/*
 * DMA helper functions
 *
 * Copyright (c) 2009 Red Hat
 *
 * This work is licensed under the terms of the GNU General Public License
 * (GNU GPL), version 2 or later.
 */

#ifndef DMA_H
#define DMA_H

#include <stdio.h>
#include "hw/hw.h"
#include "block.h"
#include "kvm.h"

typedef struct DMAContext DMAContext;
typedef struct ScatterGatherEntry ScatterGatherEntry;

typedef enum {
    DMA_DIRECTION_TO_DEVICE = 0,
    DMA_DIRECTION_FROM_DEVICE = 1,
} DMADirection;

struct QEMUSGList {
    ScatterGatherEntry *sg;
    int nsg;
    int nalloc;
    size_t size;
    DMAContext *dma;
};

#ifndef CONFIG_USER_ONLY

/*
 * When an IOMMU is present, bus addresses become distinct from
 * CPU/memory physical addresses and may be a different size.  Because
 * the IOVA size depends more on the bus than on the platform, we more
 * or less have to treat these as 64-bit always to cover all (or at
 * least most) cases.
 */
typedef uint64_t dma_addr_t;

#define DMA_ADDR_BITS 64
#define DMA_ADDR_FMT "%" PRIx64

typedef int DMATranslateFunc(DMAContext *dma,
                             dma_addr_t addr,
                             target_phys_addr_t *paddr,
                             target_phys_addr_t *len,
                             DMADirection dir);
typedef void* DMAMapFunc(DMAContext *dma,
                         dma_addr_t addr,
                         dma_addr_t *len,
                         DMADirection dir);
typedef void DMAUnmapFunc(DMAContext *dma,
                          void *buffer,
                          dma_addr_t len,
                          DMADirection dir,
                          dma_addr_t access_len);

struct DMAContext {
    DMATranslateFunc *translate;
    DMAMapFunc *map;
    DMAUnmapFunc *unmap;
};

static inline void dma_barrier(DMAContext *dma, DMADirection dir)
{
    /*
     * This is called before DMA read and write operations
     * unless the _relaxed form is used and is responsible
     * for providing some sane ordering of accesses vs
     * concurrently running VCPUs.
     *
     * Users of map(), unmap() or lower level st/ld_*
     * operations are responsible for providing their own
     * ordering via barriers.
     *
     * This primitive implementation does a simple smp_mb()
     * before each operation which provides pretty much full
     * ordering.
     *
     * A smarter implementation can be devised if needed to
     * use lighter barriers based on the direction of the
     * transfer, the DMA context, etc...
     */
    if (kvm_enabled()) {
        smp_mb();
    }
}

static inline bool dma_has_iommu(DMAContext *dma)
{
    return !!dma;
}

/* Checks that the given range of addresses is valid for DMA.  This is
 * useful for certain cases, but usually you should just use
 * dma_memory_{read,write}() and check for errors */
bool iommu_dma_memory_valid(DMAContext *dma, dma_addr_t addr, dma_addr_t len,
                            DMADirection dir);
static inline bool dma_memory_valid(DMAContext *dma,
                                    dma_addr_t addr, dma_addr_t len,
                                    DMADirection dir)
{
    if (!dma_has_iommu(dma)) {
        return true;
    } else {
        return iommu_dma_memory_valid(dma, addr, len, dir);
    }
}

int iommu_dma_memory_rw(DMAContext *dma, dma_addr_t addr,
                        void *buf, dma_addr_t len, DMADirection dir);
static inline int dma_memory_rw_relaxed(DMAContext *dma, dma_addr_t addr,
                                        void *buf, dma_addr_t len,
                                        DMADirection dir)
{
    if (!dma_has_iommu(dma)) {
        /* Fast-path for no IOMMU */
        cpu_physical_memory_rw(addr, buf, len,
                               dir == DMA_DIRECTION_FROM_DEVICE);
        return 0;
    } else {
        return iommu_dma_memory_rw(dma, addr, buf, len, dir);
    }
}

static inline int dma_memory_read_relaxed(DMAContext *dma, dma_addr_t addr,
                                          void *buf, dma_addr_t len)
{
    return dma_memory_rw_relaxed(dma, addr, buf, len, DMA_DIRECTION_TO_DEVICE);
}

static inline int dma_memory_write_relaxed(DMAContext *dma, dma_addr_t addr,
                                           const void *buf, dma_addr_t len)
{
    return dma_memory_rw_relaxed(dma, addr, (void *)buf, len,
                                 DMA_DIRECTION_FROM_DEVICE);
}

static inline int dma_memory_rw(DMAContext *dma, dma_addr_t addr,
                                void *buf, dma_addr_t len,
                                DMADirection dir)
{
    dma_barrier(dma, dir);

    return dma_memory_rw_relaxed(dma, addr, buf, len, dir);
}

static inline int dma_memory_read(DMAContext *dma, dma_addr_t addr,
                                  void *buf, dma_addr_t len)
{
    return dma_memory_rw(dma, addr, buf, len, DMA_DIRECTION_TO_DEVICE);
}

static inline int dma_memory_write(DMAContext *dma, dma_addr_t addr,
                                   const void *buf, dma_addr_t len)
{
    return dma_memory_rw(dma, addr, (void *)buf, len,
                         DMA_DIRECTION_FROM_DEVICE);
}

int iommu_dma_memory_set(DMAContext *dma, dma_addr_t addr, uint8_t c,
			 dma_addr_t len);

int dma_memory_set(DMAContext *dma, dma_addr_t addr, uint8_t c, dma_addr_t len);

void *iommu_dma_memory_map(DMAContext *dma,
                           dma_addr_t addr, dma_addr_t *len,
                           DMADirection dir);
static inline void *dma_memory_map(DMAContext *dma,
                                   dma_addr_t addr, dma_addr_t *len,
                                   DMADirection dir)
{
    if (!dma_has_iommu(dma)) {
        target_phys_addr_t xlen = *len;
        void *p;

        p = cpu_physical_memory_map(addr, &xlen,
                                    dir == DMA_DIRECTION_FROM_DEVICE);
        *len = xlen;
        return p;
    } else {
        return iommu_dma_memory_map(dma, addr, len, dir);
    }
}

void iommu_dma_memory_unmap(DMAContext *dma,
                            void *buffer, dma_addr_t len,
                            DMADirection dir, dma_addr_t access_len);
static inline void dma_memory_unmap(DMAContext *dma,
                                    void *buffer, dma_addr_t len,
                                    DMADirection dir, dma_addr_t access_len)
{
    if (!dma_has_iommu(dma)) {
        cpu_physical_memory_unmap(buffer, (target_phys_addr_t)len,
                                  dir == DMA_DIRECTION_FROM_DEVICE,
                                  access_len);
    } else {
        iommu_dma_memory_unmap(dma, buffer, len, dir, access_len);
    }
}

#define DEFINE_LDST_DMA(_lname, _sname, _bits, _end) \
    static inline uint##_bits##_t ld##_lname##_##_end##_dma(DMAContext *dma, \
                                                            dma_addr_t addr) \
    {                                                                   \
        uint##_bits##_t val;                                            \
        dma_memory_read(dma, addr, &val, (_bits) / 8);                  \
        return _end##_bits##_to_cpu(val);                               \
    }                                                                   \
    static inline void st##_sname##_##_end##_dma(DMAContext *dma,       \
                                                 dma_addr_t addr,       \
                                                 uint##_bits##_t val)   \
    {                                                                   \
        val = cpu_to_##_end##_bits(val);                                \
        dma_memory_write(dma, addr, &val, (_bits) / 8);                 \
    }

static inline uint8_t ldub_dma(DMAContext *dma, dma_addr_t addr)
{
    uint8_t val;

    dma_memory_read(dma, addr, &val, 1);
    return val;
}

static inline void stb_dma(DMAContext *dma, dma_addr_t addr, uint8_t val)
{
    dma_memory_write(dma, addr, &val, 1);
}

DEFINE_LDST_DMA(uw, w, 16, le);
DEFINE_LDST_DMA(l, l, 32, le);
DEFINE_LDST_DMA(q, q, 64, le);
DEFINE_LDST_DMA(uw, w, 16, be);
DEFINE_LDST_DMA(l, l, 32, be);
DEFINE_LDST_DMA(q, q, 64, be);

#undef DEFINE_LDST_DMA

void dma_context_init(DMAContext *dma, DMATranslateFunc translate,
                      DMAMapFunc map, DMAUnmapFunc unmap);

struct ScatterGatherEntry {
    dma_addr_t base;
    dma_addr_t len;
};

void qemu_sglist_init(QEMUSGList *qsg, int alloc_hint, DMAContext *dma);
void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len);
void qemu_sglist_destroy(QEMUSGList *qsg);
#endif

typedef BlockDriverAIOCB *DMAIOFunc(BlockDriverState *bs, int64_t sector_num,
                                 QEMUIOVector *iov, int nb_sectors,
                                 BlockDriverCompletionFunc *cb, void *opaque);

BlockDriverAIOCB *dma_bdrv_io(BlockDriverState *bs,
                              QEMUSGList *sg, uint64_t sector_num,
                              DMAIOFunc *io_func, BlockDriverCompletionFunc *cb,
                              void *opaque, DMADirection dir);
BlockDriverAIOCB *dma_bdrv_read(BlockDriverState *bs,
                                QEMUSGList *sg, uint64_t sector,
                                BlockDriverCompletionFunc *cb, void *opaque);
BlockDriverAIOCB *dma_bdrv_write(BlockDriverState *bs,
                                 QEMUSGList *sg, uint64_t sector,
                                 BlockDriverCompletionFunc *cb, void *opaque);
uint64_t dma_buf_read(uint8_t *ptr, int32_t len, QEMUSGList *sg);
uint64_t dma_buf_write(uint8_t *ptr, int32_t len, QEMUSGList *sg);

void dma_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie,
                    QEMUSGList *sg, enum BlockAcctType type);

#endif