/* * defines common to all virtual CPUs * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef CPU_ALL_H #define CPU_ALL_H /* all CPU memory access use these macros */ static inline int ldub(void *ptr) { return *(uint8_t *)ptr; } static inline int ldsb(void *ptr) { return *(int8_t *)ptr; } static inline void stb(void *ptr, int v) { *(uint8_t *)ptr = v; } /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the kernel handles unaligned load/stores may give better results, but it is a system wide setting : bad */ #if defined(WORDS_BIGENDIAN) || defined(__arm__) /* conservative code for little endian unaligned accesses */ static inline int lduw(void *ptr) { #ifdef __powerpc__ int val; __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return val; #else uint8_t *p = ptr; return p[0] | (p[1] << 8); #endif } static inline int ldsw(void *ptr) { #ifdef __powerpc__ int val; __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return (int16_t)val; #else uint8_t *p = ptr; return (int16_t)(p[0] | (p[1] << 8)); #endif } static inline int ldl(void *ptr) { #ifdef __powerpc__ int val; __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return val; #else uint8_t *p = ptr; return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); #endif } static inline uint64_t ldq(void *ptr) { uint8_t *p = ptr; uint32_t v1, v2; v1 = ldl(p); v2 = ldl(p + 4); return v1 | ((uint64_t)v2 << 32); } static inline void stw(void *ptr, int v) { #ifdef __powerpc__ __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr)); #else uint8_t *p = ptr; p[0] = v; p[1] = v >> 8; #endif } static inline void stl(void *ptr, int v) { #ifdef __powerpc__ __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr)); #else uint8_t *p = ptr; p[0] = v; p[1] = v >> 8; p[2] = v >> 16; p[3] = v >> 24; #endif } static inline void stq(void *ptr, uint64_t v) { uint8_t *p = ptr; stl(p, (uint32_t)v); stl(p + 4, v >> 32); } /* float access */ static inline float ldfl(void *ptr) { union { float f; uint32_t i; } u; u.i = ldl(ptr); return u.f; } static inline void stfl(void *ptr, float v) { union { float f; uint32_t i; } u; u.f = v; stl(ptr, u.i); } #if defined(__arm__) && !defined(WORDS_BIGENDIAN) /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */ static inline double ldfq(void *ptr) { union { double d; uint32_t tab[2]; } u; u.tab[1] = ldl(ptr); u.tab[0] = ldl(ptr + 4); return u.d; } static inline void stfq(void *ptr, double v) { union { double d; uint32_t tab[2]; } u; u.d = v; stl(ptr, u.tab[1]); stl(ptr + 4, u.tab[0]); } #else static inline double ldfq(void *ptr) { union { double d; uint64_t i; } u; u.i = ldq(ptr); return u.d; } static inline void stfq(void *ptr, double v) { union { double d; uint64_t i; } u; u.d = v; stq(ptr, u.i); } #endif #elif defined(TARGET_WORDS_BIGENDIAN) && !defined(WORDS_BIGENDIAN) static inline int lduw(void *ptr) { uint8_t *b = (uint8_t *) ptr; return (b[0]<<8|b[1]); } static inline int ldsw(void *ptr) { int8_t *b = (int8_t *) ptr; return (b[0]<<8|b[1]); } static inline int ldl(void *ptr) { uint8_t *b = (uint8_t *) ptr; return (b[0]<<24|b[1]<<16|b[2]<<8|b[3]); } static inline uint64_t ldq(void *ptr) { uint32_t a,b; a = ldl (ptr); b = ldl (ptr+4); return (((uint64_t)a<<32)|b); } static inline void stw(void *ptr, int v) { uint8_t *d = (uint8_t *) ptr; d[0] = v >> 8; d[1] = v; } static inline void stl(void *ptr, int v) { uint8_t *d = (uint8_t *) ptr; d[0] = v >> 24; d[1] = v >> 16; d[2] = v >> 8; d[3] = v; } static inline void stq(void *ptr, uint64_t v) { stl (ptr, v); stl (ptr+4, v >> 32); } #else static inline int lduw(void *ptr) { return *(uint16_t *)ptr; } static inline int ldsw(void *ptr) { return *(int16_t *)ptr; } static inline int ldl(void *ptr) { return *(uint32_t *)ptr; } static inline uint64_t ldq(void *ptr) { return *(uint64_t *)ptr; } static inline void stw(void *ptr, int v) { *(uint16_t *)ptr = v; } static inline void stl(void *ptr, int v) { *(uint32_t *)ptr = v; } static inline void stq(void *ptr, uint64_t v) { *(uint64_t *)ptr = v; } /* float access */ static inline float ldfl(void *ptr) { return *(float *)ptr; } static inline double ldfq(void *ptr) { return *(double *)ptr; } static inline void stfl(void *ptr, float v) { *(float *)ptr = v; } static inline void stfq(void *ptr, double v) { *(double *)ptr = v; } #endif /* page related stuff */ #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1) #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK) extern unsigned long real_host_page_size; extern unsigned long host_page_bits; extern unsigned long host_page_size; extern unsigned long host_page_mask; #define HOST_PAGE_ALIGN(addr) (((addr) + host_page_size - 1) & host_page_mask) /* same as PROT_xxx */ #define PAGE_READ 0x0001 #define PAGE_WRITE 0x0002 #define PAGE_EXEC 0x0004 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC) #define PAGE_VALID 0x0008 /* original state of the write flag (used when tracking self-modifying code */ #define PAGE_WRITE_ORG 0x0010 void page_dump(FILE *f); int page_get_flags(unsigned long address); void page_set_flags(unsigned long start, unsigned long end, int flags); void page_unprotect_range(uint8_t *data, unsigned long data_size); #define SINGLE_CPU_DEFINES #ifdef SINGLE_CPU_DEFINES #if defined(TARGET_I386) #define CPUState CPUX86State #define cpu_init cpu_x86_init #define cpu_exec cpu_x86_exec #define cpu_gen_code cpu_x86_gen_code #define cpu_interrupt cpu_x86_interrupt #define cpu_signal_handler cpu_x86_signal_handler #elif defined(TARGET_ARM) #define CPUState CPUARMState #define cpu_init cpu_arm_init #define cpu_exec cpu_arm_exec #define cpu_gen_code cpu_arm_gen_code #define cpu_interrupt cpu_arm_interrupt #define cpu_signal_handler cpu_arm_signal_handler #elif defined(TARGET_SPARC) #define CPUState CPUSPARCState #define cpu_init cpu_sparc_init #define cpu_exec cpu_sparc_exec #define cpu_gen_code cpu_sparc_gen_code #define cpu_interrupt cpu_sparc_interrupt #define cpu_signal_handler cpu_sparc_signal_handler #else #error unsupported target CPU #endif #endif /* SINGLE_CPU_DEFINES */ #define DEFAULT_GDBSTUB_PORT 1234 void cpu_abort(CPUState *env, const char *fmt, ...); extern CPUState *cpu_single_env; #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */ #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */ void cpu_interrupt(CPUState *s, int mask); int cpu_breakpoint_insert(CPUState *env, uint32_t pc); int cpu_breakpoint_remove(CPUState *env, uint32_t pc); void cpu_single_step(CPUState *env, int enabled); #define CPU_LOG_ALL 1 void cpu_set_log(int log_flags); void cpu_set_log_filename(const char *filename); /* memory API */ typedef void CPUWriteMemoryFunc(uint32_t addr, uint32_t value); typedef uint32_t CPUReadMemoryFunc(uint32_t addr); void cpu_register_physical_memory(unsigned long start_addr, unsigned long size, long phys_offset); int cpu_register_io_memory(int io_index, CPUReadMemoryFunc **mem_read, CPUWriteMemoryFunc **mem_write); /* gdb stub API */ extern int gdbstub_fd; CPUState *cpu_gdbstub_get_env(void *opaque); int cpu_gdbstub(void *opaque, int (*main_loop)(void *opaque), int port); #endif /* CPU_ALL_H */