/* * i386 emulator main execution loop * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include "exec.h" #include "disas.h" #if !defined(CONFIG_SOFTMMU) #undef EAX #undef ECX #undef EDX #undef EBX #undef ESP #undef EBP #undef ESI #undef EDI #undef EIP #include <signal.h> #include <sys/ucontext.h> #endif int tb_invalidated_flag; //#define DEBUG_EXEC //#define DEBUG_SIGNAL void cpu_loop_exit(void) { /* NOTE: the register at this point must be saved by hand because longjmp restore them */ regs_to_env(); longjmp(env->jmp_env, 1); } #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K)) #define reg_T2 #endif /* exit the current TB from a signal handler. The host registers are restored in a state compatible with the CPU emulator */ void cpu_resume_from_signal(CPUState *env1, void *puc) { #if !defined(CONFIG_SOFTMMU) struct ucontext *uc = puc; #endif env = env1; /* XXX: restore cpu registers saved in host registers */ #if !defined(CONFIG_SOFTMMU) if (puc) { /* XXX: use siglongjmp ? */ sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); } #endif longjmp(env->jmp_env, 1); } static TranslationBlock *tb_find_slow(target_ulong pc, target_ulong cs_base, uint64_t flags) { TranslationBlock *tb, **ptb1; int code_gen_size; unsigned int h; target_ulong phys_pc, phys_page1, phys_page2, virt_page2; uint8_t *tc_ptr; spin_lock(&tb_lock); tb_invalidated_flag = 0; regs_to_env(); /* XXX: do it just before cpu_gen_code() */ /* find translated block using physical mappings */ phys_pc = get_phys_addr_code(env, pc); phys_page1 = phys_pc & TARGET_PAGE_MASK; phys_page2 = -1; h = tb_phys_hash_func(phys_pc); ptb1 = &tb_phys_hash[h]; for(;;) { tb = *ptb1; if (!tb) goto not_found; if (tb->pc == pc && tb->page_addr[0] == phys_page1 && tb->cs_base == cs_base && tb->flags == flags) { /* check next page if needed */ if (tb->page_addr[1] != -1) { virt_page2 = (pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; phys_page2 = get_phys_addr_code(env, virt_page2); if (tb->page_addr[1] == phys_page2) goto found; } else { goto found; } } ptb1 = &tb->phys_hash_next; } not_found: /* if no translated code available, then translate it now */ tb = tb_alloc(pc); if (!tb) { /* flush must be done */ tb_flush(env); /* cannot fail at this point */ tb = tb_alloc(pc); /* don't forget to invalidate previous TB info */ tb_invalidated_flag = 1; } tc_ptr = code_gen_ptr; tb->tc_ptr = tc_ptr; tb->cs_base = cs_base; tb->flags = flags; cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size); code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); /* check next page if needed */ virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; phys_page2 = -1; if ((pc & TARGET_PAGE_MASK) != virt_page2) { phys_page2 = get_phys_addr_code(env, virt_page2); } tb_link_phys(tb, phys_pc, phys_page2); found: /* we add the TB in the virtual pc hash table */ env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; spin_unlock(&tb_lock); return tb; } static inline TranslationBlock *tb_find_fast(void) { TranslationBlock *tb; target_ulong cs_base, pc; uint64_t flags; /* we record a subset of the CPU state. It will always be the same before a given translated block is executed. */ #if defined(TARGET_I386) flags = env->hflags; flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); flags |= env->intercept; cs_base = env->segs[R_CS].base; pc = cs_base + env->eip; #elif defined(TARGET_ARM) flags = env->thumb | (env->vfp.vec_len << 1) | (env->vfp.vec_stride << 4); if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) flags |= (1 << 6); if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) flags |= (1 << 7); cs_base = 0; pc = env->regs[15]; #elif defined(TARGET_SPARC) #ifdef TARGET_SPARC64 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2)) | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2); #else // FPU enable . MMU Boot . MMU enabled . MMU no-fault . Supervisor flags = (env->psref << 4) | (((env->mmuregs[0] & MMU_BM) >> 14) << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1) | env->psrs; #endif cs_base = env->npc; pc = env->pc; #elif defined(TARGET_PPC) flags = env->hflags; cs_base = 0; pc = env->nip; #elif defined(TARGET_MIPS) flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK); cs_base = 0; pc = env->PC[env->current_tc]; #elif defined(TARGET_M68K) flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */ | (env->sr & SR_S) /* Bit 13 */ | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */ cs_base = 0; pc = env->pc; #elif defined(TARGET_SH4) flags = env->sr & (SR_MD | SR_RB); cs_base = 0; /* XXXXX */ pc = env->pc; #elif defined(TARGET_ALPHA) flags = env->ps; cs_base = 0; pc = env->pc; #else #error unsupported CPU #endif tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base || tb->flags != flags, 0)) { tb = tb_find_slow(pc, cs_base, flags); /* Note: we do it here to avoid a gcc bug on Mac OS X when doing it in tb_find_slow */ if (tb_invalidated_flag) { /* as some TB could have been invalidated because of memory exceptions while generating the code, we must recompute the hash index here */ T0 = 0; } } return tb; } /* main execution loop */ int cpu_exec(CPUState *env1) { #define DECLARE_HOST_REGS 1 #include "hostregs_helper.h" #if defined(TARGET_SPARC) #if defined(reg_REGWPTR) uint32_t *saved_regwptr; #endif #endif #if defined(__sparc__) && !defined(HOST_SOLARIS) int saved_i7; target_ulong tmp_T0; #endif int ret, interrupt_request; void (*gen_func)(void); TranslationBlock *tb; uint8_t *tc_ptr; if (cpu_halted(env1) == EXCP_HALTED) return EXCP_HALTED; cpu_single_env = env1; /* first we save global registers */ #define SAVE_HOST_REGS 1 #include "hostregs_helper.h" env = env1; #if defined(__sparc__) && !defined(HOST_SOLARIS) /* we also save i7 because longjmp may not restore it */ asm volatile ("mov %%i7, %0" : "=r" (saved_i7)); #endif env_to_regs(); #if defined(TARGET_I386) /* put eflags in CPU temporary format */ CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); DF = 1 - (2 * ((env->eflags >> 10) & 1)); CC_OP = CC_OP_EFLAGS; env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); #elif defined(TARGET_SPARC) #if defined(reg_REGWPTR) saved_regwptr = REGWPTR; #endif #elif defined(TARGET_M68K) env->cc_op = CC_OP_FLAGS; env->cc_dest = env->sr & 0xf; env->cc_x = (env->sr >> 4) & 1; #elif defined(TARGET_ALPHA) #elif defined(TARGET_ARM) #elif defined(TARGET_PPC) #elif defined(TARGET_MIPS) #elif defined(TARGET_SH4) /* XXXXX */ #else #error unsupported target CPU #endif env->exception_index = -1; /* prepare setjmp context for exception handling */ for(;;) { if (setjmp(env->jmp_env) == 0) { env->current_tb = NULL; /* if an exception is pending, we execute it here */ if (env->exception_index >= 0) { if (env->exception_index >= EXCP_INTERRUPT) { /* exit request from the cpu execution loop */ ret = env->exception_index; break; } else if (env->user_mode_only) { /* if user mode only, we simulate a fake exception which will be handled outside the cpu execution loop */ #if defined(TARGET_I386) do_interrupt_user(env->exception_index, env->exception_is_int, env->error_code, env->exception_next_eip); #endif ret = env->exception_index; break; } else { #if defined(TARGET_I386) /* simulate a real cpu exception. On i386, it can trigger new exceptions, but we do not handle double or triple faults yet. */ do_interrupt(env->exception_index, env->exception_is_int, env->error_code, env->exception_next_eip, 0); /* successfully delivered */ env->old_exception = -1; #elif defined(TARGET_PPC) do_interrupt(env); #elif defined(TARGET_MIPS) do_interrupt(env); #elif defined(TARGET_SPARC) do_interrupt(env->exception_index); #elif defined(TARGET_ARM) do_interrupt(env); #elif defined(TARGET_SH4) do_interrupt(env); #elif defined(TARGET_ALPHA) do_interrupt(env); #elif defined(TARGET_M68K) do_interrupt(0); #endif } env->exception_index = -1; } #ifdef USE_KQEMU if (kqemu_is_ok(env) && env->interrupt_request == 0) { int ret; env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); ret = kqemu_cpu_exec(env); /* put eflags in CPU temporary format */ CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); DF = 1 - (2 * ((env->eflags >> 10) & 1)); CC_OP = CC_OP_EFLAGS; env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); if (ret == 1) { /* exception */ longjmp(env->jmp_env, 1); } else if (ret == 2) { /* softmmu execution needed */ } else { if (env->interrupt_request != 0) { /* hardware interrupt will be executed just after */ } else { /* otherwise, we restart */ longjmp(env->jmp_env, 1); } } } #endif T0 = 0; /* force lookup of first TB */ for(;;) { #if defined(__sparc__) && !defined(HOST_SOLARIS) /* g1 can be modified by some libc? functions */ tmp_T0 = T0; #endif interrupt_request = env->interrupt_request; if (__builtin_expect(interrupt_request, 0) #if defined(TARGET_I386) && env->hflags & HF_GIF_MASK #endif ) { if (interrupt_request & CPU_INTERRUPT_DEBUG) { env->interrupt_request &= ~CPU_INTERRUPT_DEBUG; env->exception_index = EXCP_DEBUG; cpu_loop_exit(); } #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \ defined(TARGET_PPC) || defined(TARGET_ALPHA) if (interrupt_request & CPU_INTERRUPT_HALT) { env->interrupt_request &= ~CPU_INTERRUPT_HALT; env->halted = 1; env->exception_index = EXCP_HLT; cpu_loop_exit(); } #endif #if defined(TARGET_I386) if ((interrupt_request & CPU_INTERRUPT_SMI) && !(env->hflags & HF_SMM_MASK)) { svm_check_intercept(SVM_EXIT_SMI); env->interrupt_request &= ~CPU_INTERRUPT_SMI; do_smm_enter(); #if defined(__sparc__) && !defined(HOST_SOLARIS) tmp_T0 = 0; #else T0 = 0; #endif } else if ((interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) { int intno; svm_check_intercept(SVM_EXIT_INTR); env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ); intno = cpu_get_pic_interrupt(env); if (loglevel & CPU_LOG_TB_IN_ASM) { fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno); } do_interrupt(intno, 0, 0, 0, 1); /* ensure that no TB jump will be modified as the program flow was changed */ #if defined(__sparc__) && !defined(HOST_SOLARIS) tmp_T0 = 0; #else T0 = 0; #endif #if !defined(CONFIG_USER_ONLY) } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) { int intno; /* FIXME: this should respect TPR */ env->interrupt_request &= ~CPU_INTERRUPT_VIRQ; svm_check_intercept(SVM_EXIT_VINTR); intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector)); if (loglevel & CPU_LOG_TB_IN_ASM) fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno); do_interrupt(intno, 0, 0, -1, 1); stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl), ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK); #if defined(__sparc__) && !defined(HOST_SOLARIS) tmp_T0 = 0; #else T0 = 0; #endif #endif } #elif defined(TARGET_PPC) #if 0 if ((interrupt_request & CPU_INTERRUPT_RESET)) { cpu_ppc_reset(env); } #endif if (interrupt_request & CPU_INTERRUPT_HARD) { ppc_hw_interrupt(env); if (env->pending_interrupts == 0) env->interrupt_request &= ~CPU_INTERRUPT_HARD; #if defined(__sparc__) && !defined(HOST_SOLARIS) tmp_T0 = 0; #else T0 = 0; #endif } #elif defined(TARGET_MIPS) if ((interrupt_request & CPU_INTERRUPT_HARD) && (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) && (env->CP0_Status & (1 << CP0St_IE)) && !(env->CP0_Status & (1 << CP0St_EXL)) && !(env->CP0_Status & (1 << CP0St_ERL)) && !(env->hflags & MIPS_HFLAG_DM)) { /* Raise it */ env->exception_index = EXCP_EXT_INTERRUPT; env->error_code = 0; do_interrupt(env); #if defined(__sparc__) && !defined(HOST_SOLARIS) tmp_T0 = 0; #else T0 = 0; #endif } #elif defined(TARGET_SPARC) if ((interrupt_request & CPU_INTERRUPT_HARD) && (env->psret != 0)) { int pil = env->interrupt_index & 15; int type = env->interrupt_index & 0xf0; if (((type == TT_EXTINT) && (pil == 15 || pil > env->psrpil)) || type != TT_EXTINT) { env->interrupt_request &= ~CPU_INTERRUPT_HARD; do_interrupt(env->interrupt_index); env->interrupt_index = 0; #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) cpu_check_irqs(env); #endif #if defined(__sparc__) && !defined(HOST_SOLARIS) tmp_T0 = 0; #else T0 = 0; #endif } } else if (interrupt_request & CPU_INTERRUPT_TIMER) { //do_interrupt(0, 0, 0, 0, 0); env->interrupt_request &= ~CPU_INTERRUPT_TIMER; } #elif defined(TARGET_ARM) if (interrupt_request & CPU_INTERRUPT_FIQ && !(env->uncached_cpsr & CPSR_F)) { env->exception_index = EXCP_FIQ; do_interrupt(env); } if (interrupt_request & CPU_INTERRUPT_HARD && !(env->uncached_cpsr & CPSR_I)) { env->exception_index = EXCP_IRQ; do_interrupt(env); } #elif defined(TARGET_SH4) /* XXXXX */ #elif defined(TARGET_ALPHA) if (interrupt_request & CPU_INTERRUPT_HARD) { do_interrupt(env); } #elif defined(TARGET_M68K) if (interrupt_request & CPU_INTERRUPT_HARD && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) { /* Real hardware gets the interrupt vector via an IACK cycle at this point. Current emulated hardware doesn't rely on this, so we provide/save the vector when the interrupt is first signalled. */ env->exception_index = env->pending_vector; do_interrupt(1); } #endif /* Don't use the cached interupt_request value, do_interrupt may have updated the EXITTB flag. */ if (env->interrupt_request & CPU_INTERRUPT_EXITTB) { env->interrupt_request &= ~CPU_INTERRUPT_EXITTB; /* ensure that no TB jump will be modified as the program flow was changed */ #if defined(__sparc__) && !defined(HOST_SOLARIS) tmp_T0 = 0; #else T0 = 0; #endif } if (interrupt_request & CPU_INTERRUPT_EXIT) { env->interrupt_request &= ~CPU_INTERRUPT_EXIT; env->exception_index = EXCP_INTERRUPT; cpu_loop_exit(); } } #ifdef DEBUG_EXEC if ((loglevel & CPU_LOG_TB_CPU)) { /* restore flags in standard format */ regs_to_env(); #if defined(TARGET_I386) env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP); env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); #elif defined(TARGET_ARM) cpu_dump_state(env, logfile, fprintf, 0); #elif defined(TARGET_SPARC) REGWPTR = env->regbase + (env->cwp * 16); env->regwptr = REGWPTR; cpu_dump_state(env, logfile, fprintf, 0); #elif defined(TARGET_PPC) cpu_dump_state(env, logfile, fprintf, 0); #elif defined(TARGET_M68K) cpu_m68k_flush_flags(env, env->cc_op); env->cc_op = CC_OP_FLAGS; env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4); cpu_dump_state(env, logfile, fprintf, 0); #elif defined(TARGET_MIPS) cpu_dump_state(env, logfile, fprintf, 0); #elif defined(TARGET_SH4) cpu_dump_state(env, logfile, fprintf, 0); #elif defined(TARGET_ALPHA) cpu_dump_state(env, logfile, fprintf, 0); #else #error unsupported target CPU #endif } #endif tb = tb_find_fast(); #ifdef DEBUG_EXEC if ((loglevel & CPU_LOG_EXEC)) { fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n", (long)tb->tc_ptr, tb->pc, lookup_symbol(tb->pc)); } #endif #if defined(__sparc__) && !defined(HOST_SOLARIS) T0 = tmp_T0; #endif /* see if we can patch the calling TB. When the TB spans two pages, we cannot safely do a direct jump. */ { if (T0 != 0 && #if USE_KQEMU (env->kqemu_enabled != 2) && #endif tb->page_addr[1] == -1 #if defined(TARGET_I386) && defined(USE_CODE_COPY) && (tb->cflags & CF_CODE_COPY) == (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY) #endif ) { spin_lock(&tb_lock); tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb); #if defined(USE_CODE_COPY) /* propagates the FP use info */ ((TranslationBlock *)(T0 & ~3))->cflags |= (tb->cflags & CF_FP_USED); #endif spin_unlock(&tb_lock); } } tc_ptr = tb->tc_ptr; env->current_tb = tb; /* execute the generated code */ gen_func = (void *)tc_ptr; #if defined(__sparc__) __asm__ __volatile__("call %0\n\t" "mov %%o7,%%i0" : /* no outputs */ : "r" (gen_func) : "i0", "i1", "i2", "i3", "i4", "i5", "o0", "o1", "o2", "o3", "o4", "o5", "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7"); #elif defined(__arm__) asm volatile ("mov pc, %0\n\t" ".global exec_loop\n\t" "exec_loop:\n\t" : /* no outputs */ : "r" (gen_func) : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14"); #elif defined(TARGET_I386) && defined(USE_CODE_COPY) { if (!(tb->cflags & CF_CODE_COPY)) { if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) { save_native_fp_state(env); } gen_func(); } else { if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) { restore_native_fp_state(env); } /* we work with native eflags */ CC_SRC = cc_table[CC_OP].compute_all(); CC_OP = CC_OP_EFLAGS; asm(".globl exec_loop\n" "\n" "debug1:\n" " pushl %%ebp\n" " fs movl %10, %9\n" " fs movl %11, %%eax\n" " andl $0x400, %%eax\n" " fs orl %8, %%eax\n" " pushl %%eax\n" " popf\n" " fs movl %%esp, %12\n" " fs movl %0, %%eax\n" " fs movl %1, %%ecx\n" " fs movl %2, %%edx\n" " fs movl %3, %%ebx\n" " fs movl %4, %%esp\n" " fs movl %5, %%ebp\n" " fs movl %6, %%esi\n" " fs movl %7, %%edi\n" " fs jmp *%9\n" "exec_loop:\n" " fs movl %%esp, %4\n" " fs movl %12, %%esp\n" " fs movl %%eax, %0\n" " fs movl %%ecx, %1\n" " fs movl %%edx, %2\n" " fs movl %%ebx, %3\n" " fs movl %%ebp, %5\n" " fs movl %%esi, %6\n" " fs movl %%edi, %7\n" " pushf\n" " popl %%eax\n" " movl %%eax, %%ecx\n" " andl $0x400, %%ecx\n" " shrl $9, %%ecx\n" " andl $0x8d5, %%eax\n" " fs movl %%eax, %8\n" " movl $1, %%eax\n" " subl %%ecx, %%eax\n" " fs movl %%eax, %11\n" " fs movl %9, %%ebx\n" /* get T0 value */ " popl %%ebp\n" : : "m" (*(uint8_t *)offsetof(CPUState, regs[0])), "m" (*(uint8_t *)offsetof(CPUState, regs[1])), "m" (*(uint8_t *)offsetof(CPUState, regs[2])), "m" (*(uint8_t *)offsetof(CPUState, regs[3])), "m" (*(uint8_t *)offsetof(CPUState, regs[4])), "m" (*(uint8_t *)offsetof(CPUState, regs[5])), "m" (*(uint8_t *)offsetof(CPUState, regs[6])), "m" (*(uint8_t *)offsetof(CPUState, regs[7])), "m" (*(uint8_t *)offsetof(CPUState, cc_src)), "m" (*(uint8_t *)offsetof(CPUState, tmp0)), "a" (gen_func), "m" (*(uint8_t *)offsetof(CPUState, df)), "m" (*(uint8_t *)offsetof(CPUState, saved_esp)) : "%ecx", "%edx" ); } } #elif defined(__ia64) struct fptr { void *ip; void *gp; } fp; fp.ip = tc_ptr; fp.gp = code_gen_buffer + 2 * (1 << 20); (*(void (*)(void)) &fp)(); #else gen_func(); #endif env->current_tb = NULL; /* reset soft MMU for next block (it can currently only be set by a memory fault) */ #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU) if (env->hflags & HF_SOFTMMU_MASK) { env->hflags &= ~HF_SOFTMMU_MASK; /* do not allow linking to another block */ T0 = 0; } #endif #if defined(USE_KQEMU) #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000) if (kqemu_is_ok(env) && (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) { cpu_loop_exit(); } #endif } /* for(;;) */ } else { env_to_regs(); } } /* for(;;) */ #if defined(TARGET_I386) #if defined(USE_CODE_COPY) if (env->native_fp_regs) { save_native_fp_state(env); } #endif /* restore flags in standard format */ env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); #elif defined(TARGET_ARM) /* XXX: Save/restore host fpu exception state?. */ #elif defined(TARGET_SPARC) #if defined(reg_REGWPTR) REGWPTR = saved_regwptr; #endif #elif defined(TARGET_PPC) #elif defined(TARGET_M68K) cpu_m68k_flush_flags(env, env->cc_op); env->cc_op = CC_OP_FLAGS; env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4); #elif defined(TARGET_MIPS) #elif defined(TARGET_SH4) #elif defined(TARGET_ALPHA) /* XXXXX */ #else #error unsupported target CPU #endif /* restore global registers */ #if defined(__sparc__) && !defined(HOST_SOLARIS) asm volatile ("mov %0, %%i7" : : "r" (saved_i7)); #endif #include "hostregs_helper.h" /* fail safe : never use cpu_single_env outside cpu_exec() */ cpu_single_env = NULL; return ret; } /* must only be called from the generated code as an exception can be generated */ void tb_invalidate_page_range(target_ulong start, target_ulong end) { /* XXX: cannot enable it yet because it yields to MMU exception where NIP != read address on PowerPC */ #if 0 target_ulong phys_addr; phys_addr = get_phys_addr_code(env, start); tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0); #endif } #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY) void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector) { CPUX86State *saved_env; saved_env = env; env = s; if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { selector &= 0xffff; cpu_x86_load_seg_cache(env, seg_reg, selector, (selector << 4), 0xffff, 0); } else { load_seg(seg_reg, selector); } env = saved_env; } void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32) { CPUX86State *saved_env; saved_env = env; env = s; helper_fsave((target_ulong)ptr, data32); env = saved_env; } void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32) { CPUX86State *saved_env; saved_env = env; env = s; helper_frstor((target_ulong)ptr, data32); env = saved_env; } #endif /* TARGET_I386 */ #if !defined(CONFIG_SOFTMMU) #if defined(TARGET_I386) /* 'pc' is the host PC at which the exception was raised. 'address' is the effective address of the memory exception. 'is_write' is 1 if a write caused the exception and otherwise 0'. 'old_set' is the signal set which should be restored */ static inline int handle_cpu_signal(unsigned long pc, unsigned long address, int is_write, sigset_t *old_set, void *puc) { TranslationBlock *tb; int ret; if (cpu_single_env) env = cpu_single_env; /* XXX: find a correct solution for multithread */ #if defined(DEBUG_SIGNAL) qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", pc, address, is_write, *(unsigned long *)old_set); #endif /* XXX: locking issue */ if (is_write && page_unprotect(h2g(address), pc, puc)) { return 1; } /* see if it is an MMU fault */ ret = cpu_x86_handle_mmu_fault(env, address, is_write, ((env->hflags & HF_CPL_MASK) == 3), 0); if (ret < 0) return 0; /* not an MMU fault */ if (ret == 0) return 1; /* the MMU fault was handled without causing real CPU fault */ /* now we have a real cpu fault */ tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, puc); } if (ret == 1) { #if 0 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", env->eip, env->cr[2], env->error_code); #endif /* we restore the process signal mask as the sigreturn should do it (XXX: use sigsetjmp) */ sigprocmask(SIG_SETMASK, old_set, NULL); raise_exception_err(env->exception_index, env->error_code); } else { /* activate soft MMU for this block */ env->hflags |= HF_SOFTMMU_MASK; cpu_resume_from_signal(env, puc); } /* never comes here */ return 1; } #elif defined(TARGET_ARM) static inline int handle_cpu_signal(unsigned long pc, unsigned long address, int is_write, sigset_t *old_set, void *puc) { TranslationBlock *tb; int ret; if (cpu_single_env) env = cpu_single_env; /* XXX: find a correct solution for multithread */ #if defined(DEBUG_SIGNAL) printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", pc, address, is_write, *(unsigned long *)old_set); #endif /* XXX: locking issue */ if (is_write && page_unprotect(h2g(address), pc, puc)) { return 1; } /* see if it is an MMU fault */ ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0); if (ret < 0) return 0; /* not an MMU fault */ if (ret == 0) return 1; /* the MMU fault was handled without causing real CPU fault */ /* now we have a real cpu fault */ tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, puc); } /* we restore the process signal mask as the sigreturn should do it (XXX: use sigsetjmp) */ sigprocmask(SIG_SETMASK, old_set, NULL); cpu_loop_exit(); } #elif defined(TARGET_SPARC) static inline int handle_cpu_signal(unsigned long pc, unsigned long address, int is_write, sigset_t *old_set, void *puc) { TranslationBlock *tb; int ret; if (cpu_single_env) env = cpu_single_env; /* XXX: find a correct solution for multithread */ #if defined(DEBUG_SIGNAL) printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", pc, address, is_write, *(unsigned long *)old_set); #endif /* XXX: locking issue */ if (is_write && page_unprotect(h2g(address), pc, puc)) { return 1; } /* see if it is an MMU fault */ ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0); if (ret < 0) return 0; /* not an MMU fault */ if (ret == 0) return 1; /* the MMU fault was handled without causing real CPU fault */ /* now we have a real cpu fault */ tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, puc); } /* we restore the process signal mask as the sigreturn should do it (XXX: use sigsetjmp) */ sigprocmask(SIG_SETMASK, old_set, NULL); cpu_loop_exit(); } #elif defined (TARGET_PPC) static inline int handle_cpu_signal(unsigned long pc, unsigned long address, int is_write, sigset_t *old_set, void *puc) { TranslationBlock *tb; int ret; if (cpu_single_env) env = cpu_single_env; /* XXX: find a correct solution for multithread */ #if defined(DEBUG_SIGNAL) printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", pc, address, is_write, *(unsigned long *)old_set); #endif /* XXX: locking issue */ if (is_write && page_unprotect(h2g(address), pc, puc)) { return 1; } /* see if it is an MMU fault */ ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0); if (ret < 0) return 0; /* not an MMU fault */ if (ret == 0) return 1; /* the MMU fault was handled without causing real CPU fault */ /* now we have a real cpu fault */ tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, puc); } if (ret == 1) { #if 0 printf("PF exception: NIP=0x%08x error=0x%x %p\n", env->nip, env->error_code, tb); #endif /* we restore the process signal mask as the sigreturn should do it (XXX: use sigsetjmp) */ sigprocmask(SIG_SETMASK, old_set, NULL); do_raise_exception_err(env->exception_index, env->error_code); } else { /* activate soft MMU for this block */ cpu_resume_from_signal(env, puc); } /* never comes here */ return 1; } #elif defined(TARGET_M68K) static inline int handle_cpu_signal(unsigned long pc, unsigned long address, int is_write, sigset_t *old_set, void *puc) { TranslationBlock *tb; int ret; if (cpu_single_env) env = cpu_single_env; /* XXX: find a correct solution for multithread */ #if defined(DEBUG_SIGNAL) printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", pc, address, is_write, *(unsigned long *)old_set); #endif /* XXX: locking issue */ if (is_write && page_unprotect(address, pc, puc)) { return 1; } /* see if it is an MMU fault */ ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0); if (ret < 0) return 0; /* not an MMU fault */ if (ret == 0) return 1; /* the MMU fault was handled without causing real CPU fault */ /* now we have a real cpu fault */ tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, puc); } /* we restore the process signal mask as the sigreturn should do it (XXX: use sigsetjmp) */ sigprocmask(SIG_SETMASK, old_set, NULL); cpu_loop_exit(); /* never comes here */ return 1; } #elif defined (TARGET_MIPS) static inline int handle_cpu_signal(unsigned long pc, unsigned long address, int is_write, sigset_t *old_set, void *puc) { TranslationBlock *tb; int ret; if (cpu_single_env) env = cpu_single_env; /* XXX: find a correct solution for multithread */ #if defined(DEBUG_SIGNAL) printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", pc, address, is_write, *(unsigned long *)old_set); #endif /* XXX: locking issue */ if (is_write && page_unprotect(h2g(address), pc, puc)) { return 1; } /* see if it is an MMU fault */ ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0); if (ret < 0) return 0; /* not an MMU fault */ if (ret == 0) return 1; /* the MMU fault was handled without causing real CPU fault */ /* now we have a real cpu fault */ tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, puc); } if (ret == 1) { #if 0 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n", env->PC, env->error_code, tb); #endif /* we restore the process signal mask as the sigreturn should do it (XXX: use sigsetjmp) */ sigprocmask(SIG_SETMASK, old_set, NULL); do_raise_exception_err(env->exception_index, env->error_code); } else { /* activate soft MMU for this block */ cpu_resume_from_signal(env, puc); } /* never comes here */ return 1; } #elif defined (TARGET_SH4) static inline int handle_cpu_signal(unsigned long pc, unsigned long address, int is_write, sigset_t *old_set, void *puc) { TranslationBlock *tb; int ret; if (cpu_single_env) env = cpu_single_env; /* XXX: find a correct solution for multithread */ #if defined(DEBUG_SIGNAL) printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", pc, address, is_write, *(unsigned long *)old_set); #endif /* XXX: locking issue */ if (is_write && page_unprotect(h2g(address), pc, puc)) { return 1; } /* see if it is an MMU fault */ ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0); if (ret < 0) return 0; /* not an MMU fault */ if (ret == 0) return 1; /* the MMU fault was handled without causing real CPU fault */ /* now we have a real cpu fault */ tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, puc); } #if 0 printf("PF exception: NIP=0x%08x error=0x%x %p\n", env->nip, env->error_code, tb); #endif /* we restore the process signal mask as the sigreturn should do it (XXX: use sigsetjmp) */ sigprocmask(SIG_SETMASK, old_set, NULL); cpu_loop_exit(); /* never comes here */ return 1; } #elif defined (TARGET_ALPHA) static inline int handle_cpu_signal(unsigned long pc, unsigned long address, int is_write, sigset_t *old_set, void *puc) { TranslationBlock *tb; int ret; if (cpu_single_env) env = cpu_single_env; /* XXX: find a correct solution for multithread */ #if defined(DEBUG_SIGNAL) printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", pc, address, is_write, *(unsigned long *)old_set); #endif /* XXX: locking issue */ if (is_write && page_unprotect(h2g(address), pc, puc)) { return 1; } /* see if it is an MMU fault */ ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0); if (ret < 0) return 0; /* not an MMU fault */ if (ret == 0) return 1; /* the MMU fault was handled without causing real CPU fault */ /* now we have a real cpu fault */ tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, puc); } #if 0 printf("PF exception: NIP=0x%08x error=0x%x %p\n", env->nip, env->error_code, tb); #endif /* we restore the process signal mask as the sigreturn should do it (XXX: use sigsetjmp) */ sigprocmask(SIG_SETMASK, old_set, NULL); cpu_loop_exit(); /* never comes here */ return 1; } #else #error unsupported target CPU #endif #if defined(__i386__) #if defined(__APPLE__) # include <sys/ucontext.h> # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip)) # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno) # define ERROR_sig(context) ((context)->uc_mcontext->es.err) #else # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP]) # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) #endif #if defined(USE_CODE_COPY) static void cpu_send_trap(unsigned long pc, int trap, struct ucontext *uc) { TranslationBlock *tb; if (cpu_single_env) env = cpu_single_env; /* XXX: find a correct solution for multithread */ /* now we have a real cpu fault */ tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, uc); } sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); raise_exception_err(trap, env->error_code); } #endif int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; struct ucontext *uc = puc; unsigned long pc; int trapno; #ifndef REG_EIP /* for glibc 2.1 */ #define REG_EIP EIP #define REG_ERR ERR #define REG_TRAPNO TRAPNO #endif pc = EIP_sig(uc); trapno = TRAP_sig(uc); #if defined(TARGET_I386) && defined(USE_CODE_COPY) if (trapno == 0x00 || trapno == 0x05) { /* send division by zero or bound exception */ cpu_send_trap(pc, trapno, uc); return 1; } else #endif return handle_cpu_signal(pc, (unsigned long)info->si_addr, trapno == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0, &uc->uc_sigmask, puc); } #elif defined(__x86_64__) int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; struct ucontext *uc = puc; unsigned long pc; pc = uc->uc_mcontext.gregs[REG_RIP]; return handle_cpu_signal(pc, (unsigned long)info->si_addr, uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0, &uc->uc_sigmask, puc); } #elif defined(__powerpc__) /*********************************************************************** * signal context platform-specific definitions * From Wine */ #ifdef linux /* All Registers access - only for local access */ # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name) /* Gpr Registers access */ # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context) # define IAR_sig(context) REG_sig(nip, context) /* Program counter */ # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */ # define CTR_sig(context) REG_sig(ctr, context) /* Count register */ # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */ # define LR_sig(context) REG_sig(link, context) /* Link register */ # define CR_sig(context) REG_sig(ccr, context) /* Condition register */ /* Float Registers access */ # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num]) # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4))) /* Exception Registers access */ # define DAR_sig(context) REG_sig(dar, context) # define DSISR_sig(context) REG_sig(dsisr, context) # define TRAP_sig(context) REG_sig(trap, context) #endif /* linux */ #ifdef __APPLE__ # include <sys/ucontext.h> typedef struct ucontext SIGCONTEXT; /* All Registers access - only for local access */ # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name) # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name) # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name) # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name) /* Gpr Registers access */ # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context) # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */ # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */ # define CTR_sig(context) REG_sig(ctr, context) # define XER_sig(context) REG_sig(xer, context) /* Link register */ # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */ # define CR_sig(context) REG_sig(cr, context) /* Condition register */ /* Float Registers access */ # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context) # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context)) /* Exception Registers access */ # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */ # define DSISR_sig(context) EXCEPREG_sig(dsisr, context) # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */ #endif /* __APPLE__ */ int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; struct ucontext *uc = puc; unsigned long pc; int is_write; pc = IAR_sig(uc); is_write = 0; #if 0 /* ppc 4xx case */ if (DSISR_sig(uc) & 0x00800000) is_write = 1; #else if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) is_write = 1; #endif return handle_cpu_signal(pc, (unsigned long)info->si_addr, is_write, &uc->uc_sigmask, puc); } #elif defined(__alpha__) int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; struct ucontext *uc = puc; uint32_t *pc = uc->uc_mcontext.sc_pc; uint32_t insn = *pc; int is_write = 0; /* XXX: need kernel patch to get write flag faster */ switch (insn >> 26) { case 0x0d: // stw case 0x0e: // stb case 0x0f: // stq_u case 0x24: // stf case 0x25: // stg case 0x26: // sts case 0x27: // stt case 0x2c: // stl case 0x2d: // stq case 0x2e: // stl_c case 0x2f: // stq_c is_write = 1; } return handle_cpu_signal(pc, (unsigned long)info->si_addr, is_write, &uc->uc_sigmask, puc); } #elif defined(__sparc__) int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; uint32_t *regs = (uint32_t *)(info + 1); void *sigmask = (regs + 20); unsigned long pc; int is_write; uint32_t insn; /* XXX: is there a standard glibc define ? */ pc = regs[1]; /* XXX: need kernel patch to get write flag faster */ is_write = 0; insn = *(uint32_t *)pc; if ((insn >> 30) == 3) { switch((insn >> 19) & 0x3f) { case 0x05: // stb case 0x06: // sth case 0x04: // st case 0x07: // std case 0x24: // stf case 0x27: // stdf case 0x25: // stfsr is_write = 1; break; } } return handle_cpu_signal(pc, (unsigned long)info->si_addr, is_write, sigmask, NULL); } #elif defined(__arm__) int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; struct ucontext *uc = puc; unsigned long pc; int is_write; pc = uc->uc_mcontext.gregs[R15]; /* XXX: compute is_write */ is_write = 0; return handle_cpu_signal(pc, (unsigned long)info->si_addr, is_write, &uc->uc_sigmask, puc); } #elif defined(__mc68000) int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; struct ucontext *uc = puc; unsigned long pc; int is_write; pc = uc->uc_mcontext.gregs[16]; /* XXX: compute is_write */ is_write = 0; return handle_cpu_signal(pc, (unsigned long)info->si_addr, is_write, &uc->uc_sigmask, puc); } #elif defined(__ia64) #ifndef __ISR_VALID /* This ought to be in <bits/siginfo.h>... */ # define __ISR_VALID 1 #endif int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; struct ucontext *uc = puc; unsigned long ip; int is_write = 0; ip = uc->uc_mcontext.sc_ip; switch (host_signum) { case SIGILL: case SIGFPE: case SIGSEGV: case SIGBUS: case SIGTRAP: if (info->si_code && (info->si_segvflags & __ISR_VALID)) /* ISR.W (write-access) is bit 33: */ is_write = (info->si_isr >> 33) & 1; break; default: break; } return handle_cpu_signal(ip, (unsigned long)info->si_addr, is_write, &uc->uc_sigmask, puc); } #elif defined(__s390__) int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; struct ucontext *uc = puc; unsigned long pc; int is_write; pc = uc->uc_mcontext.psw.addr; /* XXX: compute is_write */ is_write = 0; return handle_cpu_signal(pc, (unsigned long)info->si_addr, is_write, &uc->uc_sigmask, puc); } #elif defined(__mips__) int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; struct ucontext *uc = puc; greg_t pc = uc->uc_mcontext.pc; int is_write; /* XXX: compute is_write */ is_write = 0; return handle_cpu_signal(pc, (unsigned long)info->si_addr, is_write, &uc->uc_sigmask, puc); } #else #error host CPU specific signal handler needed #endif #endif /* !defined(CONFIG_SOFTMMU) */