/* * i386 emulator main execution loop * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include "exec.h" #include "disas.h" int tb_invalidated_flag; //#define DEBUG_EXEC //#define DEBUG_SIGNAL #if defined(TARGET_ARM) || defined(TARGET_SPARC) /* XXX: unify with i386 target */ void cpu_loop_exit(void) { longjmp(env->jmp_env, 1); } #endif /* main execution loop */ int cpu_exec(CPUState *env1) { int saved_T0, saved_T1, saved_T2; CPUState *saved_env; #ifdef reg_EAX int saved_EAX; #endif #ifdef reg_ECX int saved_ECX; #endif #ifdef reg_EDX int saved_EDX; #endif #ifdef reg_EBX int saved_EBX; #endif #ifdef reg_ESP int saved_ESP; #endif #ifdef reg_EBP int saved_EBP; #endif #ifdef reg_ESI int saved_ESI; #endif #ifdef reg_EDI int saved_EDI; #endif #ifdef __sparc__ int saved_i7, tmp_T0; #endif int code_gen_size, ret, interrupt_request; void (*gen_func)(void); TranslationBlock *tb, **ptb; uint8_t *tc_ptr, *cs_base, *pc; unsigned int flags; /* first we save global registers */ saved_T0 = T0; saved_T1 = T1; saved_T2 = T2; saved_env = env; env = env1; #ifdef __sparc__ /* we also save i7 because longjmp may not restore it */ asm volatile ("mov %%i7, %0" : "=r" (saved_i7)); #endif #if defined(TARGET_I386) #ifdef reg_EAX saved_EAX = EAX; EAX = env->regs[R_EAX]; #endif #ifdef reg_ECX saved_ECX = ECX; ECX = env->regs[R_ECX]; #endif #ifdef reg_EDX saved_EDX = EDX; EDX = env->regs[R_EDX]; #endif #ifdef reg_EBX saved_EBX = EBX; EBX = env->regs[R_EBX]; #endif #ifdef reg_ESP saved_ESP = ESP; ESP = env->regs[R_ESP]; #endif #ifdef reg_EBP saved_EBP = EBP; EBP = env->regs[R_EBP]; #endif #ifdef reg_ESI saved_ESI = ESI; ESI = env->regs[R_ESI]; #endif #ifdef reg_EDI saved_EDI = EDI; EDI = env->regs[R_EDI]; #endif /* put eflags in CPU temporary format */ CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); DF = 1 - (2 * ((env->eflags >> 10) & 1)); CC_OP = CC_OP_EFLAGS; env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); #elif defined(TARGET_ARM) { unsigned int psr; psr = env->cpsr; env->CF = (psr >> 29) & 1; env->NZF = (psr & 0xc0000000) ^ 0x40000000; env->VF = (psr << 3) & 0x80000000; env->cpsr = psr & ~0xf0000000; } #elif defined(TARGET_SPARC) #elif defined(TARGET_PPC) #else #error unsupported target CPU #endif env->exception_index = -1; /* prepare setjmp context for exception handling */ for(;;) { if (setjmp(env->jmp_env) == 0) { /* if an exception is pending, we execute it here */ if (env->exception_index >= 0) { if (env->exception_index >= EXCP_INTERRUPT) { /* exit request from the cpu execution loop */ ret = env->exception_index; break; } else if (env->user_mode_only) { /* if user mode only, we simulate a fake exception which will be hanlded outside the cpu execution loop */ #if defined(TARGET_I386) do_interrupt_user(env->exception_index, env->exception_is_int, env->error_code, env->exception_next_eip); #endif ret = env->exception_index; break; } else { #if defined(TARGET_I386) /* simulate a real cpu exception. On i386, it can trigger new exceptions, but we do not handle double or triple faults yet. */ do_interrupt(env->exception_index, env->exception_is_int, env->error_code, env->exception_next_eip, 0); #endif } env->exception_index = -1; } T0 = 0; /* force lookup of first TB */ for(;;) { #ifdef __sparc__ /* g1 can be modified by some libc? functions */ tmp_T0 = T0; #endif interrupt_request = env->interrupt_request; if (__builtin_expect(interrupt_request, 0)) { #if defined(TARGET_I386) /* if hardware interrupt pending, we execute it */ if ((interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) { int intno; intno = cpu_x86_get_pic_interrupt(env); if (loglevel) { fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno); } do_interrupt(intno, 0, 0, 0, 1); env->interrupt_request &= ~CPU_INTERRUPT_HARD; /* ensure that no TB jump will be modified as the program flow was changed */ #ifdef __sparc__ tmp_T0 = 0; #else T0 = 0; #endif } #endif if (interrupt_request & CPU_INTERRUPT_EXIT) { env->interrupt_request &= ~CPU_INTERRUPT_EXIT; env->exception_index = EXCP_INTERRUPT; cpu_loop_exit(); } } #ifdef DEBUG_EXEC if (loglevel) { #if defined(TARGET_I386) /* restore flags in standard format */ env->regs[R_EAX] = EAX; env->regs[R_EBX] = EBX; env->regs[R_ECX] = ECX; env->regs[R_EDX] = EDX; env->regs[R_ESI] = ESI; env->regs[R_EDI] = EDI; env->regs[R_EBP] = EBP; env->regs[R_ESP] = ESP; env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP); env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); #elif defined(TARGET_ARM) env->cpsr = compute_cpsr(); cpu_arm_dump_state(env, logfile, 0); env->cpsr &= ~0xf0000000; #elif defined(TARGET_SPARC) cpu_sparc_dump_state (env, logfile, 0); #elif defined(TARGET_PPC) cpu_ppc_dump_state(env, logfile, 0); #else #error unsupported target CPU #endif } #endif /* we record a subset of the CPU state. It will always be the same before a given translated block is executed. */ #if defined(TARGET_I386) flags = env->hflags; flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); cs_base = env->segs[R_CS].base; pc = cs_base + env->eip; #elif defined(TARGET_ARM) flags = 0; cs_base = 0; pc = (uint8_t *)env->regs[15]; #elif defined(TARGET_SPARC) flags = 0; cs_base = 0; if (env->npc) { env->pc = env->npc; env->npc = 0; } pc = (uint8_t *) env->pc; #elif defined(TARGET_PPC) flags = 0; cs_base = 0; pc = (uint8_t *)env->nip; #else #error unsupported CPU #endif tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base, flags); if (!tb) { spin_lock(&tb_lock); /* if no translated code available, then translate it now */ tb = tb_alloc((unsigned long)pc); if (!tb) { /* flush must be done */ tb_flush(); /* cannot fail at this point */ tb = tb_alloc((unsigned long)pc); /* don't forget to invalidate previous TB info */ ptb = &tb_hash[tb_hash_func((unsigned long)pc)]; T0 = 0; } tc_ptr = code_gen_ptr; tb->tc_ptr = tc_ptr; tb->cs_base = (unsigned long)cs_base; tb->flags = flags; tb_invalidated_flag = 0; cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size); if (tb_invalidated_flag) { /* as some TB could have been invalidated because of memory exceptions while generating the code, we must recompute the hash index here */ ptb = &tb_hash[tb_hash_func((unsigned long)pc)]; while (*ptb != NULL) ptb = &(*ptb)->hash_next; T0 = 0; } *ptb = tb; tb->hash_next = NULL; tb_link(tb); code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); spin_unlock(&tb_lock); } #ifdef DEBUG_EXEC if (loglevel) { fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n", (long)tb->tc_ptr, (long)tb->pc, lookup_symbol((void *)tb->pc)); } #endif #ifdef __sparc__ T0 = tmp_T0; #endif /* see if we can patch the calling TB. */ if (T0 != 0) { spin_lock(&tb_lock); tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb); spin_unlock(&tb_lock); } tc_ptr = tb->tc_ptr; env->current_tb = tb; /* execute the generated code */ gen_func = (void *)tc_ptr; #if defined(__sparc__) __asm__ __volatile__("call %0\n\t" "mov %%o7,%%i0" : /* no outputs */ : "r" (gen_func) : "i0", "i1", "i2", "i3", "i4", "i5"); #elif defined(__arm__) asm volatile ("mov pc, %0\n\t" ".global exec_loop\n\t" "exec_loop:\n\t" : /* no outputs */ : "r" (gen_func) : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14"); #else gen_func(); #endif env->current_tb = NULL; /* reset soft MMU for next block (it can currently only be set by a memory fault) */ #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU) if (env->hflags & HF_SOFTMMU_MASK) { env->hflags &= ~HF_SOFTMMU_MASK; /* do not allow linking to another block */ T0 = 0; } #endif } } else { } } /* for(;;) */ #if defined(TARGET_I386) /* restore flags in standard format */ env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); /* restore global registers */ #ifdef reg_EAX EAX = saved_EAX; #endif #ifdef reg_ECX ECX = saved_ECX; #endif #ifdef reg_EDX EDX = saved_EDX; #endif #ifdef reg_EBX EBX = saved_EBX; #endif #ifdef reg_ESP ESP = saved_ESP; #endif #ifdef reg_EBP EBP = saved_EBP; #endif #ifdef reg_ESI ESI = saved_ESI; #endif #ifdef reg_EDI EDI = saved_EDI; #endif #elif defined(TARGET_ARM) env->cpsr = compute_cpsr(); #elif defined(TARGET_SPARC) #elif defined(TARGET_PPC) #else #error unsupported target CPU #endif #ifdef __sparc__ asm volatile ("mov %0, %%i7" : : "r" (saved_i7)); #endif T0 = saved_T0; T1 = saved_T1; T2 = saved_T2; env = saved_env; return ret; } #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY) void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector) { CPUX86State *saved_env; saved_env = env; env = s; if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { selector &= 0xffff; cpu_x86_load_seg_cache(env, seg_reg, selector, (uint8_t *)(selector << 4), 0xffff, 0); } else { load_seg(seg_reg, selector, 0); } env = saved_env; } void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32) { CPUX86State *saved_env; saved_env = env; env = s; helper_fsave(ptr, data32); env = saved_env; } void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32) { CPUX86State *saved_env; saved_env = env; env = s; helper_frstor(ptr, data32); env = saved_env; } #endif /* TARGET_I386 */ #undef EAX #undef ECX #undef EDX #undef EBX #undef ESP #undef EBP #undef ESI #undef EDI #undef EIP #include #include #if defined(TARGET_I386) /* 'pc' is the host PC at which the exception was raised. 'address' is the effective address of the memory exception. 'is_write' is 1 if a write caused the exception and otherwise 0'. 'old_set' is the signal set which should be restored */ static inline int handle_cpu_signal(unsigned long pc, unsigned long address, int is_write, sigset_t *old_set) { TranslationBlock *tb; int ret; if (cpu_single_env) env = cpu_single_env; /* XXX: find a correct solution for multithread */ #if defined(DEBUG_SIGNAL) printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", pc, address, is_write, *(unsigned long *)old_set); #endif /* XXX: locking issue */ if (is_write && page_unprotect(address)) { return 1; } /* see if it is an MMU fault */ ret = cpu_x86_handle_mmu_fault(env, address, is_write, ((env->hflags & HF_CPL_MASK) == 3), 0); if (ret < 0) return 0; /* not an MMU fault */ if (ret == 0) return 1; /* the MMU fault was handled without causing real CPU fault */ /* now we have a real cpu fault */ tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc); } if (ret == 1) { #if 0 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", env->eip, env->cr[2], env->error_code); #endif /* we restore the process signal mask as the sigreturn should do it (XXX: use sigsetjmp) */ sigprocmask(SIG_SETMASK, old_set, NULL); raise_exception_err(EXCP0E_PAGE, env->error_code); } else { /* activate soft MMU for this block */ env->hflags |= HF_SOFTMMU_MASK; sigprocmask(SIG_SETMASK, old_set, NULL); cpu_loop_exit(); } /* never comes here */ return 1; } #elif defined(TARGET_ARM) static inline int handle_cpu_signal(unsigned long pc, unsigned long address, int is_write, sigset_t *old_set) { /* XXX: do more */ return 0; } #elif defined(TARGET_SPARC) static inline int handle_cpu_signal(unsigned long pc, unsigned long address, int is_write, sigset_t *old_set) { return 0; } #elif defined (TARGET_PPC) static inline int handle_cpu_signal(unsigned long pc, unsigned long address, int is_write, sigset_t *old_set) { TranslationBlock *tb; #if 0 if (cpu_single_env) env = cpu_single_env; /* XXX: find a correct solution for multithread */ #endif #if defined(DEBUG_SIGNAL) printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", pc, address, is_write, *(unsigned long *)old_set); #endif /* XXX: locking issue */ if (is_write && page_unprotect(address)) { return 1; } /* now we have a real cpu fault */ tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc); } #if 0 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", env->eip, env->cr[2], env->error_code); #endif /* we restore the process signal mask as the sigreturn should do it (XXX: use sigsetjmp) */ sigprocmask(SIG_SETMASK, old_set, NULL); raise_exception_err(EXCP_PROGRAM, env->error_code); /* never comes here */ return 1; } #else #error unsupported target CPU #endif #if defined(__i386__) int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc) { struct ucontext *uc = puc; unsigned long pc; #ifndef REG_EIP /* for glibc 2.1 */ #define REG_EIP EIP #define REG_ERR ERR #define REG_TRAPNO TRAPNO #endif pc = uc->uc_mcontext.gregs[REG_EIP]; return handle_cpu_signal(pc, (unsigned long)info->si_addr, uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0, &uc->uc_sigmask); } #elif defined(__powerpc) int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc) { struct ucontext *uc = puc; struct pt_regs *regs = uc->uc_mcontext.regs; unsigned long pc; int is_write; pc = regs->nip; is_write = 0; #if 0 /* ppc 4xx case */ if (regs->dsisr & 0x00800000) is_write = 1; #else if (regs->trap != 0x400 && (regs->dsisr & 0x02000000)) is_write = 1; #endif return handle_cpu_signal(pc, (unsigned long)info->si_addr, is_write, &uc->uc_sigmask); } #elif defined(__alpha__) int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc) { struct ucontext *uc = puc; uint32_t *pc = uc->uc_mcontext.sc_pc; uint32_t insn = *pc; int is_write = 0; /* XXX: need kernel patch to get write flag faster */ switch (insn >> 26) { case 0x0d: // stw case 0x0e: // stb case 0x0f: // stq_u case 0x24: // stf case 0x25: // stg case 0x26: // sts case 0x27: // stt case 0x2c: // stl case 0x2d: // stq case 0x2e: // stl_c case 0x2f: // stq_c is_write = 1; } return handle_cpu_signal(pc, (unsigned long)info->si_addr, is_write, &uc->uc_sigmask); } #elif defined(__sparc__) int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc) { uint32_t *regs = (uint32_t *)(info + 1); void *sigmask = (regs + 20); unsigned long pc; int is_write; uint32_t insn; /* XXX: is there a standard glibc define ? */ pc = regs[1]; /* XXX: need kernel patch to get write flag faster */ is_write = 0; insn = *(uint32_t *)pc; if ((insn >> 30) == 3) { switch((insn >> 19) & 0x3f) { case 0x05: // stb case 0x06: // sth case 0x04: // st case 0x07: // std case 0x24: // stf case 0x27: // stdf case 0x25: // stfsr is_write = 1; break; } } return handle_cpu_signal(pc, (unsigned long)info->si_addr, is_write, sigmask); } #elif defined(__arm__) int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc) { struct ucontext *uc = puc; unsigned long pc; int is_write; pc = uc->uc_mcontext.gregs[R15]; /* XXX: compute is_write */ is_write = 0; return handle_cpu_signal(pc, (unsigned long)info->si_addr, is_write, &uc->uc_sigmask); } #elif defined(__mc68000) int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc) { struct ucontext *uc = puc; unsigned long pc; int is_write; pc = uc->uc_mcontext.gregs[16]; /* XXX: compute is_write */ is_write = 0; return handle_cpu_signal(pc, (unsigned long)info->si_addr, is_write, &uc->uc_sigmask); } #else #error host CPU specific signal handler needed #endif