_first;
} TranslationBlock;

static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
{
    return (pc ^ (pc >> TB_JMP_CACHE_BITS)) & (TB_JMP_CACHE_SIZE - 1);
}

static inline unsigned int tb_phys_hash_func(unsigned long pc)
{
    return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
}

TranslationBlock *tb_alloc(target_ulong pc);
void tb_flush(CPUState *env);
void tb_link_phys(TranslationBlock *tb, 
                  target_ulong phys_pc, target_ulong phys_page2);

extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];

extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
extern uint8_t *code_gen_ptr;

#if defined(USE_DIRECT_JUMP)

#if defined(__powerpc__)
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
{
    uint32_t val, *ptr;

    /* patch the branch destination */
    ptr = (uint32_t *)jmp_addr;
    val = *ptr;
    val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
    *ptr = val;
    /* flush icache */
    asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
    asm volatile ("sync" : : : "memory");
    asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
    asm volatile ("sync" : : : "memory");
    asm volatile ("isync" : : : "memory");
}
#elif defined(__i386__)
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
{
    /* patch the branch destination */
    *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
    /* no need to flush icache explicitely */
}
#endif

static inline void tb_set_jmp_target(TranslationBlock *tb, 
                                     int n, unsigned long addr)
{
    unsigned long offset;

    offset = tb->tb_jmp_offset[n];
    tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
    offset = tb->tb_jmp_offset[n + 2];
    if (offset != 0xffff)
        tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
}

#else

/* set the jump target */
static inline void tb_set_jmp_target(TranslationBlock *tb, 
                                     int n, unsigned long addr)
{
    tb->tb_next[n] = addr;
}

#endif

static inline void tb_add_jump(TranslationBlock *tb, int n, 
                               TranslationBlock *tb_next)
{
    /* NOTE: this test is only needed for thread safety */
    if (!tb->jmp_next[n]) {
        /* patch the native jump address */
        tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
        
        /* add in TB jmp circular list */
        tb->jmp_next[n] = tb_next->jmp_first;
        tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
    }
}

TranslationBlock *tb_find_pc(unsigned long pc_ptr);

#ifndef offsetof
#define offsetof(type, field) ((size_t) &((type *)0)->field)
#endif

#if defined(_WIN32)
#define ASM_DATA_SECTION ".section \".data\"\n"
#define ASM_PREVIOUS_SECTION ".section .text\n"
#elif defined(__APPLE__)
#define ASM_DATA_SECTION ".data\n"
#define ASM_PREVIOUS_SECTION ".text\n"
#else
#define ASM_DATA_SECTION ".section \".data\"\n"
#define ASM_PREVIOUS_SECTION ".previous\n"
#endif

#define ASM_OP_LABEL_NAME(n, opname) \
    ASM_NAME(__op_label) #n "." ASM_NAME(opname)

#if defined(__powerpc__)

/* we patch the jump instruction directly */
#define GOTO_TB(opname, tbparam, n)\
do {\
    asm volatile (ASM_DATA_SECTION\
		  ASM_OP_LABEL_NAME(n, opname) ":\n"\
		  ".long 1f\n"\
		  ASM_PREVIOUS_SECTION \
                  "b " ASM_NAME(__op_jmp) #n "\n"\
		  "1:\n");\
} while (0)

#elif defined(__i386__) && defined(USE_DIRECT_JUMP)

/* we patch the jump instruction directly */
#define GOTO_TB(opname, tbparam, n)\
do {\
    asm volatile (".section .data\n"\
		  ASM_OP_LABEL_NAME(n, opname) ":\n"\
		  ".long 1f\n"\
		  ASM_PREVIOUS_SECTION \
                  "jmp " ASM_NAME(__op_jmp) #n "\n"\
		  "1:\n");\
} while (0)

#else

/* jump to next block operations (more portable code, does not need
   cache flushing, but slower because of indirect jump) */
#define GOTO_TB(opname, tbparam, n)\
do {\
    static void __attribute__((unused)) *dummy ## n = &&dummy_label ## n;\
    static void __attribute__((unused)) *__op_label ## n \
        __asm__(ASM_OP_LABEL_NAME(n, opname)) = &&label ## n;\
    goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
label ## n: ;\
dummy_label ## n: ;\
} while (0)

#endif

extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];

#ifdef __powerpc__
static inline int testandset (int *p)
{
    int ret;
    __asm__ __volatile__ (
                          "0:    lwarx %0,0,%1\n"
                          "      xor. %0,%3,%0\n"
                          "      bne 1f\n"
                          "      stwcx. %2,0,%1\n"
                          "      bne- 0b\n"
                          "1:    "
                          : "=&r" (ret)
                          : "r" (p), "r" (1), "r" (0)
                          : "cr0", "memory");
    return ret;
}
#endif

#ifdef __i386__
static inline int testandset (int *p)
{
    long int readval = 0;
    
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
                          : "+m" (*p), "+a" (readval)
                          : "r" (1)
                          : "cc");
    return readval;
}
#endif

#ifdef __x86_64__
static inline int testandset (int *p)
{
    long int readval = 0;
    
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
                          : "+m" (*p), "+a" (readval)
                          : "r" (1)
                          : "cc");
    return readval;
}
#endif

#ifdef __s390__
static inline int testandset (int *p)
{
    int ret;

    __asm__ __volatile__ ("0: cs    %0,%1,0(%2)\n"
			  "   jl    0b"
			  : "=&d" (ret)
			  : "r" (1), "a" (p), "0" (*p) 
			  : "cc", "memory" );
    return ret;
}
#endif

#ifdef __alpha__
static inline int testandset (int *p)
{
    int ret;
    unsigned long one;

    __asm__ __volatile__ ("0:	mov 1,%2\n"
			  "	ldl_l %0,%1\n"
			  "	stl_c %2,%1\n"
			  "	beq %2,1f\n"
			  ".subsection 2\n"
			  "1:	br 0b\n"
			  ".previous"
			  : "=r" (ret), "=m" (*p), "=r" (one)
			  : "m" (*p));
    return ret;
}
#endif

#ifdef __sparc__
static inline int testandset (int *p)
{
	int ret;

	__asm__ __volatile__("ldstub	[%1], %0"
			     : "=r" (ret)
			     : "r" (p)
			     : "memory");

	return (ret ? 1 : 0);
}
#endif

#ifdef __arm__
static inline int testandset (int *spinlock)
{
    register unsigned int ret;
    __asm__ __volatile__("swp %0, %1, [%2]"
                         : "=r"(ret)
                         : "0"(1), "r"(spinlock));
    
    return ret;
}
#endif

#ifdef __mc68000
static inline int testandset (int *p)
{
    char ret;
    __asm__ __volatile__("tas %1; sne %0"
                         : "=r" (ret)
                         : "m" (p)
                         : "cc","memory");
    return ret;
}
#endif

#ifdef __ia64
#include <ia64intrin.h>

static inline int testandset (int *p)
{
    return __sync_lock_test_and_set (p, 1);
}
#endif

typedef int spinlock_t;

#define SPIN_LOCK_UNLOCKED 0

#if defined(CONFIG_USER_ONLY)
static inline void spin_lock(spinlock_t *lock)
{
    while (testandset(lock));
}

static inline void spin_unlock(spinlock_t *lock)
{
    *lock = 0;
}

static inline int spin_trylock(spinlock_t *lock)
{
    return !testandset(lock);
}
#else
static inline void spin_lock(spinlock_t *lock)
{
}

static inline void spin_unlock(spinlock_t *lock)
{
}

static inline int spin_trylock(spinlock_t *lock)
{
    return 1;
}
#endif

extern spinlock_t tb_lock;

extern int tb_invalidated_flag;

#if !defined(CONFIG_USER_ONLY)

void tlb_fill(target_ulong addr, int is_write, int is_user, 
              void *retaddr);

#define ACCESS_TYPE 3
#define MEMSUFFIX _code
#define env cpu_single_env

#define DATA_SIZE 1
#include "softmmu_header.h"

#define DATA_SIZE 2
#include "softmmu_header.h"

#define DATA_SIZE 4
#include "softmmu_header.h"

#define DATA_SIZE 8
#include "softmmu_header.h"

#undef ACCESS_TYPE
#undef MEMSUFFIX
#undef env

#endif

#if defined(CONFIG_USER_ONLY)
static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
{
    return addr;
}
#else
/* NOTE: this function can trigger an exception */
/* NOTE2: the returned address is not exactly the physical address: it
   is the offset relative to phys_ram_base */
static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
{
    int is_user, index, pd;

    index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
#if defined(TARGET_I386)
    is_user = ((env->hflags & HF_CPL_MASK) == 3);
#elif defined (TARGET_PPC)
    is_user = msr_pr;
#elif defined (TARGET_MIPS)
    is_user = ((env->hflags & MIPS_HFLAG_MODE) == MIPS_HFLAG_UM);
#elif defined (TARGET_SPARC)
    is_user = (env->psrs == 0);
#elif defined (TARGET_ARM)
    is_user = ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR);
#elif defined (TARGET_SH4)
    is_user = ((env->sr & SR_MD) == 0);
#else
#error unimplemented CPU
#endif
    if (__builtin_expect(env->tlb_table[is_user][index].addr_code != 
                         (addr & TARGET_PAGE_MASK), 0)) {
        ldub_code(addr);
    }
    pd = env->tlb_table[is_user][index].addr_code & ~TARGET_PAGE_MASK;
    if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
        cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x%08lx\n", addr);
    }
    return addr + env->tlb_table[is_user][index].addend - (unsigned long)phys_ram_base;
}
#endif


#ifdef USE_KQEMU
#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))

int kqemu_init(CPUState *env);
int kqemu_cpu_exec(CPUState *env);
void kqemu_flush_page(CPUState *env, target_ulong addr);
void kqemu_flush(CPUState *env, int global);
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
void kqemu_cpu_interrupt(CPUState *env);
void kqemu_record_dump(void);

static inline int kqemu_is_ok(CPUState *env)
{
    return(env->kqemu_enabled &&
           (env->cr[0] & CR0_PE_MASK) && 
           !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
           (env->eflags & IF_MASK) &&
           !(env->eflags & VM_MASK) &&
           (env->kqemu_enabled == 2 || 
            ((env->hflags & HF_CPL_MASK) == 3 &&
             (env->eflags & IOPL_MASK) != IOPL_MASK)));
}

#endif