/* * QEMU Crypto block device encryption LUKS format * * Copyright (c) 2015-2016 Red Hat, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu/bswap.h" #include "block-luks.h" #include "block-luks-priv.h" #include "crypto/hash.h" #include "crypto/afsplit.h" #include "crypto/pbkdf.h" #include "crypto/secret.h" #include "crypto/random.h" #include "qemu/uuid.h" #include "qemu/bitmap.h" #include "qemu/range.h" /* * Reference for the LUKS format implemented here is * * docs/on-disk-format.pdf * * in 'cryptsetup' package source code * * This file implements the 1.2.1 specification, dated * Oct 16, 2011. */ typedef struct QCryptoBlockLUKS QCryptoBlockLUKS; typedef struct QCryptoBlockLUKSNameMap QCryptoBlockLUKSNameMap; struct QCryptoBlockLUKSNameMap { const char *name; int id; }; typedef struct QCryptoBlockLUKSCipherSizeMap QCryptoBlockLUKSCipherSizeMap; struct QCryptoBlockLUKSCipherSizeMap { uint32_t key_bytes; int id; }; typedef struct QCryptoBlockLUKSCipherNameMap QCryptoBlockLUKSCipherNameMap; struct QCryptoBlockLUKSCipherNameMap { const char *name; const QCryptoBlockLUKSCipherSizeMap *sizes; }; static const QCryptoBlockLUKSCipherSizeMap qcrypto_block_luks_cipher_size_map_aes[] = { { 16, QCRYPTO_CIPHER_ALGO_AES_128 }, { 24, QCRYPTO_CIPHER_ALGO_AES_192 }, { 32, QCRYPTO_CIPHER_ALGO_AES_256 }, { 0, 0 }, }; static const QCryptoBlockLUKSCipherSizeMap qcrypto_block_luks_cipher_size_map_cast5[] = { { 16, QCRYPTO_CIPHER_ALGO_CAST5_128 }, { 0, 0 }, }; static const QCryptoBlockLUKSCipherSizeMap qcrypto_block_luks_cipher_size_map_serpent[] = { { 16, QCRYPTO_CIPHER_ALGO_SERPENT_128 }, { 24, QCRYPTO_CIPHER_ALGO_SERPENT_192 }, { 32, QCRYPTO_CIPHER_ALGO_SERPENT_256 }, { 0, 0 }, }; static const QCryptoBlockLUKSCipherSizeMap qcrypto_block_luks_cipher_size_map_twofish[] = { { 16, QCRYPTO_CIPHER_ALGO_TWOFISH_128 }, { 24, QCRYPTO_CIPHER_ALGO_TWOFISH_192 }, { 32, QCRYPTO_CIPHER_ALGO_TWOFISH_256 }, { 0, 0 }, }; #ifdef CONFIG_CRYPTO_SM4 static const QCryptoBlockLUKSCipherSizeMap qcrypto_block_luks_cipher_size_map_sm4[] = { { 16, QCRYPTO_CIPHER_ALGO_SM4}, { 0, 0 }, }; #endif static const QCryptoBlockLUKSCipherNameMap qcrypto_block_luks_cipher_name_map[] = { { "aes", qcrypto_block_luks_cipher_size_map_aes }, { "cast5", qcrypto_block_luks_cipher_size_map_cast5 }, { "serpent", qcrypto_block_luks_cipher_size_map_serpent }, { "twofish", qcrypto_block_luks_cipher_size_map_twofish }, #ifdef CONFIG_CRYPTO_SM4 { "sm4", qcrypto_block_luks_cipher_size_map_sm4}, #endif }; QEMU_BUILD_BUG_ON(sizeof(struct QCryptoBlockLUKSKeySlot) != 48); QEMU_BUILD_BUG_ON(sizeof(struct QCryptoBlockLUKSHeader) != 592); struct QCryptoBlockLUKS { QCryptoBlockLUKSHeader header; /* Main encryption algorithm used for encryption*/ QCryptoCipherAlgo cipher_alg; /* Mode of encryption for the selected encryption algorithm */ QCryptoCipherMode cipher_mode; /* Initialization vector generation algorithm */ QCryptoIVGenAlgo ivgen_alg; /* Hash algorithm used for IV generation*/ QCryptoHashAlgo ivgen_hash_alg; /* * Encryption algorithm used for IV generation. * Usually the same as main encryption algorithm */ QCryptoCipherAlgo ivgen_cipher_alg; /* Hash algorithm used in pbkdf2 function */ QCryptoHashAlgo hash_alg; /* Name of the secret that was used to open the image */ char *secret; }; static int qcrypto_block_luks_cipher_name_lookup(const char *name, QCryptoCipherMode mode, uint32_t key_bytes, Error **errp) { const QCryptoBlockLUKSCipherNameMap *map = qcrypto_block_luks_cipher_name_map; size_t maplen = G_N_ELEMENTS(qcrypto_block_luks_cipher_name_map); size_t i, j; if (mode == QCRYPTO_CIPHER_MODE_XTS) { key_bytes /= 2; } for (i = 0; i < maplen; i++) { if (!g_str_equal(map[i].name, name)) { continue; } for (j = 0; j < map[i].sizes[j].key_bytes; j++) { if (map[i].sizes[j].key_bytes == key_bytes) { return map[i].sizes[j].id; } } } error_setg(errp, "Algorithm '%s' with key size %d bytes not supported", name, key_bytes); return 0; } static const char * qcrypto_block_luks_cipher_alg_lookup(QCryptoCipherAlgo alg, Error **errp) { const QCryptoBlockLUKSCipherNameMap *map = qcrypto_block_luks_cipher_name_map; size_t maplen = G_N_ELEMENTS(qcrypto_block_luks_cipher_name_map); size_t i, j; for (i = 0; i < maplen; i++) { for (j = 0; j < map[i].sizes[j].key_bytes; j++) { if (map[i].sizes[j].id == alg) { return map[i].name; } } } error_setg(errp, "Algorithm '%s' not supported", QCryptoCipherAlgo_str(alg)); return NULL; } /* XXX replace with qapi_enum_parse() in future, when we can * make that function emit a more friendly error message */ static int qcrypto_block_luks_name_lookup(const char *name, const QEnumLookup *map, const char *type, Error **errp) { int ret = qapi_enum_parse(map, name, -1, NULL); if (ret < 0) { error_setg(errp, "%s '%s' not supported", type, name); return 0; } return ret; } #define qcrypto_block_luks_cipher_mode_lookup(name, errp) \ qcrypto_block_luks_name_lookup(name, \ &QCryptoCipherMode_lookup, \ "Cipher mode", \ errp) #define qcrypto_block_luks_hash_name_lookup(name, errp) \ qcrypto_block_luks_name_lookup(name, \ &QCryptoHashAlgo_lookup, \ "Hash algorithm", \ errp) #define qcrypto_block_luks_ivgen_name_lookup(name, errp) \ qcrypto_block_luks_name_lookup(name, \ &QCryptoIVGenAlgo_lookup, \ "IV generator", \ errp) static bool qcrypto_block_luks_has_format(const uint8_t *buf, size_t buf_size) { const QCryptoBlockLUKSHeader *luks_header = (const void *)buf; if (buf_size >= offsetof(QCryptoBlockLUKSHeader, cipher_name) && memcmp(luks_header->magic, qcrypto_block_luks_magic, QCRYPTO_BLOCK_LUKS_MAGIC_LEN) == 0 && be16_to_cpu(luks_header->version) == QCRYPTO_BLOCK_LUKS_VERSION) { return true; } else { return false; } } /** * Deal with a quirk of dm-crypt usage of ESSIV. * * When calculating ESSIV IVs, the cipher length used by ESSIV * may be different from the cipher length used for the block * encryption, because dm-crypt uses the hash digest length * as the key size. ie, if you have AES 128 as the block cipher * and SHA 256 as ESSIV hash, then ESSIV will use AES 256 as * the cipher since that gets a key length matching the digest * size, not AES 128 with truncated digest as might be imagined */ static QCryptoCipherAlgo qcrypto_block_luks_essiv_cipher(QCryptoCipherAlgo cipher, QCryptoHashAlgo hash, Error **errp) { size_t digestlen = qcrypto_hash_digest_len(hash); size_t keylen = qcrypto_cipher_get_key_len(cipher); if (digestlen == keylen) { return cipher; } switch (cipher) { case QCRYPTO_CIPHER_ALGO_AES_128: case QCRYPTO_CIPHER_ALGO_AES_192: case QCRYPTO_CIPHER_ALGO_AES_256: if (digestlen == qcrypto_cipher_get_key_len( QCRYPTO_CIPHER_ALGO_AES_128)) { return QCRYPTO_CIPHER_ALGO_AES_128; } else if (digestlen == qcrypto_cipher_get_key_len( QCRYPTO_CIPHER_ALGO_AES_192)) { return QCRYPTO_CIPHER_ALGO_AES_192; } else if (digestlen == qcrypto_cipher_get_key_len( QCRYPTO_CIPHER_ALGO_AES_256)) { return QCRYPTO_CIPHER_ALGO_AES_256; } else { error_setg(errp, "No AES cipher with key size %zu available", digestlen); return 0; } break; case QCRYPTO_CIPHER_ALGO_SERPENT_128: case QCRYPTO_CIPHER_ALGO_SERPENT_192: case QCRYPTO_CIPHER_ALGO_SERPENT_256: if (digestlen == qcrypto_cipher_get_key_len( QCRYPTO_CIPHER_ALGO_SERPENT_128)) { return QCRYPTO_CIPHER_ALGO_SERPENT_128; } else if (digestlen == qcrypto_cipher_get_key_len( QCRYPTO_CIPHER_ALGO_SERPENT_192)) { return QCRYPTO_CIPHER_ALGO_SERPENT_192; } else if (digestlen == qcrypto_cipher_get_key_len( QCRYPTO_CIPHER_ALGO_SERPENT_256)) { return QCRYPTO_CIPHER_ALGO_SERPENT_256; } else { error_setg(errp, "No Serpent cipher with key size %zu available", digestlen); return 0; } break; case QCRYPTO_CIPHER_ALGO_TWOFISH_128: case QCRYPTO_CIPHER_ALGO_TWOFISH_192: case QCRYPTO_CIPHER_ALGO_TWOFISH_256: if (digestlen == qcrypto_cipher_get_key_len( QCRYPTO_CIPHER_ALGO_TWOFISH_128)) { return QCRYPTO_CIPHER_ALGO_TWOFISH_128; } else if (digestlen == qcrypto_cipher_get_key_len( QCRYPTO_CIPHER_ALGO_TWOFISH_192)) { return QCRYPTO_CIPHER_ALGO_TWOFISH_192; } else if (digestlen == qcrypto_cipher_get_key_len( QCRYPTO_CIPHER_ALGO_TWOFISH_256)) { return QCRYPTO_CIPHER_ALGO_TWOFISH_256; } else { error_setg(errp, "No Twofish cipher with key size %zu available", digestlen); return 0; } break; default: error_setg(errp, "Cipher %s not supported with essiv", QCryptoCipherAlgo_str(cipher)); return 0; } } /* * Returns number of sectors needed to store the key material * given number of anti forensic stripes */ static int qcrypto_block_luks_splitkeylen_sectors(const QCryptoBlockLUKS *luks, unsigned int header_sectors, unsigned int stripes) { /* * This calculation doesn't match that shown in the spec, * but instead follows the cryptsetup implementation. */ size_t splitkeylen = luks->header.master_key_len * stripes; /* First align the key material size to block size*/ size_t splitkeylen_sectors = DIV_ROUND_UP(splitkeylen, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE); /* Then also align the key material size to the size of the header */ return ROUND_UP(splitkeylen_sectors, header_sectors); } void qcrypto_block_luks_to_disk_endian(QCryptoBlockLUKSHeader *hdr) { size_t i; /* * Everything on disk uses Big Endian (tm), so flip header fields * before writing them */ cpu_to_be16s(&hdr->version); cpu_to_be32s(&hdr->payload_offset_sector); cpu_to_be32s(&hdr->master_key_len); cpu_to_be32s(&hdr->master_key_iterations); for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { cpu_to_be32s(&hdr->key_slots[i].active); cpu_to_be32s(&hdr->key_slots[i].iterations); cpu_to_be32s(&hdr->key_slots[i].key_offset_sector); cpu_to_be32s(&hdr->key_slots[i].stripes); } } void qcrypto_block_luks_from_disk_endian(QCryptoBlockLUKSHeader *hdr) { size_t i; /* * The header is always stored in big-endian format, so * convert everything to native */ be16_to_cpus(&hdr->version); be32_to_cpus(&hdr->payload_offset_sector); be32_to_cpus(&hdr->master_key_len); be32_to_cpus(&hdr->master_key_iterations); for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { be32_to_cpus(&hdr->key_slots[i].active); be32_to_cpus(&hdr->key_slots[i].iterations); be32_to_cpus(&hdr->key_slots[i].key_offset_sector); be32_to_cpus(&hdr->key_slots[i].stripes); } } /* * Stores the main LUKS header, taking care of endianness */ static int qcrypto_block_luks_store_header(QCryptoBlock *block, QCryptoBlockWriteFunc writefunc, void *opaque, Error **errp) { const QCryptoBlockLUKS *luks = block->opaque; Error *local_err = NULL; g_autofree QCryptoBlockLUKSHeader *hdr_copy = NULL; /* Create a copy of the header */ hdr_copy = g_new0(QCryptoBlockLUKSHeader, 1); memcpy(hdr_copy, &luks->header, sizeof(QCryptoBlockLUKSHeader)); qcrypto_block_luks_to_disk_endian(hdr_copy); /* Write out the partition header and key slot headers */ writefunc(block, 0, (const uint8_t *)hdr_copy, sizeof(*hdr_copy), opaque, &local_err); if (local_err) { error_propagate(errp, local_err); return -1; } return 0; } /* * Loads the main LUKS header, and byteswaps it to native endianness * And run basic sanity checks on it */ static int qcrypto_block_luks_load_header(QCryptoBlock *block, QCryptoBlockReadFunc readfunc, void *opaque, Error **errp) { int rv; QCryptoBlockLUKS *luks = block->opaque; /* * Read the entire LUKS header, minus the key material from * the underlying device */ rv = readfunc(block, 0, (uint8_t *)&luks->header, sizeof(luks->header), opaque, errp); if (rv < 0) { return rv; } qcrypto_block_luks_from_disk_endian(&luks->header); return 0; } /* * Does basic sanity checks on the LUKS header */ static int qcrypto_block_luks_check_header(const QCryptoBlockLUKS *luks, unsigned int flags, Error **errp) { size_t i, j; unsigned int header_sectors = QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET / QCRYPTO_BLOCK_LUKS_SECTOR_SIZE; bool detached = flags & QCRYPTO_BLOCK_OPEN_DETACHED; if (memcmp(luks->header.magic, qcrypto_block_luks_magic, QCRYPTO_BLOCK_LUKS_MAGIC_LEN) != 0) { error_setg(errp, "Volume is not in LUKS format"); return -1; } if (luks->header.version != QCRYPTO_BLOCK_LUKS_VERSION) { error_setg(errp, "LUKS version %" PRIu32 " is not supported", luks->header.version); return -1; } if (!memchr(luks->header.cipher_name, '\0', sizeof(luks->header.cipher_name))) { error_setg(errp, "LUKS header cipher name is not NUL terminated"); return -1; } if (!memchr(luks->header.cipher_mode, '\0', sizeof(luks->header.cipher_mode))) { error_setg(errp, "LUKS header cipher mode is not NUL terminated"); return -1; } if (!memchr(luks->header.hash_spec, '\0', sizeof(luks->header.hash_spec))) { error_setg(errp, "LUKS header hash spec is not NUL terminated"); return -1; } if (!detached && luks->header.payload_offset_sector < DIV_ROUND_UP(QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE)) { error_setg(errp, "LUKS payload is overlapping with the header"); return -1; } if (luks->header.master_key_iterations == 0) { error_setg(errp, "LUKS key iteration count is zero"); return -1; } /* Check all keyslots for corruption */ for (i = 0 ; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS ; i++) { const QCryptoBlockLUKSKeySlot *slot1 = &luks->header.key_slots[i]; unsigned int start1 = slot1->key_offset_sector; unsigned int len1 = qcrypto_block_luks_splitkeylen_sectors(luks, header_sectors, slot1->stripes); if (slot1->stripes != QCRYPTO_BLOCK_LUKS_STRIPES) { error_setg(errp, "Keyslot %zu is corrupted (stripes %d != %d)", i, slot1->stripes, QCRYPTO_BLOCK_LUKS_STRIPES); return -1; } if (slot1->active != QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED && slot1->active != QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED) { error_setg(errp, "Keyslot %zu state (active/disable) is corrupted", i); return -1; } if (slot1->active == QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED && slot1->iterations == 0) { error_setg(errp, "Keyslot %zu iteration count is zero", i); return -1; } if (start1 < DIV_ROUND_UP(QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE)) { error_setg(errp, "Keyslot %zu is overlapping with the LUKS header", i); return -1; } if (!detached && start1 + len1 > luks->header.payload_offset_sector) { error_setg(errp, "Keyslot %zu is overlapping with the encrypted payload", i); return -1; } for (j = i + 1 ; j < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS ; j++) { const QCryptoBlockLUKSKeySlot *slot2 = &luks->header.key_slots[j]; unsigned int start2 = slot2->key_offset_sector; unsigned int len2 = qcrypto_block_luks_splitkeylen_sectors(luks, header_sectors, slot2->stripes); if (ranges_overlap(start1, len1, start2, len2)) { error_setg(errp, "Keyslots %zu and %zu are overlapping in the header", i, j); return -1; } } } return 0; } /* * Parses the crypto parameters that are stored in the LUKS header */ static int qcrypto_block_luks_parse_header(QCryptoBlockLUKS *luks, Error **errp) { g_autofree char *cipher_mode = g_strdup(luks->header.cipher_mode); char *ivgen_name, *ivhash_name; Error *local_err = NULL; /* * The cipher_mode header contains a string that we have * to further parse, of the format * * -[:] * * eg cbc-essiv:sha256, cbc-plain64 */ ivgen_name = strchr(cipher_mode, '-'); if (!ivgen_name) { error_setg(errp, "Unexpected cipher mode string format '%s'", luks->header.cipher_mode); return -1; } *ivgen_name = '\0'; ivgen_name++; ivhash_name = strchr(ivgen_name, ':'); if (!ivhash_name) { luks->ivgen_hash_alg = 0; } else { *ivhash_name = '\0'; ivhash_name++; luks->ivgen_hash_alg = qcrypto_block_luks_hash_name_lookup(ivhash_name, &local_err); if (local_err) { error_propagate(errp, local_err); return -1; } } luks->cipher_mode = qcrypto_block_luks_cipher_mode_lookup(cipher_mode, &local_err); if (local_err) { error_propagate(errp, local_err); return -1; } luks->cipher_alg = qcrypto_block_luks_cipher_name_lookup(luks->header.cipher_name, luks->cipher_mode, luks->header.master_key_len, &local_err); if (local_err) { error_propagate(errp, local_err); return -1; } luks->hash_alg = qcrypto_block_luks_hash_name_lookup(luks->header.hash_spec, &local_err); if (local_err) { error_propagate(errp, local_err); return -1; } luks->ivgen_alg = qcrypto_block_luks_ivgen_name_lookup(ivgen_name, &local_err); if (local_err) { error_propagate(errp, local_err); return -1; } if (luks->ivgen_alg == QCRYPTO_IV_GEN_ALGO_ESSIV) { if (!ivhash_name) { error_setg(errp, "Missing IV generator hash specification"); return -1; } luks->ivgen_cipher_alg = qcrypto_block_luks_essiv_cipher(luks->cipher_alg, luks->ivgen_hash_alg, &local_err); if (local_err) { error_propagate(errp, local_err); return -1; } } else { /* * Note we parsed the ivhash_name earlier in the cipher_mode * spec string even with plain/plain64 ivgens, but we * will ignore it, since it is irrelevant for these ivgens. * This is for compat with dm-crypt which will silently * ignore hash names with these ivgens rather than report * an error about the invalid usage */ luks->ivgen_cipher_alg = luks->cipher_alg; } return 0; } /* * Given a key slot, user password, and the master key, * will store the encrypted master key there, and update the * in-memory header. User must then write the in-memory header * * Returns: * 0 if the keyslot was written successfully * with the provided password * -1 if a fatal error occurred while storing the key */ static int qcrypto_block_luks_store_key(QCryptoBlock *block, unsigned int slot_idx, const char *password, uint8_t *masterkey, uint64_t iter_time, QCryptoBlockWriteFunc writefunc, void *opaque, Error **errp) { QCryptoBlockLUKS *luks = block->opaque; QCryptoBlockLUKSKeySlot *slot; g_autofree uint8_t *splitkey = NULL; size_t splitkeylen; g_autofree uint8_t *slotkey = NULL; g_autoptr(QCryptoCipher) cipher = NULL; g_autoptr(QCryptoIVGen) ivgen = NULL; Error *local_err = NULL; uint64_t iters; int ret = -1; assert(slot_idx < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS); slot = &luks->header.key_slots[slot_idx]; splitkeylen = luks->header.master_key_len * slot->stripes; if (qcrypto_random_bytes(slot->salt, QCRYPTO_BLOCK_LUKS_SALT_LEN, errp) < 0) { goto cleanup; } /* * Determine how many iterations are required to * hash the user password while consuming 1 second of compute * time */ iters = qcrypto_pbkdf2_count_iters(luks->hash_alg, (uint8_t *)password, strlen(password), slot->salt, QCRYPTO_BLOCK_LUKS_SALT_LEN, luks->header.master_key_len, &local_err); if (local_err) { error_propagate(errp, local_err); goto cleanup; } if (iters > (ULLONG_MAX / iter_time)) { error_setg_errno(errp, ERANGE, "PBKDF iterations %llu too large to scale", (unsigned long long)iters); goto cleanup; } /* iter_time was in millis, but count_iters reported for secs */ iters = iters * iter_time / 1000; if (iters > UINT32_MAX) { error_setg_errno(errp, ERANGE, "PBKDF iterations %llu larger than %u", (unsigned long long)iters, UINT32_MAX); goto cleanup; } slot->iterations = MAX(iters, QCRYPTO_BLOCK_LUKS_MIN_SLOT_KEY_ITERS); /* * Generate a key that we'll use to encrypt the master * key, from the user's password */ slotkey = g_new0(uint8_t, luks->header.master_key_len); if (qcrypto_pbkdf2(luks->hash_alg, (uint8_t *)password, strlen(password), slot->salt, QCRYPTO_BLOCK_LUKS_SALT_LEN, slot->iterations, slotkey, luks->header.master_key_len, errp) < 0) { goto cleanup; } /* * Setup the encryption objects needed to encrypt the * master key material */ cipher = qcrypto_cipher_new(luks->cipher_alg, luks->cipher_mode, slotkey, luks->header.master_key_len, errp); if (!cipher) { goto cleanup; } ivgen = qcrypto_ivgen_new(luks->ivgen_alg, luks->ivgen_cipher_alg, luks->ivgen_hash_alg, slotkey, luks->header.master_key_len, errp); if (!ivgen) { goto cleanup; } /* * Before storing the master key, we need to vastly * increase its size, as protection against forensic * disk data recovery */ splitkey = g_new0(uint8_t, splitkeylen); if (qcrypto_afsplit_encode(luks->hash_alg, luks->header.master_key_len, slot->stripes, masterkey, splitkey, errp) < 0) { goto cleanup; } /* * Now we encrypt the split master key with the key generated * from the user's password, before storing it */ if (qcrypto_block_cipher_encrypt_helper(cipher, block->niv, ivgen, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, 0, splitkey, splitkeylen, errp) < 0) { goto cleanup; } /* Write out the slot's master key material. */ if (writefunc(block, slot->key_offset_sector * QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, splitkey, splitkeylen, opaque, errp) < 0) { goto cleanup; } slot->active = QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED; if (qcrypto_block_luks_store_header(block, writefunc, opaque, errp) < 0) { goto cleanup; } ret = 0; cleanup: if (slotkey) { memset(slotkey, 0, luks->header.master_key_len); } if (splitkey) { memset(splitkey, 0, splitkeylen); } return ret; } /* * Given a key slot, and user password, this will attempt to unlock * the master encryption key from the key slot. * * Returns: * 0 if the key slot is disabled, or key could not be decrypted * with the provided password * 1 if the key slot is enabled, and key decrypted successfully * with the provided password * -1 if a fatal error occurred loading the key */ static int qcrypto_block_luks_load_key(QCryptoBlock *block, size_t slot_idx, const char *password, uint8_t *masterkey, QCryptoBlockReadFunc readfunc, void *opaque, Error **errp) { QCryptoBlockLUKS *luks = block->opaque; const QCryptoBlockLUKSKeySlot *slot; g_autofree uint8_t *splitkey = NULL; size_t splitkeylen; g_autofree uint8_t *possiblekey = NULL; int rv; g_autoptr(QCryptoCipher) cipher = NULL; uint8_t keydigest[QCRYPTO_BLOCK_LUKS_DIGEST_LEN]; g_autoptr(QCryptoIVGen) ivgen = NULL; size_t niv; assert(slot_idx < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS); slot = &luks->header.key_slots[slot_idx]; if (slot->active != QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED) { return 0; } splitkeylen = luks->header.master_key_len * slot->stripes; splitkey = g_new0(uint8_t, splitkeylen); possiblekey = g_new0(uint8_t, luks->header.master_key_len); /* * The user password is used to generate a (possible) * decryption key. This may or may not successfully * decrypt the master key - we just blindly assume * the key is correct and validate the results of * decryption later. */ if (qcrypto_pbkdf2(luks->hash_alg, (const uint8_t *)password, strlen(password), slot->salt, QCRYPTO_BLOCK_LUKS_SALT_LEN, slot->iterations, possiblekey, luks->header.master_key_len, errp) < 0) { return -1; } /* * We need to read the master key material from the * LUKS key material header. What we're reading is * not the raw master key, but rather the data after * it has been passed through AFSplit and the result * then encrypted. */ rv = readfunc(block, slot->key_offset_sector * QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, splitkey, splitkeylen, opaque, errp); if (rv < 0) { return -1; } /* Setup the cipher/ivgen that we'll use to try to decrypt * the split master key material */ cipher = qcrypto_cipher_new(luks->cipher_alg, luks->cipher_mode, possiblekey, luks->header.master_key_len, errp); if (!cipher) { return -1; } niv = qcrypto_cipher_get_iv_len(luks->cipher_alg, luks->cipher_mode); ivgen = qcrypto_ivgen_new(luks->ivgen_alg, luks->ivgen_cipher_alg, luks->ivgen_hash_alg, possiblekey, luks->header.master_key_len, errp); if (!ivgen) { return -1; } /* * The master key needs to be decrypted in the same * way that the block device payload will be decrypted * later. In particular we'll be using the IV generator * to reset the encryption cipher every time the master * key crosses a sector boundary. */ if (qcrypto_block_cipher_decrypt_helper(cipher, niv, ivgen, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, 0, splitkey, splitkeylen, errp) < 0) { return -1; } /* * Now we've decrypted the split master key, join * it back together to get the actual master key. */ if (qcrypto_afsplit_decode(luks->hash_alg, luks->header.master_key_len, slot->stripes, splitkey, masterkey, errp) < 0) { return -1; } /* * We still don't know that the masterkey we got is valid, * because we just blindly assumed the user's password * was correct. This is where we now verify it. We are * creating a hash of the master key using PBKDF and * then comparing that to the hash stored in the key slot * header */ if (qcrypto_pbkdf2(luks->hash_alg, masterkey, luks->header.master_key_len, luks->header.master_key_salt, QCRYPTO_BLOCK_LUKS_SALT_LEN, luks->header.master_key_iterations, keydigest, G_N_ELEMENTS(keydigest), errp) < 0) { return -1; } if (memcmp(keydigest, luks->header.master_key_digest, QCRYPTO_BLOCK_LUKS_DIGEST_LEN) == 0) { /* Success, we got the right master key */ return 1; } /* Fail, user's password was not valid for this key slot, * tell caller to try another slot */ return 0; } /* * Given a user password, this will iterate over all key * slots and try to unlock each active key slot using the * password until it successfully obtains a master key. * * Returns 0 if a key was loaded, -1 if no keys could be loaded */ static int qcrypto_block_luks_find_key(QCryptoBlock *block, const char *password, uint8_t *masterkey, QCryptoBlockReadFunc readfunc, void *opaque, Error **errp) { size_t i; int rv; for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { rv = qcrypto_block_luks_load_key(block, i, password, masterkey, readfunc, opaque, errp); if (rv < 0) { goto error; } if (rv == 1) { return 0; } } error_setg(errp, "Invalid password, cannot unlock any keyslot"); error: return -1; } /* * Returns true if a slot i is marked as active * (contains encrypted copy of the master key) */ static bool qcrypto_block_luks_slot_active(const QCryptoBlockLUKS *luks, unsigned int slot_idx) { uint32_t val; assert(slot_idx < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS); val = luks->header.key_slots[slot_idx].active; return val == QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED; } /* * Returns the number of slots that are marked as active * (slots that contain encrypted copy of the master key) */ static unsigned int qcrypto_block_luks_count_active_slots(const QCryptoBlockLUKS *luks) { size_t i = 0; unsigned int ret = 0; for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { if (qcrypto_block_luks_slot_active(luks, i)) { ret++; } } return ret; } /* * Finds first key slot which is not active * Returns the key slot index, or -1 if it doesn't exist */ static int qcrypto_block_luks_find_free_keyslot(const QCryptoBlockLUKS *luks) { size_t i; for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { if (!qcrypto_block_luks_slot_active(luks, i)) { return i; } } return -1; } /* * Erases an keyslot given its index * Returns: * 0 if the keyslot was erased successfully * -1 if a error occurred while erasing the keyslot * */ static int qcrypto_block_luks_erase_key(QCryptoBlock *block, unsigned int slot_idx, QCryptoBlockWriteFunc writefunc, void *opaque, Error **errp) { QCryptoBlockLUKS *luks = block->opaque; QCryptoBlockLUKSKeySlot *slot; g_autofree uint8_t *garbagesplitkey = NULL; size_t splitkeylen; size_t i; Error *local_err = NULL; int ret; assert(slot_idx < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS); slot = &luks->header.key_slots[slot_idx]; splitkeylen = luks->header.master_key_len * slot->stripes; assert(splitkeylen > 0); garbagesplitkey = g_new0(uint8_t, splitkeylen); /* Reset the key slot header */ memset(slot->salt, 0, QCRYPTO_BLOCK_LUKS_SALT_LEN); slot->iterations = 0; slot->active = QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED; ret = qcrypto_block_luks_store_header(block, writefunc, opaque, &local_err); if (ret < 0) { error_propagate(errp, local_err); } /* * Now try to erase the key material, even if the header * update failed */ for (i = 0; i < QCRYPTO_BLOCK_LUKS_ERASE_ITERATIONS; i++) { if (qcrypto_random_bytes(garbagesplitkey, splitkeylen, &local_err) < 0) { /* * If we failed to get the random data, still write * at least zeros to the key slot at least once */ error_propagate(errp, local_err); if (i > 0) { return -1; } } if (writefunc(block, slot->key_offset_sector * QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, garbagesplitkey, splitkeylen, opaque, &local_err) < 0) { error_propagate(errp, local_err); return -1; } } return ret; } static int qcrypto_block_luks_open(QCryptoBlock *block, QCryptoBlockOpenOptions *options, const char *optprefix, QCryptoBlockReadFunc readfunc, void *opaque, unsigned int flags, Error **errp) { QCryptoBlockLUKS *luks = NULL; g_autofree uint8_t *masterkey = NULL; g_autofree char *password = NULL; if (!(flags & QCRYPTO_BLOCK_OPEN_NO_IO)) { if (!options->u.luks.key_secret) { error_setg(errp, "Parameter '%skey-secret' is required for cipher", optprefix ? optprefix : ""); return -1; } password = qcrypto_secret_lookup_as_utf8( options->u.luks.key_secret, errp); if (!password) { return -1; } } luks = g_new0(QCryptoBlockLUKS, 1); block->opaque = luks; luks->secret = g_strdup(options->u.luks.key_secret); if (qcrypto_block_luks_load_header(block, readfunc, opaque, errp) < 0) { goto fail; } if (qcrypto_block_luks_check_header(luks, flags, errp) < 0) { goto fail; } if (qcrypto_block_luks_parse_header(luks, errp) < 0) { goto fail; } if (!(flags & QCRYPTO_BLOCK_OPEN_NO_IO)) { /* Try to find which key slot our password is valid for * and unlock the master key from that slot. */ masterkey = g_new0(uint8_t, luks->header.master_key_len); if (qcrypto_block_luks_find_key(block, password, masterkey, readfunc, opaque, errp) < 0) { goto fail; } /* We have a valid master key now, so can setup the * block device payload decryption objects */ block->kdfhash = luks->hash_alg; block->niv = qcrypto_cipher_get_iv_len(luks->cipher_alg, luks->cipher_mode); block->ivgen = qcrypto_ivgen_new(luks->ivgen_alg, luks->ivgen_cipher_alg, luks->ivgen_hash_alg, masterkey, luks->header.master_key_len, errp); if (!block->ivgen) { goto fail; } if (qcrypto_block_init_cipher(block, luks->cipher_alg, luks->cipher_mode, masterkey, luks->header.master_key_len, errp) < 0) { goto fail; } } block->sector_size = QCRYPTO_BLOCK_LUKS_SECTOR_SIZE; block->payload_offset = luks->header.payload_offset_sector * block->sector_size; block->detached_header = (block->payload_offset == 0) ? true : false; return 0; fail: qcrypto_block_free_cipher(block); qcrypto_ivgen_free(block->ivgen); g_free(luks->secret); g_free(luks); return -1; } static void qcrypto_block_luks_uuid_gen(uint8_t *uuidstr) { QemuUUID uuid; qemu_uuid_generate(&uuid); qemu_uuid_unparse(&uuid, (char *)uuidstr); } static int qcrypto_block_luks_create(QCryptoBlock *block, QCryptoBlockCreateOptions *options, const char *optprefix, QCryptoBlockInitFunc initfunc, QCryptoBlockWriteFunc writefunc, void *opaque, Error **errp) { QCryptoBlockLUKS *luks; QCryptoBlockCreateOptionsLUKS luks_opts; Error *local_err = NULL; g_autofree uint8_t *masterkey = NULL; size_t header_sectors; size_t split_key_sectors; size_t i; g_autofree char *password = NULL; const char *cipher_alg; const char *cipher_mode; const char *ivgen_alg; const char *ivgen_hash_alg = NULL; const char *hash_alg; g_autofree char *cipher_mode_spec = NULL; uint64_t iters; uint64_t detached_header_size; memcpy(&luks_opts, &options->u.luks, sizeof(luks_opts)); if (!luks_opts.has_iter_time) { luks_opts.iter_time = QCRYPTO_BLOCK_LUKS_DEFAULT_ITER_TIME_MS; } if (!luks_opts.has_cipher_alg) { luks_opts.cipher_alg = QCRYPTO_CIPHER_ALGO_AES_256; } if (!luks_opts.has_cipher_mode) { luks_opts.cipher_mode = QCRYPTO_CIPHER_MODE_XTS; } if (!luks_opts.has_ivgen_alg) { luks_opts.ivgen_alg = QCRYPTO_IV_GEN_ALGO_PLAIN64; } if (!luks_opts.has_hash_alg) { luks_opts.hash_alg = QCRYPTO_HASH_ALGO_SHA256; } if (luks_opts.ivgen_alg == QCRYPTO_IV_GEN_ALGO_ESSIV) { if (!luks_opts.has_ivgen_hash_alg) { luks_opts.ivgen_hash_alg = QCRYPTO_HASH_ALGO_SHA256; luks_opts.has_ivgen_hash_alg = true; } } luks = g_new0(QCryptoBlockLUKS, 1); block->opaque = luks; luks->cipher_alg = luks_opts.cipher_alg; luks->cipher_mode = luks_opts.cipher_mode; luks->ivgen_alg = luks_opts.ivgen_alg; luks->ivgen_hash_alg = luks_opts.ivgen_hash_alg; luks->hash_alg = luks_opts.hash_alg; /* Note we're allowing ivgen_hash_alg to be set even for * non-essiv iv generators that don't need a hash. It will * be silently ignored, for compatibility with dm-crypt */ if (!options->u.luks.key_secret) { error_setg(errp, "Parameter '%skey-secret' is required for cipher", optprefix ? optprefix : ""); goto error; } luks->secret = g_strdup(options->u.luks.key_secret); password = qcrypto_secret_lookup_as_utf8(luks_opts.key_secret, errp); if (!password) { goto error; } memcpy(luks->header.magic, qcrypto_block_luks_magic, QCRYPTO_BLOCK_LUKS_MAGIC_LEN); /* We populate the header in native endianness initially and * then convert everything to big endian just before writing * it out to disk */ luks->header.version = QCRYPTO_BLOCK_LUKS_VERSION; qcrypto_block_luks_uuid_gen(luks->header.uuid); cipher_alg = qcrypto_block_luks_cipher_alg_lookup(luks_opts.cipher_alg, errp); if (!cipher_alg) { goto error; } cipher_mode = QCryptoCipherMode_str(luks_opts.cipher_mode); ivgen_alg = QCryptoIVGenAlgo_str(luks_opts.ivgen_alg); if (luks_opts.has_ivgen_hash_alg) { ivgen_hash_alg = QCryptoHashAlgo_str(luks_opts.ivgen_hash_alg); cipher_mode_spec = g_strdup_printf("%s-%s:%s", cipher_mode, ivgen_alg, ivgen_hash_alg); } else { cipher_mode_spec = g_strdup_printf("%s-%s", cipher_mode, ivgen_alg); } hash_alg = QCryptoHashAlgo_str(luks_opts.hash_alg); if (strlen(cipher_alg) >= QCRYPTO_BLOCK_LUKS_CIPHER_NAME_LEN) { error_setg(errp, "Cipher name '%s' is too long for LUKS header", cipher_alg); goto error; } if (strlen(cipher_mode_spec) >= QCRYPTO_BLOCK_LUKS_CIPHER_MODE_LEN) { error_setg(errp, "Cipher mode '%s' is too long for LUKS header", cipher_mode_spec); goto error; } if (strlen(hash_alg) >= QCRYPTO_BLOCK_LUKS_HASH_SPEC_LEN) { error_setg(errp, "Hash name '%s' is too long for LUKS header", hash_alg); goto error; } if (luks_opts.ivgen_alg == QCRYPTO_IV_GEN_ALGO_ESSIV) { luks->ivgen_cipher_alg = qcrypto_block_luks_essiv_cipher(luks_opts.cipher_alg, luks_opts.ivgen_hash_alg, &local_err); if (local_err) { error_propagate(errp, local_err); goto error; } } else { luks->ivgen_cipher_alg = luks_opts.cipher_alg; } strcpy(luks->header.cipher_name, cipher_alg); strcpy(luks->header.cipher_mode, cipher_mode_spec); strcpy(luks->header.hash_spec, hash_alg); luks->header.master_key_len = qcrypto_cipher_get_key_len(luks_opts.cipher_alg); if (luks_opts.cipher_mode == QCRYPTO_CIPHER_MODE_XTS) { luks->header.master_key_len *= 2; } /* Generate the salt used for hashing the master key * with PBKDF later */ if (qcrypto_random_bytes(luks->header.master_key_salt, QCRYPTO_BLOCK_LUKS_SALT_LEN, errp) < 0) { goto error; } /* Generate random master key */ masterkey = g_new0(uint8_t, luks->header.master_key_len); if (qcrypto_random_bytes(masterkey, luks->header.master_key_len, errp) < 0) { goto error; } /* Setup the block device payload encryption objects */ if (qcrypto_block_init_cipher(block, luks_opts.cipher_alg, luks_opts.cipher_mode, masterkey, luks->header.master_key_len, errp) < 0) { goto error; } block->kdfhash = luks_opts.hash_alg; block->niv = qcrypto_cipher_get_iv_len(luks_opts.cipher_alg, luks_opts.cipher_mode); block->ivgen = qcrypto_ivgen_new(luks_opts.ivgen_alg, luks->ivgen_cipher_alg, luks_opts.ivgen_hash_alg, masterkey, luks->header.master_key_len, errp); if (!block->ivgen) { goto error; } /* Determine how many iterations we need to hash the master * key, in order to have 1 second of compute time used */ iters = qcrypto_pbkdf2_count_iters(luks_opts.hash_alg, masterkey, luks->header.master_key_len, luks->header.master_key_salt, QCRYPTO_BLOCK_LUKS_SALT_LEN, QCRYPTO_BLOCK_LUKS_DIGEST_LEN, &local_err); if (local_err) { error_propagate(errp, local_err); goto error; } if (iters > (ULLONG_MAX / luks_opts.iter_time)) { error_setg_errno(errp, ERANGE, "PBKDF iterations %llu too large to scale", (unsigned long long)iters); goto error; } /* iter_time was in millis, but count_iters reported for secs */ iters = iters * luks_opts.iter_time / 1000; /* Why /= 8 ? That matches cryptsetup, but there's no * explanation why they chose /= 8... Probably so that * if all 8 keyslots are active we only spend 1 second * in total time to check all keys */ iters /= 8; if (iters > UINT32_MAX) { error_setg_errno(errp, ERANGE, "PBKDF iterations %llu larger than %u", (unsigned long long)iters, UINT32_MAX); goto error; } iters = MAX(iters, QCRYPTO_BLOCK_LUKS_MIN_MASTER_KEY_ITERS); luks->header.master_key_iterations = iters; /* Hash the master key, saving the result in the LUKS * header. This hash is used when opening the encrypted * device to verify that the user password unlocked a * valid master key */ if (qcrypto_pbkdf2(luks_opts.hash_alg, masterkey, luks->header.master_key_len, luks->header.master_key_salt, QCRYPTO_BLOCK_LUKS_SALT_LEN, luks->header.master_key_iterations, luks->header.master_key_digest, QCRYPTO_BLOCK_LUKS_DIGEST_LEN, errp) < 0) { goto error; } /* start with the sector that follows the header*/ header_sectors = QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET / QCRYPTO_BLOCK_LUKS_SECTOR_SIZE; split_key_sectors = qcrypto_block_luks_splitkeylen_sectors(luks, header_sectors, QCRYPTO_BLOCK_LUKS_STRIPES); for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { QCryptoBlockLUKSKeySlot *slot = &luks->header.key_slots[i]; slot->active = QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED; slot->key_offset_sector = header_sectors + i * split_key_sectors; slot->stripes = QCRYPTO_BLOCK_LUKS_STRIPES; } if (block->detached_header) { /* * For a detached LUKS header image, set the payload_offset_sector * to 0 to specify the starting point for read/write */ luks->header.payload_offset_sector = 0; } else { /* * The total size of the LUKS headers is the partition header + key * slot headers, rounded up to the nearest sector, combined with * the size of each master key material region, also rounded up * to the nearest sector */ luks->header.payload_offset_sector = header_sectors + QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS * split_key_sectors; } block->sector_size = QCRYPTO_BLOCK_LUKS_SECTOR_SIZE; block->payload_offset = luks->header.payload_offset_sector * block->sector_size; detached_header_size = (header_sectors + QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS * split_key_sectors) * block->sector_size; /* Reserve header space to match payload offset */ initfunc(block, detached_header_size, opaque, &local_err); if (local_err) { error_propagate(errp, local_err); goto error; } /* populate the slot 0 with the password encrypted master key*/ /* This will also store the header */ if (qcrypto_block_luks_store_key(block, 0, password, masterkey, luks_opts.iter_time, writefunc, opaque, errp) < 0) { goto error; } memset(masterkey, 0, luks->header.master_key_len); return 0; error: if (masterkey) { memset(masterkey, 0, luks->header.master_key_len); } qcrypto_block_free_cipher(block); qcrypto_ivgen_free(block->ivgen); g_free(luks->secret); g_free(luks); return -1; } static int qcrypto_block_luks_amend_add_keyslot(QCryptoBlock *block, QCryptoBlockReadFunc readfunc, QCryptoBlockWriteFunc writefunc, void *opaque, QCryptoBlockAmendOptionsLUKS *opts_luks, bool force, Error **errp) { QCryptoBlockLUKS *luks = block->opaque; uint64_t iter_time = opts_luks->has_iter_time ? opts_luks->iter_time : QCRYPTO_BLOCK_LUKS_DEFAULT_ITER_TIME_MS; int keyslot; g_autofree char *old_password = NULL; g_autofree char *new_password = NULL; g_autofree uint8_t *master_key = NULL; char *secret = opts_luks->secret ?: luks->secret; if (!opts_luks->new_secret) { error_setg(errp, "'new-secret' is required to activate a keyslot"); return -1; } if (opts_luks->old_secret) { error_setg(errp, "'old-secret' must not be given when activating keyslots"); return -1; } if (opts_luks->has_keyslot) { keyslot = opts_luks->keyslot; if (keyslot < 0 || keyslot >= QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS) { error_setg(errp, "Invalid keyslot %u specified, must be between 0 and %u", keyslot, QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS - 1); return -1; } } else { keyslot = qcrypto_block_luks_find_free_keyslot(luks); if (keyslot == -1) { error_setg(errp, "Can't add a keyslot - all keyslots are in use"); return -1; } } if (!force && qcrypto_block_luks_slot_active(luks, keyslot)) { error_setg(errp, "Refusing to overwrite active keyslot %i - " "please erase it first", keyslot); return -1; } /* Locate the password that will be used to retrieve the master key */ old_password = qcrypto_secret_lookup_as_utf8(secret, errp); if (!old_password) { return -1; } /* Retrieve the master key */ master_key = g_new0(uint8_t, luks->header.master_key_len); if (qcrypto_block_luks_find_key(block, old_password, master_key, readfunc, opaque, errp) < 0) { error_append_hint(errp, "Failed to retrieve the master key"); return -1; } /* Locate the new password*/ new_password = qcrypto_secret_lookup_as_utf8(opts_luks->new_secret, errp); if (!new_password) { return -1; } /* Now set the new keyslots */ if (qcrypto_block_luks_store_key(block, keyslot, new_password, master_key, iter_time, writefunc, opaque, errp)) { error_append_hint(errp, "Failed to write to keyslot %i", keyslot); return -1; } return 0; } static int qcrypto_block_luks_amend_erase_keyslots(QCryptoBlock *block, QCryptoBlockReadFunc readfunc, QCryptoBlockWriteFunc writefunc, void *opaque, QCryptoBlockAmendOptionsLUKS *opts_luks, bool force, Error **errp) { QCryptoBlockLUKS *luks = block->opaque; g_autofree uint8_t *tmpkey = NULL; g_autofree char *old_password = NULL; if (opts_luks->new_secret) { error_setg(errp, "'new-secret' must not be given when erasing keyslots"); return -1; } if (opts_luks->has_iter_time) { error_setg(errp, "'iter-time' must not be given when erasing keyslots"); return -1; } if (opts_luks->secret) { error_setg(errp, "'secret' must not be given when erasing keyslots"); return -1; } /* Load the old password if given */ if (opts_luks->old_secret) { old_password = qcrypto_secret_lookup_as_utf8(opts_luks->old_secret, errp); if (!old_password) { return -1; } /* * Allocate a temporary key buffer that we will need when * checking if slot matches the given old password */ tmpkey = g_new0(uint8_t, luks->header.master_key_len); } /* Erase an explicitly given keyslot */ if (opts_luks->has_keyslot) { int keyslot = opts_luks->keyslot; if (keyslot < 0 || keyslot >= QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS) { error_setg(errp, "Invalid keyslot %i specified, must be between 0 and %i", keyslot, QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS - 1); return -1; } if (opts_luks->old_secret) { int rv = qcrypto_block_luks_load_key(block, keyslot, old_password, tmpkey, readfunc, opaque, errp); if (rv == -1) { return -1; } else if (rv == 0) { error_setg(errp, "Given keyslot %i doesn't contain the given " "old password for erase operation", keyslot); return -1; } } if (!force && !qcrypto_block_luks_slot_active(luks, keyslot)) { error_setg(errp, "Given keyslot %i is already erased (inactive) ", keyslot); return -1; } if (!force && qcrypto_block_luks_count_active_slots(luks) == 1) { error_setg(errp, "Attempt to erase the only active keyslot %i " "which will erase all the data in the image " "irreversibly - refusing operation", keyslot); return -1; } if (qcrypto_block_luks_erase_key(block, keyslot, writefunc, opaque, errp)) { error_append_hint(errp, "Failed to erase keyslot %i", keyslot); return -1; } /* Erase all keyslots that match the given old password */ } else if (opts_luks->old_secret) { unsigned long slots_to_erase_bitmap = 0; size_t i; int slot_count; assert(QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS <= sizeof(slots_to_erase_bitmap) * 8); for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { int rv = qcrypto_block_luks_load_key(block, i, old_password, tmpkey, readfunc, opaque, errp); if (rv == -1) { return -1; } else if (rv == 1) { bitmap_set(&slots_to_erase_bitmap, i, 1); } } slot_count = bitmap_count_one(&slots_to_erase_bitmap, QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS); if (slot_count == 0) { error_setg(errp, "No keyslots match given (old) password for erase operation"); return -1; } if (!force && slot_count == qcrypto_block_luks_count_active_slots(luks)) { error_setg(errp, "All the active keyslots match the (old) password that " "was given and erasing them will erase all the data in " "the image irreversibly - refusing operation"); return -1; } /* Now apply the update */ for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { if (!test_bit(i, &slots_to_erase_bitmap)) { continue; } if (qcrypto_block_luks_erase_key(block, i, writefunc, opaque, errp)) { error_append_hint(errp, "Failed to erase keyslot %zu", i); return -1; } } } else { error_setg(errp, "To erase keyslot(s), either explicit keyslot index " "or the password currently contained in them must be given"); return -1; } return 0; } static int qcrypto_block_luks_amend_options(QCryptoBlock *block, QCryptoBlockReadFunc readfunc, QCryptoBlockWriteFunc writefunc, void *opaque, QCryptoBlockAmendOptions *options, bool force, Error **errp) { QCryptoBlockAmendOptionsLUKS *opts_luks = &options->u.luks; switch (opts_luks->state) { case QCRYPTO_BLOCK_LUKS_KEYSLOT_STATE_ACTIVE: return qcrypto_block_luks_amend_add_keyslot(block, readfunc, writefunc, opaque, opts_luks, force, errp); case QCRYPTO_BLOCK_LUKS_KEYSLOT_STATE_INACTIVE: return qcrypto_block_luks_amend_erase_keyslots(block, readfunc, writefunc, opaque, opts_luks, force, errp); default: g_assert_not_reached(); } } static int qcrypto_block_luks_get_info(QCryptoBlock *block, QCryptoBlockInfo *info, Error **errp) { QCryptoBlockLUKS *luks = block->opaque; QCryptoBlockInfoLUKSSlot *slot; QCryptoBlockInfoLUKSSlotList **tail = &info->u.luks.slots; size_t i; info->u.luks.cipher_alg = luks->cipher_alg; info->u.luks.cipher_mode = luks->cipher_mode; info->u.luks.ivgen_alg = luks->ivgen_alg; if (info->u.luks.ivgen_alg == QCRYPTO_IV_GEN_ALGO_ESSIV) { info->u.luks.has_ivgen_hash_alg = true; info->u.luks.ivgen_hash_alg = luks->ivgen_hash_alg; } info->u.luks.hash_alg = luks->hash_alg; info->u.luks.payload_offset = block->payload_offset; info->u.luks.master_key_iters = luks->header.master_key_iterations; info->u.luks.uuid = g_strndup((const char *)luks->header.uuid, sizeof(luks->header.uuid)); info->u.luks.detached_header = block->detached_header; for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { slot = g_new0(QCryptoBlockInfoLUKSSlot, 1); slot->active = luks->header.key_slots[i].active == QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED; slot->key_offset = luks->header.key_slots[i].key_offset_sector * QCRYPTO_BLOCK_LUKS_SECTOR_SIZE; if (slot->active) { slot->has_iters = true; slot->iters = luks->header.key_slots[i].iterations; slot->has_stripes = true; slot->stripes = luks->header.key_slots[i].stripes; } QAPI_LIST_APPEND(tail, slot); } return 0; } static void qcrypto_block_luks_cleanup(QCryptoBlock *block) { QCryptoBlockLUKS *luks = block->opaque; if (luks) { g_free(luks->secret); g_free(luks); } } static int qcrypto_block_luks_decrypt(QCryptoBlock *block, uint64_t offset, uint8_t *buf, size_t len, Error **errp) { assert(QEMU_IS_ALIGNED(offset, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE)); assert(QEMU_IS_ALIGNED(len, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE)); return qcrypto_block_decrypt_helper(block, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, offset, buf, len, errp); } static int qcrypto_block_luks_encrypt(QCryptoBlock *block, uint64_t offset, uint8_t *buf, size_t len, Error **errp) { assert(QEMU_IS_ALIGNED(offset, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE)); assert(QEMU_IS_ALIGNED(len, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE)); return qcrypto_block_encrypt_helper(block, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, offset, buf, len, errp); } const QCryptoBlockDriver qcrypto_block_driver_luks = { .open = qcrypto_block_luks_open, .create = qcrypto_block_luks_create, .amend = qcrypto_block_luks_amend_options, .get_info = qcrypto_block_luks_get_info, .cleanup = qcrypto_block_luks_cleanup, .decrypt = qcrypto_block_luks_decrypt, .encrypt = qcrypto_block_luks_encrypt, .has_format = qcrypto_block_luks_has_format, };