/* * emulator main execution loop * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "cpu.h" #include "trace.h" #include "disas/disas.h" #include "tcg.h" #include "qemu/atomic.h" #include "sysemu/qtest.h" #include "qemu/timer.h" /* -icount align implementation. */ typedef struct SyncClocks { int64_t diff_clk; int64_t last_cpu_icount; int64_t realtime_clock; } SyncClocks; #if !defined(CONFIG_USER_ONLY) /* Allow the guest to have a max 3ms advance. * The difference between the 2 clocks could therefore * oscillate around 0. */ #define VM_CLOCK_ADVANCE 3000000 #define THRESHOLD_REDUCE 1.5 #define MAX_DELAY_PRINT_RATE 2000000000LL #define MAX_NB_PRINTS 100 static void align_clocks(SyncClocks *sc, const CPUState *cpu) { int64_t cpu_icount; if (!icount_align_option) { return; } cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); sc->last_cpu_icount = cpu_icount; if (sc->diff_clk > VM_CLOCK_ADVANCE) { #ifndef _WIN32 struct timespec sleep_delay, rem_delay; sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; if (nanosleep(&sleep_delay, &rem_delay) < 0) { sc->diff_clk -= (sleep_delay.tv_sec - rem_delay.tv_sec) * 1000000000LL; sc->diff_clk -= sleep_delay.tv_nsec - rem_delay.tv_nsec; } else { sc->diff_clk = 0; } #else Sleep(sc->diff_clk / SCALE_MS); sc->diff_clk = 0; #endif } } static void print_delay(const SyncClocks *sc) { static float threshold_delay; static int64_t last_realtime_clock; static int nb_prints; if (icount_align_option && sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && nb_prints < MAX_NB_PRINTS) { if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || (-sc->diff_clk / (float)1000000000LL < (threshold_delay - THRESHOLD_REDUCE))) { threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; printf("Warning: The guest is now late by %.1f to %.1f seconds\n", threshold_delay - 1, threshold_delay); nb_prints++; last_realtime_clock = sc->realtime_clock; } } } static void init_delay_params(SyncClocks *sc, const CPUState *cpu) { if (!icount_align_option) { return; } sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock + cpu_get_clock_offset(); sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; if (sc->diff_clk < max_delay) { max_delay = sc->diff_clk; } if (sc->diff_clk > max_advance) { max_advance = sc->diff_clk; } /* Print every 2s max if the guest is late. We limit the number of printed messages to NB_PRINT_MAX(currently 100) */ print_delay(sc); } #else static void align_clocks(SyncClocks *sc, const CPUState *cpu) { } static void init_delay_params(SyncClocks *sc, const CPUState *cpu) { } #endif /* CONFIG USER ONLY */ void cpu_loop_exit(CPUState *cpu) { cpu->current_tb = NULL; siglongjmp(cpu->jmp_env, 1); } /* exit the current TB from a signal handler. The host registers are restored in a state compatible with the CPU emulator */ #if defined(CONFIG_SOFTMMU) void cpu_resume_from_signal(CPUState *cpu, void *puc) { /* XXX: restore cpu registers saved in host registers */ cpu->exception_index = -1; siglongjmp(cpu->jmp_env, 1); } #endif /* Execute a TB, and fix up the CPU state afterwards if necessary */ static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, uint8_t *tb_ptr) { CPUArchState *env = cpu->env_ptr; uintptr_t next_tb; #if defined(DEBUG_DISAS) if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { #if defined(TARGET_I386) log_cpu_state(cpu, CPU_DUMP_CCOP); #elif defined(TARGET_M68K) /* ??? Should not modify env state for dumping. */ cpu_m68k_flush_flags(env, env->cc_op); env->cc_op = CC_OP_FLAGS; env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4); log_cpu_state(cpu, 0); #else log_cpu_state(cpu, 0); #endif } #endif /* DEBUG_DISAS */ next_tb = tcg_qemu_tb_exec(env, tb_ptr); trace_exec_tb_exit((void *) (next_tb & ~TB_EXIT_MASK), next_tb & TB_EXIT_MASK); if ((next_tb & TB_EXIT_MASK) > TB_EXIT_IDX1) { /* We didn't start executing this TB (eg because the instruction * counter hit zero); we must restore the guest PC to the address * of the start of the TB. */ CPUClass *cc = CPU_GET_CLASS(cpu); TranslationBlock *tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK); if (cc->synchronize_from_tb) { cc->synchronize_from_tb(cpu, tb); } else { assert(cc->set_pc); cc->set_pc(cpu, tb->pc); } } if ((next_tb & TB_EXIT_MASK) == TB_EXIT_REQUESTED) { /* We were asked to stop executing TBs (probably a pending * interrupt. We've now stopped, so clear the flag. */ cpu->tcg_exit_req = 0; } return next_tb; } /* Execute the code without caching the generated code. An interpreter could be used if available. */ static void cpu_exec_nocache(CPUArchState *env, int max_cycles, TranslationBlock *orig_tb) { CPUState *cpu = ENV_GET_CPU(env); TranslationBlock *tb; /* Should never happen. We only end up here when an existing TB is too long. */ if (max_cycles > CF_COUNT_MASK) max_cycles = CF_COUNT_MASK; tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, max_cycles); cpu->current_tb = tb; /* execute the generated code */ trace_exec_tb_nocache(tb, tb->pc); cpu_tb_exec(cpu, tb->tc_ptr); cpu->current_tb = NULL; tb_phys_invalidate(tb, -1); tb_free(tb); } static TranslationBlock *tb_find_slow(CPUArchState *env, target_ulong pc, target_ulong cs_base, uint64_t flags) { CPUState *cpu = ENV_GET_CPU(env); TranslationBlock *tb, **ptb1; unsigned int h; tb_page_addr_t phys_pc, phys_page1; target_ulong virt_page2; tcg_ctx.tb_ctx.tb_invalidated_flag = 0; /* find translated block using physical mappings */ phys_pc = get_page_addr_code(env, pc); phys_page1 = phys_pc & TARGET_PAGE_MASK; h = tb_phys_hash_func(phys_pc); ptb1 = &tcg_ctx.tb_ctx.tb_phys_hash[h]; for(;;) { tb = *ptb1; if (!tb) goto not_found; if (tb->pc == pc && tb->page_addr[0] == phys_page1 && tb->cs_base == cs_base && tb->flags == flags) { /* check next page if needed */ if (tb->page_addr[1] != -1) { tb_page_addr_t phys_page2; virt_page2 = (pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; phys_page2 = get_page_addr_code(env, virt_page2); if (tb->page_addr[1] == phys_page2) goto found; } else { goto found; } } ptb1 = &tb->phys_hash_next; } not_found: /* if no translated code available, then translate it now */ tb = tb_gen_code(cpu, pc, cs_base, flags, 0); found: /* Move the last found TB to the head of the list */ if (likely(*ptb1)) { *ptb1 = tb->phys_hash_next; tb->phys_hash_next = tcg_ctx.tb_ctx.tb_phys_hash[h]; tcg_ctx.tb_ctx.tb_phys_hash[h] = tb; } /* we add the TB in the virtual pc hash table */ cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; return tb; } static inline TranslationBlock *tb_find_fast(CPUArchState *env) { CPUState *cpu = ENV_GET_CPU(env); TranslationBlock *tb; target_ulong cs_base, pc; int flags; /* we record a subset of the CPU state. It will always be the same before a given translated block is executed. */ cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); tb = cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base || tb->flags != flags)) { tb = tb_find_slow(env, pc, cs_base, flags); } return tb; } static void cpu_handle_debug_exception(CPUArchState *env) { CPUState *cpu = ENV_GET_CPU(env); CPUClass *cc = CPU_GET_CLASS(cpu); CPUWatchpoint *wp; if (!cpu->watchpoint_hit) { QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { wp->flags &= ~BP_WATCHPOINT_HIT; } } cc->debug_excp_handler(cpu); } /* main execution loop */ volatile sig_atomic_t exit_request; int cpu_exec(CPUArchState *env) { CPUState *cpu = ENV_GET_CPU(env); #if !(defined(CONFIG_USER_ONLY) && \ (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X))) CPUClass *cc = CPU_GET_CLASS(cpu); #endif #ifdef TARGET_I386 X86CPU *x86_cpu = X86_CPU(cpu); #endif int ret, interrupt_request; TranslationBlock *tb; uint8_t *tc_ptr; uintptr_t next_tb; SyncClocks sc; /* This must be volatile so it is not trashed by longjmp() */ volatile bool have_tb_lock = false; if (cpu->halted) { if (!cpu_has_work(cpu)) { return EXCP_HALTED; } cpu->halted = 0; } current_cpu = cpu; /* As long as current_cpu is null, up to the assignment just above, * requests by other threads to exit the execution loop are expected to * be issued using the exit_request global. We must make sure that our * evaluation of the global value is performed past the current_cpu * value transition point, which requires a memory barrier as well as * an instruction scheduling constraint on modern architectures. */ smp_mb(); if (unlikely(exit_request)) { cpu->exit_request = 1; } #if defined(TARGET_I386) /* put eflags in CPU temporary format */ CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); env->df = 1 - (2 * ((env->eflags >> 10) & 1)); CC_OP = CC_OP_EFLAGS; env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); #elif defined(TARGET_SPARC) #elif defined(TARGET_M68K) env->cc_op = CC_OP_FLAGS; env->cc_dest = env->sr & 0xf; env->cc_x = (env->sr >> 4) & 1; #elif defined(TARGET_ALPHA) #elif defined(TARGET_ARM) #elif defined(TARGET_UNICORE32) #elif defined(TARGET_PPC) env->reserve_addr = -1; #elif defined(TARGET_LM32) #elif defined(TARGET_MICROBLAZE) #elif defined(TARGET_MIPS) #elif defined(TARGET_MOXIE) #elif defined(TARGET_OPENRISC) #elif defined(TARGET_SH4) #elif defined(TARGET_CRIS) #elif defined(TARGET_S390X) #elif defined(TARGET_XTENSA) #elif defined(TARGET_TRICORE) /* XXXXX */ #else #error unsupported target CPU #endif cpu->exception_index = -1; /* Calculate difference between guest clock and host clock. * This delay includes the delay of the last cycle, so * what we have to do is sleep until it is 0. As for the * advance/delay we gain here, we try to fix it next time. */ init_delay_params(&sc, cpu); /* prepare setjmp context for exception handling */ for(;;) { if (sigsetjmp(cpu->jmp_env, 0) == 0) { /* if an exception is pending, we execute it here */ if (cpu->exception_index >= 0) { if (cpu->exception_index >= EXCP_INTERRUPT) { /* exit request from the cpu execution loop */ ret = cpu->exception_index; if (ret == EXCP_DEBUG) { cpu_handle_debug_exception(env); } break; } else { #if defined(CONFIG_USER_ONLY) /* if user mode only, we simulate a fake exception which will be handled outside the cpu execution loop */ #if defined(TARGET_I386) cc->do_interrupt(cpu); #endif ret = cpu->exception_index; break; #else cc->do_interrupt(cpu); cpu->exception_index = -1; #endif } } next_tb = 0; /* force lookup of first TB */ for(;;) { interrupt_request = cpu->interrupt_request; if (unlikely(interrupt_request)) { if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { /* Mask out external interrupts for this step. */ interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; } if (interrupt_request & CPU_INTERRUPT_DEBUG) { cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; cpu->exception_index = EXCP_DEBUG; cpu_loop_exit(cpu); } #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \ defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \ defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || \ defined(TARGET_UNICORE32) || defined(TARGET_TRICORE) if (interrupt_request & CPU_INTERRUPT_HALT) { cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; cpu->halted = 1; cpu->exception_index = EXCP_HLT; cpu_loop_exit(cpu); } #endif #if defined(TARGET_I386) if (interrupt_request & CPU_INTERRUPT_INIT) { cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0); do_cpu_init(x86_cpu); cpu->exception_index = EXCP_HALTED; cpu_loop_exit(cpu); } #else if (interrupt_request & CPU_INTERRUPT_RESET) { cpu_reset(cpu); } #endif #if defined(TARGET_I386) #if !defined(CONFIG_USER_ONLY) if (interrupt_request & CPU_INTERRUPT_POLL) { cpu->interrupt_request &= ~CPU_INTERRUPT_POLL; apic_poll_irq(x86_cpu->apic_state); } #endif if (interrupt_request & CPU_INTERRUPT_SIPI) { do_cpu_sipi(x86_cpu); } else if (env->hflags2 & HF2_GIF_MASK) { if ((interrupt_request & CPU_INTERRUPT_SMI) && !(env->hflags & HF_SMM_MASK)) { cpu_svm_check_intercept_param(env, SVM_EXIT_SMI, 0); cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; do_smm_enter(x86_cpu); next_tb = 0; } else if ((interrupt_request & CPU_INTERRUPT_NMI) && !(env->hflags2 & HF2_NMI_MASK)) { cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; env->hflags2 |= HF2_NMI_MASK; do_interrupt_x86_hardirq(env, EXCP02_NMI, 1); next_tb = 0; } else if (interrupt_request & CPU_INTERRUPT_MCE) { cpu->interrupt_request &= ~CPU_INTERRUPT_MCE; do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0); next_tb = 0; } else if ((interrupt_request & CPU_INTERRUPT_HARD) && (((env->hflags2 & HF2_VINTR_MASK) && (env->hflags2 & HF2_HIF_MASK)) || (!(env->hflags2 & HF2_VINTR_MASK) && (env->eflags & IF_MASK && !(env->hflags & HF_INHIBIT_IRQ_MASK))))) { int intno; cpu_svm_check_intercept_param(env, SVM_EXIT_INTR, 0); cpu->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ); intno = cpu_get_pic_interrupt(env); qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno); do_interrupt_x86_hardirq(env, intno, 1); /* ensure that no TB jump will be modified as the program flow was changed */ next_tb = 0; #if !defined(CONFIG_USER_ONLY) } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) { int intno; /* FIXME: this should respect TPR */ cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR, 0); intno = ldl_phys(cpu->as, env->vm_vmcb + offsetof(struct vmcb, control.int_vector)); qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno); do_interrupt_x86_hardirq(env, intno, 1); cpu->interrupt_request &= ~CPU_INTERRUPT_VIRQ; next_tb = 0; #endif } } #elif defined(TARGET_PPC) if (interrupt_request & CPU_INTERRUPT_HARD) { ppc_hw_interrupt(env); if (env->pending_interrupts == 0) { cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; } next_tb = 0; } #elif defined(TARGET_LM32) if ((interrupt_request & CPU_INTERRUPT_HARD) && (env->ie & IE_IE)) { cpu->exception_index = EXCP_IRQ; cc->do_interrupt(cpu); next_tb = 0; } #elif defined(TARGET_MICROBLAZE) if ((interrupt_request & CPU_INTERRUPT_HARD) && (env->sregs[SR_MSR] & MSR_IE) && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP)) && !(env->iflags & (D_FLAG | IMM_FLAG))) { cpu->exception_index = EXCP_IRQ; cc->do_interrupt(cpu); next_tb = 0; } #elif defined(TARGET_MIPS) if ((interrupt_request & CPU_INTERRUPT_HARD) && cpu_mips_hw_interrupts_pending(env)) { /* Raise it */ cpu->exception_index = EXCP_EXT_INTERRUPT; env->error_code = 0; cc->do_interrupt(cpu); next_tb = 0; } #elif defined(TARGET_TRICORE) if ((interrupt_request & CPU_INTERRUPT_HARD)) { cc->do_interrupt(cpu); next_tb = 0; } #elif defined(TARGET_OPENRISC) { int idx = -1; if ((interrupt_request & CPU_INTERRUPT_HARD) && (env->sr & SR_IEE)) { idx = EXCP_INT; } if ((interrupt_request & CPU_INTERRUPT_TIMER) && (env->sr & SR_TEE)) { idx = EXCP_TICK; } if (idx >= 0) { cpu->exception_index = idx; cc->do_interrupt(cpu); next_tb = 0; } } #elif defined(TARGET_SPARC) if (interrupt_request & CPU_INTERRUPT_HARD) { if (cpu_interrupts_enabled(env) && env->interrupt_index > 0) { int pil = env->interrupt_index & 0xf; int type = env->interrupt_index & 0xf0; if (((type == TT_EXTINT) && cpu_pil_allowed(env, pil)) || type != TT_EXTINT) { cpu->exception_index = env->interrupt_index; cc->do_interrupt(cpu); next_tb = 0; } } } #elif defined(TARGET_ARM) if (interrupt_request & CPU_INTERRUPT_FIQ && !(env->daif & PSTATE_F)) { cpu->exception_index = EXCP_FIQ; cc->do_interrupt(cpu); next_tb = 0; } /* ARMv7-M interrupt return works by loading a magic value into the PC. On real hardware the load causes the return to occur. The qemu implementation performs the jump normally, then does the exception return when the CPU tries to execute code at the magic address. This will cause the magic PC value to be pushed to the stack if an interrupt occurred at the wrong time. We avoid this by disabling interrupts when pc contains a magic address. */ if (interrupt_request & CPU_INTERRUPT_HARD && !(env->daif & PSTATE_I) && (!IS_M(env) || env->regs[15] < 0xfffffff0)) { cpu->exception_index = EXCP_IRQ; cc->do_interrupt(cpu); next_tb = 0; } #elif defined(TARGET_UNICORE32) if (interrupt_request & CPU_INTERRUPT_HARD && !(env->uncached_asr & ASR_I)) { cpu->exception_index = UC32_EXCP_INTR; cc->do_interrupt(cpu); next_tb = 0; } #elif defined(TARGET_SH4) if (interrupt_request & CPU_INTERRUPT_HARD) { cc->do_interrupt(cpu); next_tb = 0; } #elif defined(TARGET_ALPHA) { int idx = -1; /* ??? This hard-codes the OSF/1 interrupt levels. */ switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) { case 0 ... 3: if (interrupt_request & CPU_INTERRUPT_HARD) { idx = EXCP_DEV_INTERRUPT; } /* FALLTHRU */ case 4: if (interrupt_request & CPU_INTERRUPT_TIMER) { idx = EXCP_CLK_INTERRUPT; } /* FALLTHRU */ case 5: if (interrupt_request & CPU_INTERRUPT_SMP) { idx = EXCP_SMP_INTERRUPT; } /* FALLTHRU */ case 6: if (interrupt_request & CPU_INTERRUPT_MCHK) { idx = EXCP_MCHK; } } if (idx >= 0) { cpu->exception_index = idx; env->error_code = 0; cc->do_interrupt(cpu); next_tb = 0; } } #elif defined(TARGET_CRIS) if (interrupt_request & CPU_INTERRUPT_HARD && (env->pregs[PR_CCS] & I_FLAG) && !env->locked_irq) { cpu->exception_index = EXCP_IRQ; cc->do_interrupt(cpu); next_tb = 0; } if (interrupt_request & CPU_INTERRUPT_NMI) { unsigned int m_flag_archval; if (env->pregs[PR_VR] < 32) { m_flag_archval = M_FLAG_V10; } else { m_flag_archval = M_FLAG_V32; } if ((env->pregs[PR_CCS] & m_flag_archval)) { cpu->exception_index = EXCP_NMI; cc->do_interrupt(cpu); next_tb = 0; } } #elif defined(TARGET_M68K) if (interrupt_request & CPU_INTERRUPT_HARD && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) { /* Real hardware gets the interrupt vector via an IACK cycle at this point. Current emulated hardware doesn't rely on this, so we provide/save the vector when the interrupt is first signalled. */ cpu->exception_index = env->pending_vector; do_interrupt_m68k_hardirq(env); next_tb = 0; } #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY) if ((interrupt_request & CPU_INTERRUPT_HARD) && (env->psw.mask & PSW_MASK_EXT)) { cc->do_interrupt(cpu); next_tb = 0; } #elif defined(TARGET_XTENSA) if (interrupt_request & CPU_INTERRUPT_HARD) { cpu->exception_index = EXC_IRQ; cc->do_interrupt(cpu); next_tb = 0; } #endif /* Don't use the cached interrupt_request value, do_interrupt may have updated the EXITTB flag. */ if (cpu->interrupt_request & CPU_INTERRUPT_EXITTB) { cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; /* ensure that no TB jump will be modified as the program flow was changed */ next_tb = 0; } } if (unlikely(cpu->exit_request)) { cpu->exit_request = 0; cpu->exception_index = EXCP_INTERRUPT; cpu_loop_exit(cpu); } spin_lock(&tcg_ctx.tb_ctx.tb_lock); have_tb_lock = true; tb = tb_find_fast(env); /* Note: we do it here to avoid a gcc bug on Mac OS X when doing it in tb_find_slow */ if (tcg_ctx.tb_ctx.tb_invalidated_flag) { /* as some TB could have been invalidated because of memory exceptions while generating the code, we must recompute the hash index here */ next_tb = 0; tcg_ctx.tb_ctx.tb_invalidated_flag = 0; } if (qemu_loglevel_mask(CPU_LOG_EXEC)) { qemu_log("Trace %p [" TARGET_FMT_lx "] %s\n", tb->tc_ptr, tb->pc, lookup_symbol(tb->pc)); } /* see if we can patch the calling TB. When the TB spans two pages, we cannot safely do a direct jump. */ if (next_tb != 0 && tb->page_addr[1] == -1) { tb_add_jump((TranslationBlock *)(next_tb & ~TB_EXIT_MASK), next_tb & TB_EXIT_MASK, tb); } have_tb_lock = false; spin_unlock(&tcg_ctx.tb_ctx.tb_lock); /* cpu_interrupt might be called while translating the TB, but before it is linked into a potentially infinite loop and becomes env->current_tb. Avoid starting execution if there is a pending interrupt. */ cpu->current_tb = tb; barrier(); if (likely(!cpu->exit_request)) { trace_exec_tb(tb, tb->pc); tc_ptr = tb->tc_ptr; /* execute the generated code */ next_tb = cpu_tb_exec(cpu, tc_ptr); switch (next_tb & TB_EXIT_MASK) { case TB_EXIT_REQUESTED: /* Something asked us to stop executing * chained TBs; just continue round the main * loop. Whatever requested the exit will also * have set something else (eg exit_request or * interrupt_request) which we will handle * next time around the loop. */ tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK); next_tb = 0; break; case TB_EXIT_ICOUNT_EXPIRED: { /* Instruction counter expired. */ int insns_left; tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK); insns_left = cpu->icount_decr.u32; if (cpu->icount_extra && insns_left >= 0) { /* Refill decrementer and continue execution. */ cpu->icount_extra += insns_left; if (cpu->icount_extra > 0xffff) { insns_left = 0xffff; } else { insns_left = cpu->icount_extra; } cpu->icount_extra -= insns_left; cpu->icount_decr.u16.low = insns_left; } else { if (insns_left > 0) { /* Execute remaining instructions. */ cpu_exec_nocache(env, insns_left, tb); align_clocks(&sc, cpu); } cpu->exception_index = EXCP_INTERRUPT; next_tb = 0; cpu_loop_exit(cpu); } break; } default: break; } } cpu->current_tb = NULL; /* Try to align the host and virtual clocks if the guest is in advance */ align_clocks(&sc, cpu); /* reset soft MMU for next block (it can currently only be set by a memory fault) */ } /* for(;;) */ } else { /* Reload env after longjmp - the compiler may have smashed all * local variables as longjmp is marked 'noreturn'. */ cpu = current_cpu; env = cpu->env_ptr; #if !(defined(CONFIG_USER_ONLY) && \ (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X))) cc = CPU_GET_CLASS(cpu); #endif #ifdef TARGET_I386 x86_cpu = X86_CPU(cpu); #endif if (have_tb_lock) { spin_unlock(&tcg_ctx.tb_ctx.tb_lock); have_tb_lock = false; } } } /* for(;;) */ #if defined(TARGET_I386) /* restore flags in standard format */ env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP) | (env->df & DF_MASK); #elif defined(TARGET_ARM) /* XXX: Save/restore host fpu exception state?. */ #elif defined(TARGET_UNICORE32) #elif defined(TARGET_SPARC) #elif defined(TARGET_PPC) #elif defined(TARGET_LM32) #elif defined(TARGET_M68K) cpu_m68k_flush_flags(env, env->cc_op); env->cc_op = CC_OP_FLAGS; env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4); #elif defined(TARGET_MICROBLAZE) #elif defined(TARGET_MIPS) #elif defined(TARGET_TRICORE) #elif defined(TARGET_MOXIE) #elif defined(TARGET_OPENRISC) #elif defined(TARGET_SH4) #elif defined(TARGET_ALPHA) #elif defined(TARGET_CRIS) #elif defined(TARGET_S390X) #elif defined(TARGET_XTENSA) /* XXXXX */ #else #error unsupported target CPU #endif /* fail safe : never use current_cpu outside cpu_exec() */ current_cpu = NULL; return ret; }