/* * CPU thread main loop - common bits for user and system mode emulation * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "exec/cpu-common.h" #include "qom/cpu.h" #include "sysemu/cpus.h" static QemuMutex qemu_cpu_list_lock; static QemuCond exclusive_cond; static QemuCond exclusive_resume; static QemuCond qemu_work_cond; static int pending_cpus; void qemu_init_cpu_list(void) { /* This is needed because qemu_init_cpu_list is also called by the * child process in a fork. */ pending_cpus = 0; qemu_mutex_init(&qemu_cpu_list_lock); qemu_cond_init(&exclusive_cond); qemu_cond_init(&exclusive_resume); qemu_cond_init(&qemu_work_cond); } void cpu_list_lock(void) { qemu_mutex_lock(&qemu_cpu_list_lock); } void cpu_list_unlock(void) { qemu_mutex_unlock(&qemu_cpu_list_lock); } static bool cpu_index_auto_assigned; static int cpu_get_free_index(void) { CPUState *some_cpu; int cpu_index = 0; cpu_index_auto_assigned = true; CPU_FOREACH(some_cpu) { cpu_index++; } return cpu_index; } static void finish_safe_work(CPUState *cpu) { cpu_exec_start(cpu); cpu_exec_end(cpu); } void cpu_list_add(CPUState *cpu) { qemu_mutex_lock(&qemu_cpu_list_lock); if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) { cpu->cpu_index = cpu_get_free_index(); assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX); } else { assert(!cpu_index_auto_assigned); } QTAILQ_INSERT_TAIL(&cpus, cpu, node); qemu_mutex_unlock(&qemu_cpu_list_lock); finish_safe_work(cpu); } void cpu_list_remove(CPUState *cpu) { qemu_mutex_lock(&qemu_cpu_list_lock); if (!QTAILQ_IN_USE(cpu, node)) { /* there is nothing to undo since cpu_exec_init() hasn't been called */ qemu_mutex_unlock(&qemu_cpu_list_lock); return; } assert(!(cpu_index_auto_assigned && cpu != QTAILQ_LAST(&cpus, CPUTailQ))); QTAILQ_REMOVE(&cpus, cpu, node); cpu->cpu_index = UNASSIGNED_CPU_INDEX; qemu_mutex_unlock(&qemu_cpu_list_lock); } struct qemu_work_item { struct qemu_work_item *next; run_on_cpu_func func; void *data; bool free, done; }; static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi) { qemu_mutex_lock(&cpu->work_mutex); if (cpu->queued_work_first == NULL) { cpu->queued_work_first = wi; } else { cpu->queued_work_last->next = wi; } cpu->queued_work_last = wi; wi->next = NULL; wi->done = false; qemu_mutex_unlock(&cpu->work_mutex); qemu_cpu_kick(cpu); } void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data, QemuMutex *mutex) { struct qemu_work_item wi; if (qemu_cpu_is_self(cpu)) { func(cpu, data); return; } wi.func = func; wi.data = data; wi.done = false; wi.free = false; queue_work_on_cpu(cpu, &wi); while (!atomic_mb_read(&wi.done)) { CPUState *self_cpu = current_cpu; qemu_cond_wait(&qemu_work_cond, mutex); current_cpu = self_cpu; } } void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data) { struct qemu_work_item *wi; if (qemu_cpu_is_self(cpu)) { func(cpu, data); return; } wi = g_malloc0(sizeof(struct qemu_work_item)); wi->func = func; wi->data = data; wi->free = true; queue_work_on_cpu(cpu, wi); } /* Wait for pending exclusive operations to complete. The CPU list lock must be held. */ static inline void exclusive_idle(void) { while (pending_cpus) { qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock); } } /* Start an exclusive operation. Must only be called from outside cpu_exec, takes qemu_cpu_list_lock. */ void start_exclusive(void) { CPUState *other_cpu; qemu_mutex_lock(&qemu_cpu_list_lock); exclusive_idle(); /* Make all other cpus stop executing. */ pending_cpus = 1; CPU_FOREACH(other_cpu) { if (other_cpu->running) { pending_cpus++; qemu_cpu_kick(other_cpu); } } while (pending_cpus > 1) { qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock); } } /* Finish an exclusive operation. Releases qemu_cpu_list_lock. */ void end_exclusive(void) { pending_cpus = 0; qemu_cond_broadcast(&exclusive_resume); qemu_mutex_unlock(&qemu_cpu_list_lock); } /* Wait for exclusive ops to finish, and begin cpu execution. */ void cpu_exec_start(CPUState *cpu) { qemu_mutex_lock(&qemu_cpu_list_lock); exclusive_idle(); cpu->running = true; qemu_mutex_unlock(&qemu_cpu_list_lock); } /* Mark cpu as not executing, and release pending exclusive ops. */ void cpu_exec_end(CPUState *cpu) { qemu_mutex_lock(&qemu_cpu_list_lock); cpu->running = false; if (pending_cpus > 1) { pending_cpus--; if (pending_cpus == 1) { qemu_cond_signal(&exclusive_cond); } } exclusive_idle(); qemu_mutex_unlock(&qemu_cpu_list_lock); } void process_queued_cpu_work(CPUState *cpu) { struct qemu_work_item *wi; if (cpu->queued_work_first == NULL) { return; } qemu_mutex_lock(&cpu->work_mutex); while (cpu->queued_work_first != NULL) { wi = cpu->queued_work_first; cpu->queued_work_first = wi->next; if (!cpu->queued_work_first) { cpu->queued_work_last = NULL; } qemu_mutex_unlock(&cpu->work_mutex); wi->func(cpu, wi->data); qemu_mutex_lock(&cpu->work_mutex); if (wi->free) { g_free(wi); } else { atomic_mb_set(&wi->done, true); } } qemu_mutex_unlock(&cpu->work_mutex); qemu_cond_broadcast(&qemu_work_cond); }