/* * Instructions Per Second (IPS) rate limiting plugin. * * This plugin can be used to restrict the execution of a system to a * particular number of Instructions Per Second (IPS). This controls * time as seen by the guest so while wall-clock time may be longer * from the guests point of view time will pass at the normal rate. * * This uses the new plugin API which allows the plugin to control * system time. * * Copyright (c) 2023 Linaro Ltd * * SPDX-License-Identifier: GPL-2.0-or-later */ #include #include #include QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; /* how many times do we update time per sec */ #define NUM_TIME_UPDATE_PER_SEC 10 #define NSEC_IN_ONE_SEC (1000 * 1000 * 1000) static GMutex global_state_lock; static uint64_t max_insn_per_second = 1000 * 1000 * 1000; /* ips per core, per second */ static uint64_t max_insn_per_quantum; /* trap every N instructions */ static int64_t virtual_time_ns; /* last set virtual time */ static const void *time_handle; typedef struct { uint64_t total_insn; uint64_t quantum_insn; /* insn in last quantum */ int64_t last_quantum_time; /* time when last quantum started */ } vCPUTime; struct qemu_plugin_scoreboard *vcpus; /* return epoch time in ns */ static int64_t now_ns(void) { return g_get_real_time() * 1000; } static uint64_t num_insn_during(int64_t elapsed_ns) { double num_secs = elapsed_ns / (double) NSEC_IN_ONE_SEC; return num_secs * (double) max_insn_per_second; } static int64_t time_for_insn(uint64_t num_insn) { double num_secs = (double) num_insn / (double) max_insn_per_second; return num_secs * (double) NSEC_IN_ONE_SEC; } static void update_system_time(vCPUTime *vcpu) { int64_t elapsed_ns = now_ns() - vcpu->last_quantum_time; uint64_t max_insn = num_insn_during(elapsed_ns); if (vcpu->quantum_insn >= max_insn) { /* this vcpu ran faster than expected, so it has to sleep */ uint64_t insn_advance = vcpu->quantum_insn - max_insn; uint64_t time_advance_ns = time_for_insn(insn_advance); int64_t sleep_us = time_advance_ns / 1000; g_usleep(sleep_us); } vcpu->total_insn += vcpu->quantum_insn; vcpu->quantum_insn = 0; vcpu->last_quantum_time = now_ns(); /* based on total number of instructions, what should be the new time? */ int64_t new_virtual_time = time_for_insn(vcpu->total_insn); g_mutex_lock(&global_state_lock); /* Time only moves forward. Another vcpu might have updated it already. */ if (new_virtual_time > virtual_time_ns) { qemu_plugin_update_ns(time_handle, new_virtual_time); virtual_time_ns = new_virtual_time; } g_mutex_unlock(&global_state_lock); } static void vcpu_init(qemu_plugin_id_t id, unsigned int cpu_index) { vCPUTime *vcpu = qemu_plugin_scoreboard_find(vcpus, cpu_index); vcpu->total_insn = 0; vcpu->quantum_insn = 0; vcpu->last_quantum_time = now_ns(); } static void vcpu_exit(qemu_plugin_id_t id, unsigned int cpu_index) { vCPUTime *vcpu = qemu_plugin_scoreboard_find(vcpus, cpu_index); update_system_time(vcpu); } static void every_quantum_insn(unsigned int cpu_index, void *udata) { vCPUTime *vcpu = qemu_plugin_scoreboard_find(vcpus, cpu_index); g_assert(vcpu->quantum_insn >= max_insn_per_quantum); update_system_time(vcpu); } static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) { size_t n_insns = qemu_plugin_tb_n_insns(tb); qemu_plugin_u64 quantum_insn = qemu_plugin_scoreboard_u64_in_struct(vcpus, vCPUTime, quantum_insn); /* count (and eventually trap) once per tb */ qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu( tb, QEMU_PLUGIN_INLINE_ADD_U64, quantum_insn, n_insns); qemu_plugin_register_vcpu_tb_exec_cond_cb( tb, every_quantum_insn, QEMU_PLUGIN_CB_NO_REGS, QEMU_PLUGIN_COND_GE, quantum_insn, max_insn_per_quantum, NULL); } static void plugin_exit(qemu_plugin_id_t id, void *udata) { qemu_plugin_scoreboard_free(vcpus); } QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info, int argc, char **argv) { for (int i = 0; i < argc; i++) { char *opt = argv[i]; g_auto(GStrv) tokens = g_strsplit(opt, "=", 2); if (g_strcmp0(tokens[0], "ips") == 0) { max_insn_per_second = g_ascii_strtoull(tokens[1], NULL, 10); if (!max_insn_per_second && errno) { fprintf(stderr, "%s: couldn't parse %s (%s)\n", __func__, tokens[1], g_strerror(errno)); return -1; } } else { fprintf(stderr, "option parsing failed: %s\n", opt); return -1; } } vcpus = qemu_plugin_scoreboard_new(sizeof(vCPUTime)); max_insn_per_quantum = max_insn_per_second / NUM_TIME_UPDATE_PER_SEC; if (max_insn_per_quantum == 0) { fprintf(stderr, "minimum of %d instructions per second needed\n", NUM_TIME_UPDATE_PER_SEC); return -1; } time_handle = qemu_plugin_request_time_control(); g_assert(time_handle); qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); qemu_plugin_register_vcpu_init_cb(id, vcpu_init); qemu_plugin_register_vcpu_exit_cb(id, vcpu_exit); qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); return 0; }