/* * QEMU Crypto XTS cipher mode * * Copyright (c) 2015-2016 Red Hat, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. * * This code is originally derived from public domain / WTFPL code in * LibTomCrypt crytographic library http://libtom.org. The XTS code * was donated by Elliptic Semiconductor Inc (www.ellipticsemi.com) * to the LibTom Projects * */ #include "qemu/osdep.h" #include "qemu/bswap.h" #include "crypto/xts.h" typedef union { uint8_t b[XTS_BLOCK_SIZE]; uint64_t u[2]; } xts_uint128; static inline void xts_uint128_xor(xts_uint128 *D, const xts_uint128 *S1, const xts_uint128 *S2) { D->u[0] = S1->u[0] ^ S2->u[0]; D->u[1] = S1->u[1] ^ S2->u[1]; } static inline void xts_uint128_cpu_to_les(xts_uint128 *v) { cpu_to_le64s(&v->u[0]); cpu_to_le64s(&v->u[1]); } static inline void xts_uint128_le_to_cpus(xts_uint128 *v) { le64_to_cpus(&v->u[0]); le64_to_cpus(&v->u[1]); } static void xts_mult_x(xts_uint128 *I) { uint64_t tt; xts_uint128_le_to_cpus(I); tt = I->u[0] >> 63; I->u[0] <<= 1; if (I->u[1] >> 63) { I->u[0] ^= 0x87; } I->u[1] <<= 1; I->u[1] |= tt; xts_uint128_cpu_to_les(I); } /** * xts_tweak_encdec: * @param ctxt: the cipher context * @param func: the cipher function * @src: buffer providing the input text of XTS_BLOCK_SIZE bytes * @dst: buffer to output the output text of XTS_BLOCK_SIZE bytes * @iv: the initialization vector tweak of XTS_BLOCK_SIZE bytes * * Encrypt/decrypt data with a tweak */ static inline void xts_tweak_encdec(const void *ctx, xts_cipher_func *func, const xts_uint128 *src, xts_uint128 *dst, xts_uint128 *iv) { /* tweak encrypt block i */ xts_uint128_xor(dst, src, iv); func(ctx, XTS_BLOCK_SIZE, dst->b, dst->b); xts_uint128_xor(dst, dst, iv); /* LFSR the tweak */ xts_mult_x(iv); } void xts_decrypt(const void *datactx, const void *tweakctx, xts_cipher_func *encfunc, xts_cipher_func *decfunc, uint8_t *iv, size_t length, uint8_t *dst, const uint8_t *src) { xts_uint128 PP, CC, T; unsigned long i, m, mo, lim; /* get number of blocks */ m = length >> 4; mo = length & 15; /* must have at least one full block */ g_assert(m != 0); if (mo == 0) { lim = m; } else { lim = m - 1; } /* encrypt the iv */ encfunc(tweakctx, XTS_BLOCK_SIZE, T.b, iv); if (QEMU_PTR_IS_ALIGNED(src, sizeof(uint64_t)) && QEMU_PTR_IS_ALIGNED(dst, sizeof(uint64_t))) { xts_uint128 *S = (xts_uint128 *)src; xts_uint128 *D = (xts_uint128 *)dst; for (i = 0; i < lim; i++, S++, D++) { xts_tweak_encdec(datactx, decfunc, S, D, &T); } } else { xts_uint128 D; for (i = 0; i < lim; i++) { memcpy(&D, src, XTS_BLOCK_SIZE); xts_tweak_encdec(datactx, decfunc, &D, &D, &T); memcpy(dst, &D, XTS_BLOCK_SIZE); src += XTS_BLOCK_SIZE; dst += XTS_BLOCK_SIZE; } } /* if length is not a multiple of XTS_BLOCK_SIZE then */ if (mo > 0) { xts_uint128 S, D; memcpy(&CC, &T, XTS_BLOCK_SIZE); xts_mult_x(&CC); /* PP = tweak decrypt block m-1 */ memcpy(&S, src, XTS_BLOCK_SIZE); xts_tweak_encdec(datactx, decfunc, &S, &PP, &CC); /* Pm = first length % XTS_BLOCK_SIZE bytes of PP */ for (i = 0; i < mo; i++) { CC.b[i] = src[XTS_BLOCK_SIZE + i]; dst[XTS_BLOCK_SIZE + i] = PP.b[i]; } for (; i < XTS_BLOCK_SIZE; i++) { CC.b[i] = PP.b[i]; } /* Pm-1 = Tweak uncrypt CC */ xts_tweak_encdec(datactx, decfunc, &CC, &D, &T); memcpy(dst, &D, XTS_BLOCK_SIZE); } /* Decrypt the iv back */ decfunc(tweakctx, XTS_BLOCK_SIZE, iv, T.b); } void xts_encrypt(const void *datactx, const void *tweakctx, xts_cipher_func *encfunc, xts_cipher_func *decfunc, uint8_t *iv, size_t length, uint8_t *dst, const uint8_t *src) { xts_uint128 PP, CC, T; unsigned long i, m, mo, lim; /* get number of blocks */ m = length >> 4; mo = length & 15; /* must have at least one full block */ g_assert(m != 0); if (mo == 0) { lim = m; } else { lim = m - 1; } /* encrypt the iv */ encfunc(tweakctx, XTS_BLOCK_SIZE, T.b, iv); if (QEMU_PTR_IS_ALIGNED(src, sizeof(uint64_t)) && QEMU_PTR_IS_ALIGNED(dst, sizeof(uint64_t))) { xts_uint128 *S = (xts_uint128 *)src; xts_uint128 *D = (xts_uint128 *)dst; for (i = 0; i < lim; i++, S++, D++) { xts_tweak_encdec(datactx, encfunc, S, D, &T); } } else { xts_uint128 D; for (i = 0; i < lim; i++) { memcpy(&D, src, XTS_BLOCK_SIZE); xts_tweak_encdec(datactx, encfunc, &D, &D, &T); memcpy(dst, &D, XTS_BLOCK_SIZE); dst += XTS_BLOCK_SIZE; src += XTS_BLOCK_SIZE; } } /* if length is not a multiple of XTS_BLOCK_SIZE then */ if (mo > 0) { xts_uint128 S, D; /* CC = tweak encrypt block m-1 */ memcpy(&S, src, XTS_BLOCK_SIZE); xts_tweak_encdec(datactx, encfunc, &S, &CC, &T); /* Cm = first length % XTS_BLOCK_SIZE bytes of CC */ for (i = 0; i < mo; i++) { PP.b[i] = src[XTS_BLOCK_SIZE + i]; dst[XTS_BLOCK_SIZE + i] = CC.b[i]; } for (; i < XTS_BLOCK_SIZE; i++) { PP.b[i] = CC.b[i]; } /* Cm-1 = Tweak encrypt PP */ xts_tweak_encdec(datactx, encfunc, &PP, &D, &T); memcpy(dst, &D, XTS_BLOCK_SIZE); } /* Decrypt the iv back */ decfunc(tweakctx, XTS_BLOCK_SIZE, iv, T.b); }