/* * defines common to all virtual CPUs * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef CPU_ALL_H #define CPU_ALL_H #if defined(__arm__) || defined(__sparc__) #define WORDS_ALIGNED #endif /* some important defines: * * WORDS_ALIGNED : if defined, the host cpu can only make word aligned * memory accesses. * * WORDS_BIGENDIAN : if defined, the host cpu is big endian and * otherwise little endian. * * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet)) * * TARGET_WORDS_BIGENDIAN : same for target cpu */ /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */ typedef union { double d; #if !defined(WORDS_BIGENDIAN) && !defined(__arm__) struct { uint32_t lower; uint32_t upper; } l; #else struct { uint32_t upper; uint32_t lower; } l; #endif uint64_t ll; } CPU_DoubleU; /* CPU memory access without any memory or io remapping */ /* * the generic syntax for the memory accesses is: * * load: ld{type}{sign}{size}{endian}_{access_type}(ptr) * * store: st{type}{size}{endian}_{access_type}(ptr, val) * * type is: * (empty): integer access * f : float access * * sign is: * (empty): for floats or 32 bit size * u : unsigned * s : signed * * size is: * b: 8 bits * w: 16 bits * l: 32 bits * q: 64 bits * * endian is: * (empty): target cpu endianness or 8 bit access * r : reversed target cpu endianness (not implemented yet) * be : big endian (not implemented yet) * le : little endian (not implemented yet) * * access_type is: * raw : host memory access * user : user mode access using soft MMU * kernel : kernel mode access using soft MMU */ static inline int ldub_raw(void *ptr) { return *(uint8_t *)ptr; } static inline int ldsb_raw(void *ptr) { return *(int8_t *)ptr; } static inline void stb_raw(void *ptr, int v) { *(uint8_t *)ptr = v; } /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the kernel handles unaligned load/stores may give better results, but it is a system wide setting : bad */ #if !defined(TARGET_WORDS_BIGENDIAN) && (defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)) /* conservative code for little endian unaligned accesses */ static inline int lduw_raw(void *ptr) { #ifdef __powerpc__ int val; __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return val; #else uint8_t *p = ptr; return p[0] | (p[1] << 8); #endif } static inline int ldsw_raw(void *ptr) { #ifdef __powerpc__ int val; __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return (int16_t)val; #else uint8_t *p = ptr; return (int16_t)(p[0] | (p[1] << 8)); #endif } static inline int ldl_raw(void *ptr) { #ifdef __powerpc__ int val; __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return val; #else uint8_t *p = ptr; return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); #endif } static inline uint64_t ldq_raw(void *ptr) { uint8_t *p = ptr; uint32_t v1, v2; v1 = ldl_raw(p); v2 = ldl_raw(p + 4); return v1 | ((uint64_t)v2 << 32); } static inline void stw_raw(void *ptr, int v) { #ifdef __powerpc__ __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr)); #else uint8_t *p = ptr; p[0] = v; p[1] = v >> 8; #endif } static inline void stl_raw(void *ptr, int v) { #ifdef __powerpc__ __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr)); #else uint8_t *p = ptr; p[0] = v; p[1] = v >> 8; p[2] = v >> 16; p[3] = v >> 24; #endif } static inline void stq_raw(void *ptr, uint64_t v) { uint8_t *p = ptr; stl_raw(p, (uint32_t)v); stl_raw(p + 4, v >> 32); } /* float access */ static inline float ldfl_raw(void *ptr) { union { float f; uint32_t i; } u; u.i = ldl_raw(ptr); return u.f; } static inline void stfl_raw(void *ptr, float v) { union { float f; uint32_t i; } u; u.f = v; stl_raw(ptr, u.i); } static inline double ldfq_raw(void *ptr) { CPU_DoubleU u; u.l.lower = ldl_raw(ptr); u.l.upper = ldl_raw(ptr + 4); return u.d; } static inline void stfq_raw(void *ptr, double v) { CPU_DoubleU u; u.d = v; stl_raw(ptr, u.l.lower); stl_raw(ptr + 4, u.l.upper); } #elif defined(TARGET_WORDS_BIGENDIAN) && (!defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)) static inline int lduw_raw(void *ptr) { #if defined(__i386__) int val; asm volatile ("movzwl %1, %0\n" "xchgb %b0, %h0\n" : "=q" (val) : "m" (*(uint16_t *)ptr)); return val; #else uint8_t *b = (uint8_t *) ptr; return ((b[0] << 8) | b[1]); #endif } static inline int ldsw_raw(void *ptr) { #if defined(__i386__) int val; asm volatile ("movzwl %1, %0\n" "xchgb %b0, %h0\n" : "=q" (val) : "m" (*(uint16_t *)ptr)); return (int16_t)val; #else uint8_t *b = (uint8_t *) ptr; return (int16_t)((b[0] << 8) | b[1]); #endif } static inline int ldl_raw(void *ptr) { #if defined(__i386__) int val; asm volatile ("movl %1, %0\n" "bswap %0\n" : "=r" (val) : "m" (*(uint32_t *)ptr)); return val; #else uint8_t *b = (uint8_t *) ptr; return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3]; #endif } static inline uint64_t ldq_raw(void *ptr) { uint32_t a,b; a = ldl_raw(ptr); b = ldl_raw(ptr+4); return (((uint64_t)a<<32)|b); } static inline void stw_raw(void *ptr, int v) { #if defined(__i386__) asm volatile ("xchgb %b0, %h0\n" "movw %w0, %1\n" : "=q" (v) : "m" (*(uint16_t *)ptr), "0" (v)); #else uint8_t *d = (uint8_t *) ptr; d[0] = v >> 8; d[1] = v; #endif } static inline void stl_raw(void *ptr, int v) { #if defined(__i386__) asm volatile ("bswap %0\n" "movl %0, %1\n" : "=r" (v) : "m" (*(uint32_t *)ptr), "0" (v)); #else uint8_t *d = (uint8_t *) ptr; d[0] = v >> 24; d[1] = v >> 16; d[2] = v >> 8; d[3] = v; #endif } static inline void stq_raw(void *ptr, uint64_t v) { stl_raw(ptr, v >> 32); stl_raw(ptr + 4, v); } /* float access */ static inline float ldfl_raw(void *ptr) { union { float f; uint32_t i; } u; u.i = ldl_raw(ptr); return u.f; } static inline void stfl_raw(void *ptr, float v) { union { float f; uint32_t i; } u; u.f = v; stl_raw(ptr, u.i); } static inline double ldfq_raw(void *ptr) { CPU_DoubleU u; u.l.upper = ldl_raw(ptr); u.l.lower = ldl_raw(ptr + 4); return u.d; } static inline void stfq_raw(void *ptr, double v) { CPU_DoubleU u; u.d = v; stl_raw(ptr, u.l.upper); stl_raw(ptr + 4, u.l.lower); } #else static inline int lduw_raw(void *ptr) { return *(uint16_t *)ptr; } static inline int ldsw_raw(void *ptr) { return *(int16_t *)ptr; } static inline int ldl_raw(void *ptr) { return *(uint32_t *)ptr; } static inline uint64_t ldq_raw(void *ptr) { return *(uint64_t *)ptr; } static inline void stw_raw(void *ptr, int v) { *(uint16_t *)ptr = v; } static inline void stl_raw(void *ptr, int v) { *(uint32_t *)ptr = v; } static inline void stq_raw(void *ptr, uint64_t v) { *(uint64_t *)ptr = v; } /* float access */ static inline float ldfl_raw(void *ptr) { return *(float *)ptr; } static inline double ldfq_raw(void *ptr) { return *(double *)ptr; } static inline void stfl_raw(void *ptr, float v) { *(float *)ptr = v; } static inline void stfq_raw(void *ptr, double v) { *(double *)ptr = v; } #endif /* MMU memory access macros */ #if defined(CONFIG_USER_ONLY) /* if user mode, no other memory access functions */ #define ldub(p) ldub_raw(p) #define ldsb(p) ldsb_raw(p) #define lduw(p) lduw_raw(p) #define ldsw(p) ldsw_raw(p) #define ldl(p) ldl_raw(p) #define ldq(p) ldq_raw(p) #define ldfl(p) ldfl_raw(p) #define ldfq(p) ldfq_raw(p) #define stb(p, v) stb_raw(p, v) #define stw(p, v) stw_raw(p, v) #define stl(p, v) stl_raw(p, v) #define stq(p, v) stq_raw(p, v) #define stfl(p, v) stfl_raw(p, v) #define stfq(p, v) stfq_raw(p, v) #define ldub_code(p) ldub_raw(p) #define ldsb_code(p) ldsb_raw(p) #define lduw_code(p) lduw_raw(p) #define ldsw_code(p) ldsw_raw(p) #define ldl_code(p) ldl_raw(p) #define ldub_kernel(p) ldub_raw(p) #define ldsb_kernel(p) ldsb_raw(p) #define lduw_kernel(p) lduw_raw(p) #define ldsw_kernel(p) ldsw_raw(p) #define ldl_kernel(p) ldl_raw(p) #define ldfl_kernel(p) ldfl_raw(p) #define ldfq_kernel(p) ldfq_raw(p) #define stb_kernel(p, v) stb_raw(p, v) #define stw_kernel(p, v) stw_raw(p, v) #define stl_kernel(p, v) stl_raw(p, v) #define stq_kernel(p, v) stq_raw(p, v) #define stfl_kernel(p, v) stfl_raw(p, v) #define stfq_kernel(p, vt) stfq_raw(p, v) #endif /* defined(CONFIG_USER_ONLY) */ /* page related stuff */ #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1) #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK) extern unsigned long real_host_page_size; extern unsigned long host_page_bits; extern unsigned long host_page_size; extern unsigned long host_page_mask; #define HOST_PAGE_ALIGN(addr) (((addr) + host_page_size - 1) & host_page_mask) /* same as PROT_xxx */ #define PAGE_READ 0x0001 #define PAGE_WRITE 0x0002 #define PAGE_EXEC 0x0004 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC) #define PAGE_VALID 0x0008 /* original state of the write flag (used when tracking self-modifying code */ #define PAGE_WRITE_ORG 0x0010 void page_dump(FILE *f); int page_get_flags(unsigned long address); void page_set_flags(unsigned long start, unsigned long end, int flags); void page_unprotect_range(uint8_t *data, unsigned long data_size); #define SINGLE_CPU_DEFINES #ifdef SINGLE_CPU_DEFINES #if defined(TARGET_I386) #define CPUState CPUX86State #define cpu_init cpu_x86_init #define cpu_exec cpu_x86_exec #define cpu_gen_code cpu_x86_gen_code #define cpu_interrupt cpu_x86_interrupt #define cpu_signal_handler cpu_x86_signal_handler #define cpu_dump_state cpu_x86_dump_state #elif defined(TARGET_ARM) #define CPUState CPUARMState #define cpu_init cpu_arm_init #define cpu_exec cpu_arm_exec #define cpu_gen_code cpu_arm_gen_code #define cpu_interrupt cpu_arm_interrupt #define cpu_signal_handler cpu_arm_signal_handler #define cpu_dump_state cpu_arm_dump_state #elif defined(TARGET_SPARC) #define CPUState CPUSPARCState #define cpu_init cpu_sparc_init #define cpu_exec cpu_sparc_exec #define cpu_gen_code cpu_sparc_gen_code #define cpu_interrupt cpu_sparc_interrupt #define cpu_signal_handler cpu_sparc_signal_handler #define cpu_dump_state cpu_sparc_dump_state #elif defined(TARGET_PPC) #define CPUState CPUPPCState #define cpu_init cpu_ppc_init #define cpu_exec cpu_ppc_exec #define cpu_gen_code cpu_ppc_gen_code #define cpu_interrupt cpu_ppc_interrupt #define cpu_signal_handler cpu_ppc_signal_handler #define cpu_dump_state cpu_ppc_dump_state #else #error unsupported target CPU #endif #endif /* SINGLE_CPU_DEFINES */ #define DEFAULT_GDBSTUB_PORT 1234 void cpu_abort(CPUState *env, const char *fmt, ...); extern CPUState *cpu_single_env; extern int code_copy_enabled; #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */ #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */ #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */ void cpu_interrupt(CPUState *s, int mask); int cpu_breakpoint_insert(CPUState *env, uint32_t pc); int cpu_breakpoint_remove(CPUState *env, uint32_t pc); void cpu_single_step(CPUState *env, int enabled); /* Return the physical page corresponding to a virtual one. Use it only for debugging because no protection checks are done. Return -1 if no page found. */ target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr); #define CPU_LOG_ALL 1 void cpu_set_log(int log_flags); void cpu_set_log_filename(const char *filename); /* IO ports API */ /* NOTE: as these functions may be even used when there is an isa brige on non x86 targets, we always defined them */ #ifndef NO_CPU_IO_DEFS void cpu_outb(CPUState *env, int addr, int val); void cpu_outw(CPUState *env, int addr, int val); void cpu_outl(CPUState *env, int addr, int val); int cpu_inb(CPUState *env, int addr); int cpu_inw(CPUState *env, int addr); int cpu_inl(CPUState *env, int addr); #endif /* memory API */ extern int phys_ram_size; extern int phys_ram_fd; extern uint8_t *phys_ram_base; extern uint8_t *phys_ram_dirty; /* physical memory access */ #define IO_MEM_NB_ENTRIES 256 #define TLB_INVALID_MASK (1 << 3) #define IO_MEM_SHIFT 4 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */ #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */ #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT) #define IO_MEM_CODE (3 << IO_MEM_SHIFT) /* used internally, never use directly */ #define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */ /* NOTE: vaddr is only used internally. Never use it except if you know what you do */ typedef void CPUWriteMemoryFunc(uint32_t addr, uint32_t value, uint32_t vaddr); typedef uint32_t CPUReadMemoryFunc(uint32_t addr); void cpu_register_physical_memory(unsigned long start_addr, unsigned long size, long phys_offset); int cpu_register_io_memory(int io_index, CPUReadMemoryFunc **mem_read, CPUWriteMemoryFunc **mem_write); void cpu_physical_memory_rw(CPUState *env, uint8_t *buf, target_ulong addr, int len, int is_write); int cpu_memory_rw_debug(CPUState *env, uint8_t *buf, target_ulong addr, int len, int is_write); /* read dirty bit (return 0 or 1) */ static inline int cpu_physical_memory_is_dirty(target_ulong addr) { return phys_ram_dirty[addr >> TARGET_PAGE_BITS]; } static inline void cpu_physical_memory_set_dirty(target_ulong addr) { phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 1; } void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end); /* gdb stub API */ extern int gdbstub_fd; CPUState *cpu_gdbstub_get_env(void *opaque); int cpu_gdbstub(void *opaque, int (*main_loop)(void *opaque), int port); #endif /* CPU_ALL_H */