/* General "disassemble this chunk" code. Used for debugging. */ #include "config.h" #include "disas/bfd.h" #include "elf.h" #include <errno.h> #include "cpu.h" #include "disas/disas.h" typedef struct CPUDebug { struct disassemble_info info; CPUArchState *env; } CPUDebug; /* Filled in by elfload.c. Simplistic, but will do for now. */ struct syminfo *syminfos = NULL; /* Get LENGTH bytes from info's buffer, at target address memaddr. Transfer them to myaddr. */ int buffer_read_memory(bfd_vma memaddr, bfd_byte *myaddr, int length, struct disassemble_info *info) { if (memaddr < info->buffer_vma || memaddr + length > info->buffer_vma + info->buffer_length) /* Out of bounds. Use EIO because GDB uses it. */ return EIO; memcpy (myaddr, info->buffer + (memaddr - info->buffer_vma), length); return 0; } /* Get LENGTH bytes from info's buffer, at target address memaddr. Transfer them to myaddr. */ static int target_read_memory (bfd_vma memaddr, bfd_byte *myaddr, int length, struct disassemble_info *info) { CPUDebug *s = container_of(info, CPUDebug, info); cpu_memory_rw_debug(s->env, memaddr, myaddr, length, 0); return 0; } /* Print an error message. We can assume that this is in response to an error return from buffer_read_memory. */ void perror_memory (int status, bfd_vma memaddr, struct disassemble_info *info) { if (status != EIO) /* Can't happen. */ (*info->fprintf_func) (info->stream, "Unknown error %d\n", status); else /* Actually, address between memaddr and memaddr + len was out of bounds. */ (*info->fprintf_func) (info->stream, "Address 0x%" PRIx64 " is out of bounds.\n", memaddr); } /* This could be in a separate file, to save minuscule amounts of space in statically linked executables. */ /* Just print the address is hex. This is included for completeness even though both GDB and objdump provide their own (to print symbolic addresses). */ void generic_print_address (bfd_vma addr, struct disassemble_info *info) { (*info->fprintf_func) (info->stream, "0x%" PRIx64, addr); } /* Print address in hex, truncated to the width of a target virtual address. */ static void generic_print_target_address(bfd_vma addr, struct disassemble_info *info) { uint64_t mask = ~0ULL >> (64 - TARGET_VIRT_ADDR_SPACE_BITS); generic_print_address(addr & mask, info); } /* Print address in hex, truncated to the width of a host virtual address. */ static void generic_print_host_address(bfd_vma addr, struct disassemble_info *info) { uint64_t mask = ~0ULL >> (64 - (sizeof(void *) * 8)); generic_print_address(addr & mask, info); } /* Just return the given address. */ int generic_symbol_at_address (bfd_vma addr, struct disassemble_info *info) { return 1; } bfd_vma bfd_getl64 (const bfd_byte *addr) { unsigned long long v; v = (unsigned long long) addr[0]; v |= (unsigned long long) addr[1] << 8; v |= (unsigned long long) addr[2] << 16; v |= (unsigned long long) addr[3] << 24; v |= (unsigned long long) addr[4] << 32; v |= (unsigned long long) addr[5] << 40; v |= (unsigned long long) addr[6] << 48; v |= (unsigned long long) addr[7] << 56; return (bfd_vma) v; } bfd_vma bfd_getl32 (const bfd_byte *addr) { unsigned long v; v = (unsigned long) addr[0]; v |= (unsigned long) addr[1] << 8; v |= (unsigned long) addr[2] << 16; v |= (unsigned long) addr[3] << 24; return (bfd_vma) v; } bfd_vma bfd_getb32 (const bfd_byte *addr) { unsigned long v; v = (unsigned long) addr[0] << 24; v |= (unsigned long) addr[1] << 16; v |= (unsigned long) addr[2] << 8; v |= (unsigned long) addr[3]; return (bfd_vma) v; } bfd_vma bfd_getl16 (const bfd_byte *addr) { unsigned long v; v = (unsigned long) addr[0]; v |= (unsigned long) addr[1] << 8; return (bfd_vma) v; } bfd_vma bfd_getb16 (const bfd_byte *addr) { unsigned long v; v = (unsigned long) addr[0] << 24; v |= (unsigned long) addr[1] << 16; return (bfd_vma) v; } #ifdef TARGET_ARM static int print_insn_thumb1(bfd_vma pc, disassemble_info *info) { return print_insn_arm(pc | 1, info); } #endif /* Disassemble this for me please... (debugging). 'flags' has the following values: i386 - 1 means 16 bit code, 2 means 64 bit code arm - bit 0 = thumb, bit 1 = reverse endian ppc - nonzero means little endian other targets - unused */ void target_disas(FILE *out, CPUArchState *env, target_ulong code, target_ulong size, int flags) { target_ulong pc; int count; CPUDebug s; int (*print_insn)(bfd_vma pc, disassemble_info *info); INIT_DISASSEMBLE_INFO(s.info, out, fprintf); s.env = env; s.info.read_memory_func = target_read_memory; s.info.buffer_vma = code; s.info.buffer_length = size; s.info.print_address_func = generic_print_target_address; #ifdef TARGET_WORDS_BIGENDIAN s.info.endian = BFD_ENDIAN_BIG; #else s.info.endian = BFD_ENDIAN_LITTLE; #endif #if defined(TARGET_I386) if (flags == 2) { s.info.mach = bfd_mach_x86_64; } else if (flags == 1) { s.info.mach = bfd_mach_i386_i8086; } else { s.info.mach = bfd_mach_i386_i386; } print_insn = print_insn_i386; #elif defined(TARGET_ARM) if (flags & 1) { print_insn = print_insn_thumb1; } else { print_insn = print_insn_arm; } if (flags & 2) { #ifdef TARGET_WORDS_BIGENDIAN s.info.endian = BFD_ENDIAN_LITTLE; #else s.info.endian = BFD_ENDIAN_BIG; #endif } #elif defined(TARGET_SPARC) print_insn = print_insn_sparc; #ifdef TARGET_SPARC64 s.info.mach = bfd_mach_sparc_v9b; #endif #elif defined(TARGET_PPC) if (flags >> 16) { s.info.endian = BFD_ENDIAN_LITTLE; } if (flags & 0xFFFF) { /* If we have a precise definitions of the instructions set, use it */ s.info.mach = flags & 0xFFFF; } else { #ifdef TARGET_PPC64 s.info.mach = bfd_mach_ppc64; #else s.info.mach = bfd_mach_ppc; #endif } print_insn = print_insn_ppc; #elif defined(TARGET_M68K) print_insn = print_insn_m68k; #elif defined(TARGET_MIPS) #ifdef TARGET_WORDS_BIGENDIAN print_insn = print_insn_big_mips; #else print_insn = print_insn_little_mips; #endif #elif defined(TARGET_SH4) s.info.mach = bfd_mach_sh4; print_insn = print_insn_sh; #elif defined(TARGET_ALPHA) s.info.mach = bfd_mach_alpha_ev6; print_insn = print_insn_alpha; #elif defined(TARGET_CRIS) if (flags != 32) { s.info.mach = bfd_mach_cris_v0_v10; print_insn = print_insn_crisv10; } else { s.info.mach = bfd_mach_cris_v32; print_insn = print_insn_crisv32; } #elif defined(TARGET_S390X) s.info.mach = bfd_mach_s390_64; print_insn = print_insn_s390; #elif defined(TARGET_MICROBLAZE) s.info.mach = bfd_arch_microblaze; print_insn = print_insn_microblaze; #elif defined(TARGET_MOXIE) s.info.mach = bfd_arch_moxie; print_insn = print_insn_moxie; #elif defined(TARGET_LM32) s.info.mach = bfd_mach_lm32; print_insn = print_insn_lm32; #else fprintf(out, "0x" TARGET_FMT_lx ": Asm output not supported on this arch\n", code); return; #endif for (pc = code; size > 0; pc += count, size -= count) { fprintf(out, "0x" TARGET_FMT_lx ": ", pc); count = print_insn(pc, &s.info); #if 0 { int i; uint8_t b; fprintf(out, " {"); for(i = 0; i < count; i++) { target_read_memory(pc + i, &b, 1, &s.info); fprintf(out, " %02x", b); } fprintf(out, " }"); } #endif fprintf(out, "\n"); if (count < 0) break; if (size < count) { fprintf(out, "Disassembler disagrees with translator over instruction " "decoding\n" "Please report this to qemu-devel@nongnu.org\n"); break; } } } /* Disassemble this for me please... (debugging). */ void disas(FILE *out, void *code, unsigned long size) { uintptr_t pc; int count; CPUDebug s; int (*print_insn)(bfd_vma pc, disassemble_info *info); INIT_DISASSEMBLE_INFO(s.info, out, fprintf); s.info.print_address_func = generic_print_host_address; s.info.buffer = code; s.info.buffer_vma = (uintptr_t)code; s.info.buffer_length = size; #ifdef HOST_WORDS_BIGENDIAN s.info.endian = BFD_ENDIAN_BIG; #else s.info.endian = BFD_ENDIAN_LITTLE; #endif #if defined(CONFIG_TCG_INTERPRETER) print_insn = print_insn_tci; #elif defined(__i386__) s.info.mach = bfd_mach_i386_i386; print_insn = print_insn_i386; #elif defined(__x86_64__) s.info.mach = bfd_mach_x86_64; print_insn = print_insn_i386; #elif defined(_ARCH_PPC) s.info.disassembler_options = (char *)"any"; print_insn = print_insn_ppc; #elif defined(__alpha__) print_insn = print_insn_alpha; #elif defined(__sparc__) print_insn = print_insn_sparc; s.info.mach = bfd_mach_sparc_v9b; #elif defined(__arm__) print_insn = print_insn_arm; #elif defined(__MIPSEB__) print_insn = print_insn_big_mips; #elif defined(__MIPSEL__) print_insn = print_insn_little_mips; #elif defined(__m68k__) print_insn = print_insn_m68k; #elif defined(__s390__) print_insn = print_insn_s390; #elif defined(__hppa__) print_insn = print_insn_hppa; #elif defined(__ia64__) print_insn = print_insn_ia64; #else fprintf(out, "0x%lx: Asm output not supported on this arch\n", (long) code); return; #endif for (pc = (uintptr_t)code; size > 0; pc += count, size -= count) { fprintf(out, "0x%08" PRIxPTR ": ", pc); count = print_insn(pc, &s.info); fprintf(out, "\n"); if (count < 0) break; } } /* Look up symbol for debugging purpose. Returns "" if unknown. */ const char *lookup_symbol(target_ulong orig_addr) { const char *symbol = ""; struct syminfo *s; for (s = syminfos; s; s = s->next) { symbol = s->lookup_symbol(s, orig_addr); if (symbol[0] != '\0') { break; } } return symbol; } #if !defined(CONFIG_USER_ONLY) #include "monitor/monitor.h" static int monitor_disas_is_physical; static int monitor_read_memory (bfd_vma memaddr, bfd_byte *myaddr, int length, struct disassemble_info *info) { CPUDebug *s = container_of(info, CPUDebug, info); if (monitor_disas_is_physical) { cpu_physical_memory_read(memaddr, myaddr, length); } else { cpu_memory_rw_debug(s->env, memaddr,myaddr, length, 0); } return 0; } static int GCC_FMT_ATTR(2, 3) monitor_fprintf(FILE *stream, const char *fmt, ...) { va_list ap; va_start(ap, fmt); monitor_vprintf((Monitor *)stream, fmt, ap); va_end(ap); return 0; } void monitor_disas(Monitor *mon, CPUArchState *env, target_ulong pc, int nb_insn, int is_physical, int flags) { int count, i; CPUDebug s; int (*print_insn)(bfd_vma pc, disassemble_info *info); INIT_DISASSEMBLE_INFO(s.info, (FILE *)mon, monitor_fprintf); s.env = env; monitor_disas_is_physical = is_physical; s.info.read_memory_func = monitor_read_memory; s.info.print_address_func = generic_print_target_address; s.info.buffer_vma = pc; #ifdef TARGET_WORDS_BIGENDIAN s.info.endian = BFD_ENDIAN_BIG; #else s.info.endian = BFD_ENDIAN_LITTLE; #endif #if defined(TARGET_I386) if (flags == 2) { s.info.mach = bfd_mach_x86_64; } else if (flags == 1) { s.info.mach = bfd_mach_i386_i8086; } else { s.info.mach = bfd_mach_i386_i386; } print_insn = print_insn_i386; #elif defined(TARGET_ARM) print_insn = print_insn_arm; #elif defined(TARGET_ALPHA) print_insn = print_insn_alpha; #elif defined(TARGET_SPARC) print_insn = print_insn_sparc; #ifdef TARGET_SPARC64 s.info.mach = bfd_mach_sparc_v9b; #endif #elif defined(TARGET_PPC) #ifdef TARGET_PPC64 s.info.mach = bfd_mach_ppc64; #else s.info.mach = bfd_mach_ppc; #endif print_insn = print_insn_ppc; #elif defined(TARGET_M68K) print_insn = print_insn_m68k; #elif defined(TARGET_MIPS) #ifdef TARGET_WORDS_BIGENDIAN print_insn = print_insn_big_mips; #else print_insn = print_insn_little_mips; #endif #elif defined(TARGET_SH4) s.info.mach = bfd_mach_sh4; print_insn = print_insn_sh; #elif defined(TARGET_S390X) s.info.mach = bfd_mach_s390_64; print_insn = print_insn_s390; #elif defined(TARGET_MOXIE) s.info.mach = bfd_arch_moxie; print_insn = print_insn_moxie; #elif defined(TARGET_LM32) s.info.mach = bfd_mach_lm32; print_insn = print_insn_lm32; #else monitor_printf(mon, "0x" TARGET_FMT_lx ": Asm output not supported on this arch\n", pc); return; #endif for(i = 0; i < nb_insn; i++) { monitor_printf(mon, "0x" TARGET_FMT_lx ": ", pc); count = print_insn(pc, &s.info); monitor_printf(mon, "\n"); if (count < 0) break; pc += count; } } #endif