/* * Generic Dynamic compiler generator * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include "thunk.h" /* temporary fix to make it compile with old elf headers (XXX: use included elf.h in all cases) */ #ifndef EM_390 #define EM_S390 22 /* IBM S390 */ #define R_390_8 1 /* Direct 8 bit. */ #define R_390_16 3 /* Direct 16 bit. */ #define R_390_32 4 /* Direct 32 bit. */ #endif /* all dynamically generated functions begin with this code */ #define OP_PREFIX "op_" int elf_must_swap(Elf32_Ehdr *h) { union { uint32_t i; uint8_t b[4]; } swaptest; swaptest.i = 1; return (h->e_ident[EI_DATA] == ELFDATA2MSB) != (swaptest.b[0] == 0); } void swab16s(uint16_t *p) { *p = bswap16(*p); } void swab32s(uint32_t *p) { *p = bswap32(*p); } void swab64s(uint32_t *p) { *p = bswap64(*p); } void elf_swap_ehdr(Elf32_Ehdr *h) { swab16s(&h->e_type); /* Object file type */ swab16s(&h-> e_machine); /* Architecture */ swab32s(&h-> e_version); /* Object file version */ swab32s(&h-> e_entry); /* Entry point virtual address */ swab32s(&h-> e_phoff); /* Program header table file offset */ swab32s(&h-> e_shoff); /* Section header table file offset */ swab32s(&h-> e_flags); /* Processor-specific flags */ swab16s(&h-> e_ehsize); /* ELF header size in bytes */ swab16s(&h-> e_phentsize); /* Program header table entry size */ swab16s(&h-> e_phnum); /* Program header table entry count */ swab16s(&h-> e_shentsize); /* Section header table entry size */ swab16s(&h-> e_shnum); /* Section header table entry count */ swab16s(&h-> e_shstrndx); /* Section header string table index */ } void elf_swap_shdr(Elf32_Shdr *h) { swab32s(&h-> sh_name); /* Section name (string tbl index) */ swab32s(&h-> sh_type); /* Section type */ swab32s(&h-> sh_flags); /* Section flags */ swab32s(&h-> sh_addr); /* Section virtual addr at execution */ swab32s(&h-> sh_offset); /* Section file offset */ swab32s(&h-> sh_size); /* Section size in bytes */ swab32s(&h-> sh_link); /* Link to another section */ swab32s(&h-> sh_info); /* Additional section information */ swab32s(&h-> sh_addralign); /* Section alignment */ swab32s(&h-> sh_entsize); /* Entry size if section holds table */ } void elf_swap_phdr(Elf32_Phdr *h) { swab32s(&h->p_type); /* Segment type */ swab32s(&h->p_offset); /* Segment file offset */ swab32s(&h->p_vaddr); /* Segment virtual address */ swab32s(&h->p_paddr); /* Segment physical address */ swab32s(&h->p_filesz); /* Segment size in file */ swab32s(&h->p_memsz); /* Segment size in memory */ swab32s(&h->p_flags); /* Segment flags */ swab32s(&h->p_align); /* Segment alignment */ } int do_swap; int e_machine; uint16_t get16(uint16_t *p) { uint16_t val; val = *p; if (do_swap) val = bswap16(val); return val; } uint32_t get32(uint32_t *p) { uint32_t val; val = *p; if (do_swap) val = bswap32(val); return val; } void put16(uint16_t *p, uint16_t val) { if (do_swap) val = bswap16(val); *p = val; } void put32(uint32_t *p, uint32_t val) { if (do_swap) val = bswap32(val); *p = val; } void __attribute__((noreturn)) error(const char *fmt, ...) { va_list ap; va_start(ap, fmt); fprintf(stderr, "dyngen: "); vfprintf(stderr, fmt, ap); fprintf(stderr, "\n"); va_end(ap); exit(1); } Elf32_Shdr *find_elf_section(Elf32_Shdr *shdr, int shnum, const char *shstr, const char *name) { int i; const char *shname; Elf32_Shdr *sec; for(i = 0; i < shnum; i++) { sec = &shdr[i]; if (!sec->sh_name) continue; shname = shstr + sec->sh_name; if (!strcmp(shname, name)) return sec; } return NULL; } void *load_data(int fd, long offset, unsigned int size) { char *data; data = malloc(size); if (!data) return NULL; lseek(fd, offset, SEEK_SET); if (read(fd, data, size) != size) { free(data); return NULL; } return data; } int strstart(const char *str, const char *val, const char **ptr) { const char *p, *q; p = str; q = val; while (*q != '\0') { if (*p != *q) return 0; p++; q++; } if (ptr) *ptr = p; return 1; } #define MAX_ARGS 3 /* generate op code */ void gen_code(const char *name, unsigned long offset, unsigned long size, FILE *outfile, uint8_t *text, void *relocs, int nb_relocs, int reloc_sh_type, Elf32_Sym *symtab, char *strtab, int gen_switch) { int copy_size = 0; uint8_t *p_start, *p_end; int nb_args, i; uint8_t args_present[MAX_ARGS]; const char *sym_name, *p; /* compute exact size excluding return instruction */ p_start = text + offset; p_end = p_start + size; switch(e_machine) { case EM_386: { uint8_t *p; p = p_end - 1; if (p == p_start) error("empty code for %s", name); if (p[0] != 0xc3) error("ret expected at the end of %s", name); copy_size = p - p_start; } break; case EM_PPC: { uint8_t *p; p = (void *)(p_end - 4); if (p == p_start) error("empty code for %s", name); if (get32((uint32_t *)p) != 0x4e800020) error("blr expected at the end of %s", name); copy_size = p - p_start; } break; case EM_S390: { uint8_t *p; p = (void *)(p_end - 2); if (p == p_start) error("empty code for %s", name); if (get16((uint16_t *)p) != 0x07fe && get16((uint16_t *)p) != 0x07f4) error("br %r14 expected at the end of %s", name); copy_size = p - p_start; } break; default: error("unsupported CPU (%d)", e_machine); } /* compute the number of arguments by looking at the relocations */ for(i = 0;i < MAX_ARGS; i++) args_present[i] = 0; if (reloc_sh_type == SHT_REL) { Elf32_Rel *rel; int n; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) { sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name; if (strstart(sym_name, "__op_param", &p)) { n = strtoul(p, NULL, 10); if (n >= MAX_ARGS) error("too many arguments in %s", name); args_present[n - 1] = 1; } } } } else { Elf32_Rela *rel; int n; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) { sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name; if (strstart(sym_name, "__op_param", &p)) { n = strtoul(p, NULL, 10); if (n >= MAX_ARGS) error("too many arguments in %s", name); args_present[n - 1] = 1; } } } } nb_args = 0; while (nb_args < MAX_ARGS && args_present[nb_args]) nb_args++; for(i = nb_args; i < MAX_ARGS; i++) { if (args_present[i]) error("inconsistent argument numbering in %s", name); } if (gen_switch == 2) { fprintf(outfile, "DEF(%s, %d)\n", name + 3, nb_args); } else if (gen_switch == 1) { /* output C code */ fprintf(outfile, "case INDEX_%s: {\n", name); if (nb_args > 0) { fprintf(outfile, " long "); for(i = 0; i < nb_args; i++) { if (i != 0) fprintf(outfile, ", "); fprintf(outfile, "param%d", i + 1); } fprintf(outfile, ";\n"); } fprintf(outfile, " extern void %s();\n", name); if (reloc_sh_type == SHT_REL) { Elf32_Rel *rel; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) { sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name; if (!strstart(sym_name, "__op_param", &p)) { fprintf(outfile, "extern char %s;\n", sym_name); } } } } else { Elf32_Rela *rel; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) { sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name; if (!strstart(sym_name, "__op_param", &p)) { fprintf(outfile, "extern char %s;\n", sym_name); } } } } fprintf(outfile, " memcpy(gen_code_ptr, &%s, %d);\n", name, copy_size); for(i = 0; i < nb_args; i++) { fprintf(outfile, " param%d = *opparam_ptr++;\n", i + 1); } /* patch relocations */ switch(e_machine) { case EM_386: { Elf32_Rel *rel; char name[256]; int type; long addend; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) { sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name; if (strstart(sym_name, "__op_param", &p)) { snprintf(name, sizeof(name), "param%s", p); } else { snprintf(name, sizeof(name), "(long)(&%s)", sym_name); } type = ELF32_R_TYPE(rel->r_info); addend = get32((uint32_t *)(text + rel->r_offset)); switch(type) { case R_386_32: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %ld) = %s + %ld;\n", rel->r_offset - offset, name, addend); break; case R_386_PC32: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %ld) = %s - (long)(gen_code_ptr + %ld) + %ld;\n", rel->r_offset - offset, name, rel->r_offset - offset, addend); break; default: error("unsupported i386 relocation (%d)", type); } } } } break; case EM_PPC: { Elf32_Rela *rel; char name[256]; int type; long addend; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) { sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name; if (strstart(sym_name, "__op_param", &p)) { snprintf(name, sizeof(name), "param%s", p); } else { snprintf(name, sizeof(name), "(long)(&%s)", sym_name); } type = ELF32_R_TYPE(rel->r_info); addend = rel->r_addend; switch(type) { case R_PPC_ADDR32: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %ld) = %s + %ld;\n", rel->r_offset - offset, name, addend); break; case R_PPC_ADDR16_LO: fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %ld) = (%s + %ld);\n", rel->r_offset - offset, name, addend); break; case R_PPC_ADDR16_HI: fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %ld) = (%s + %ld) >> 16;\n", rel->r_offset - offset, name, addend); break; case R_PPC_ADDR16_HA: fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %ld) = (%s + %ld + 0x8000) >> 16;\n", rel->r_offset - offset, name, addend); break; case R_PPC_REL24: /* warning: must be at 32 MB distancy */ fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %ld) = (*(uint32_t *)(gen_code_ptr + %ld) & ~0x03fffffc) | ((%s - (long)(gen_code_ptr + %ld) + %ld) & 0x03fffffc);\n", rel->r_offset - offset, rel->r_offset - offset, name, rel->r_offset - offset, addend); break; default: error("unsupported powerpc relocation (%d)", type); } } } } break; case EM_S390: { Elf32_Rela *rel; char name[256]; int type; long addend; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) { sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name; if (strstart(sym_name, "__op_param", &p)) { snprintf(name, sizeof(name), "param%s", p); } else { snprintf(name, sizeof(name), "(long)(&%s)", sym_name); } type = ELF32_R_TYPE(rel->r_info); addend = rel->r_addend; switch(type) { case R_390_32: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %ld) = %s + %ld;\n", rel->r_offset - offset, name, addend); break; case R_390_16: fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %ld) = %s + %ld;\n", rel->r_offset - offset, name, addend); break; case R_390_8: fprintf(outfile, " *(uint8_t *)(gen_code_ptr + %ld) = %s + %ld;\n", rel->r_offset - offset, name, addend); break; default: error("unsupported s390 relocation (%d)", type); } } } } break; default: error("unsupported CPU for relocations (%d)", e_machine); } fprintf(outfile, " gen_code_ptr += %d;\n", copy_size); fprintf(outfile, "}\n"); fprintf(outfile, "break;\n\n"); } else { fprintf(outfile, "static inline void gen_%s(", name); if (nb_args == 0) { fprintf(outfile, "void"); } else { for(i = 0; i < nb_args; i++) { if (i != 0) fprintf(outfile, ", "); fprintf(outfile, "long param%d", i + 1); } } fprintf(outfile, ")\n"); fprintf(outfile, "{\n"); for(i = 0; i < nb_args; i++) { fprintf(outfile, " *gen_opparam_ptr++ = param%d;\n", i + 1); } fprintf(outfile, " *gen_opc_ptr++ = INDEX_%s;\n", name); fprintf(outfile, "}\n\n"); } } /* load an elf object file */ int load_elf(const char *filename, FILE *outfile, int do_print_enum) { int fd; Elf32_Ehdr ehdr; Elf32_Shdr *sec, *shdr, *symtab_sec, *strtab_sec, *text_sec; int i, j, nb_syms; Elf32_Sym *symtab, *sym; const char *cpu_name; char *shstr, *strtab; uint8_t *text; void *relocs; int nb_relocs, reloc_sh_type; fd = open(filename, O_RDONLY); if (fd < 0) error("can't open file '%s'", filename); /* Read ELF header. */ if (read(fd, &ehdr, sizeof (ehdr)) != sizeof (ehdr)) error("unable to read file header"); /* Check ELF identification. */ if (ehdr.e_ident[EI_MAG0] != ELFMAG0 || ehdr.e_ident[EI_MAG1] != ELFMAG1 || ehdr.e_ident[EI_MAG2] != ELFMAG2 || ehdr.e_ident[EI_MAG3] != ELFMAG3 || ehdr.e_ident[EI_CLASS] != ELFCLASS32 || ehdr.e_ident[EI_VERSION] != EV_CURRENT) { error("bad ELF header"); } do_swap = elf_must_swap(&ehdr); if (do_swap) elf_swap_ehdr(&ehdr); if (ehdr.e_type != ET_REL) error("ELF object file expected"); if (ehdr.e_version != EV_CURRENT) error("Invalid ELF version"); e_machine = ehdr.e_machine; /* read section headers */ shdr = load_data(fd, ehdr.e_shoff, ehdr.e_shnum * sizeof(Elf32_Shdr)); if (do_swap) { for(i = 0; i < ehdr.e_shnum; i++) { elf_swap_shdr(&shdr[i]); } } sec = &shdr[ehdr.e_shstrndx]; shstr = load_data(fd, sec->sh_offset, sec->sh_size); /* text section */ text_sec = find_elf_section(shdr, ehdr.e_shnum, shstr, ".text"); if (!text_sec) error("could not find .text section"); text = load_data(fd, text_sec->sh_offset, text_sec->sh_size); /* find text relocations, if any */ nb_relocs = 0; relocs = NULL; reloc_sh_type = 0; for(i = 0; i < ehdr.e_shnum; i++) { sec = &shdr[i]; if ((sec->sh_type == SHT_REL || sec->sh_type == SHT_RELA) && sec->sh_info == (text_sec - shdr)) { reloc_sh_type = sec->sh_type; relocs = load_data(fd, sec->sh_offset, sec->sh_size); nb_relocs = sec->sh_size / sec->sh_entsize; if (do_swap) { if (sec->sh_type == SHT_REL) { Elf32_Rel *rel = relocs; for(j = 0, rel = relocs; j < nb_relocs; j++, rel++) { swab32s(&rel->r_offset); swab32s(&rel->r_info); } } else { Elf32_Rela *rel = relocs; for(j = 0, rel = relocs; j < nb_relocs; j++, rel++) { swab32s(&rel->r_offset); swab32s(&rel->r_info); swab32s(&rel->r_addend); } } } break; } } symtab_sec = find_elf_section(shdr, ehdr.e_shnum, shstr, ".symtab"); if (!symtab_sec) error("could not find .symtab section"); strtab_sec = &shdr[symtab_sec->sh_link]; symtab = load_data(fd, symtab_sec->sh_offset, symtab_sec->sh_size); strtab = load_data(fd, strtab_sec->sh_offset, strtab_sec->sh_size); nb_syms = symtab_sec->sh_size / sizeof(Elf32_Sym); if (do_swap) { for(i = 0, sym = symtab; i < nb_syms; i++, sym++) { swab32s(&sym->st_name); swab32s(&sym->st_value); swab32s(&sym->st_size); swab16s(&sym->st_shndx); } } switch(e_machine) { case EM_386: cpu_name = "i386"; break; case EM_PPC: cpu_name = "ppc"; break; case EM_MIPS: cpu_name = "mips"; break; case EM_ARM: cpu_name = "arm"; break; case EM_SPARC: cpu_name = "sparc"; break; case EM_S390: cpu_name = "s390"; break; default: error("unsupported CPU (e_machine=%d)", e_machine); } if (do_print_enum) { fprintf(outfile, "DEF(end, 0)\n"); for(i = 0, sym = symtab; i < nb_syms; i++, sym++) { const char *name, *p; name = strtab + sym->st_name; if (strstart(name, OP_PREFIX, &p)) { gen_code(name, sym->st_value, sym->st_size, outfile, text, relocs, nb_relocs, reloc_sh_type, symtab, strtab, 2); } } } else { /* generate big code generation switch */ fprintf(outfile, "int dyngen_code(uint8_t *gen_code_buf,\n" " const uint16_t *opc_buf, const uint32_t *opparam_buf)\n" "{\n" " uint8_t *gen_code_ptr;\n" " const uint16_t *opc_ptr;\n" " const uint32_t *opparam_ptr;\n" " gen_code_ptr = gen_code_buf;\n" " opc_ptr = opc_buf;\n" " opparam_ptr = opparam_buf;\n" " for(;;) {\n" " switch(*opc_ptr++) {\n" ); for(i = 0, sym = symtab; i < nb_syms; i++, sym++) { const char *name; name = strtab + sym->st_name; if (strstart(name, OP_PREFIX, NULL)) { #if 0 printf("%4d: %s pos=0x%08x len=%d\n", i, name, sym->st_value, sym->st_size); #endif if (sym->st_shndx != (text_sec - shdr)) error("invalid section for opcode (0x%x)", sym->st_shndx); gen_code(name, sym->st_value, sym->st_size, outfile, text, relocs, nb_relocs, reloc_sh_type, symtab, strtab, 1); } } fprintf(outfile, " default:\n" " goto the_end;\n" " }\n" " }\n" " the_end:\n" ); /* generate a return */ switch(e_machine) { case EM_386: fprintf(outfile, "*gen_code_ptr++ = 0xc3; /* ret */\n"); break; case EM_PPC: fprintf(outfile, "*((uint32_t *)gen_code_ptr)++ = 0x4e800020; /* blr */\n"); break; case EM_S390: fprintf(outfile, "*((uint16_t *)gen_code_ptr)++ = 0x07fe; /* br %%r14 */\n"); break; default: error("no return generation for cpu '%s'", cpu_name); } fprintf(outfile, "return gen_code_ptr - gen_code_buf;\n"); fprintf(outfile, "}\n\n"); /* generate gen_xxx functions */ /* XXX: suppress the use of these functions to simplify code */ for(i = 0, sym = symtab; i < nb_syms; i++, sym++) { const char *name; name = strtab + sym->st_name; if (strstart(name, OP_PREFIX, NULL)) { if (sym->st_shndx != (text_sec - shdr)) error("invalid section for opcode (0x%x)", sym->st_shndx); gen_code(name, sym->st_value, sym->st_size, outfile, text, relocs, nb_relocs, reloc_sh_type, symtab, strtab, 0); } } } close(fd); return 0; } void usage(void) { printf("dyngen (c) 2003 Fabrice Bellard\n" "usage: dyngen [-o outfile] [-c] objfile\n" "Generate a dynamic code generator from an object file\n" "-c output enum of operations\n" ); exit(1); } int main(int argc, char **argv) { int c, do_print_enum; const char *filename, *outfilename; FILE *outfile; outfilename = "out.c"; do_print_enum = 0; for(;;) { c = getopt(argc, argv, "ho:c"); if (c == -1) break; switch(c) { case 'h': usage(); break; case 'o': outfilename = optarg; break; case 'c': do_print_enum = 1; break; } } if (optind >= argc) usage(); filename = argv[optind]; outfile = fopen(outfilename, "w"); if (!outfile) error("could not open '%s'", outfilename); load_elf(filename, outfile, do_print_enum); fclose(outfile); return 0; }