#ifndef BSWAP_H #define BSWAP_H #include "config-host.h" #include <inttypes.h> #ifdef CONFIG_MACHINE_BSWAP_H #include <sys/endian.h> #include <sys/types.h> #include <machine/bswap.h> #else #include "softfloat.h" #ifdef CONFIG_BYTESWAP_H #include <byteswap.h> #else #define bswap_16(x) \ ({ \ uint16_t __x = (x); \ ((uint16_t)( \ (((uint16_t)(__x) & (uint16_t)0x00ffU) << 8) | \ (((uint16_t)(__x) & (uint16_t)0xff00U) >> 8) )); \ }) #define bswap_32(x) \ ({ \ uint32_t __x = (x); \ ((uint32_t)( \ (((uint32_t)(__x) & (uint32_t)0x000000ffUL) << 24) | \ (((uint32_t)(__x) & (uint32_t)0x0000ff00UL) << 8) | \ (((uint32_t)(__x) & (uint32_t)0x00ff0000UL) >> 8) | \ (((uint32_t)(__x) & (uint32_t)0xff000000UL) >> 24) )); \ }) #define bswap_64(x) \ ({ \ uint64_t __x = (x); \ ((uint64_t)( \ (uint64_t)(((uint64_t)(__x) & (uint64_t)0x00000000000000ffULL) << 56) | \ (uint64_t)(((uint64_t)(__x) & (uint64_t)0x000000000000ff00ULL) << 40) | \ (uint64_t)(((uint64_t)(__x) & (uint64_t)0x0000000000ff0000ULL) << 24) | \ (uint64_t)(((uint64_t)(__x) & (uint64_t)0x00000000ff000000ULL) << 8) | \ (uint64_t)(((uint64_t)(__x) & (uint64_t)0x000000ff00000000ULL) >> 8) | \ (uint64_t)(((uint64_t)(__x) & (uint64_t)0x0000ff0000000000ULL) >> 24) | \ (uint64_t)(((uint64_t)(__x) & (uint64_t)0x00ff000000000000ULL) >> 40) | \ (uint64_t)(((uint64_t)(__x) & (uint64_t)0xff00000000000000ULL) >> 56) )); \ }) #endif /* !CONFIG_BYTESWAP_H */ static inline uint16_t bswap16(uint16_t x) { return bswap_16(x); } static inline uint32_t bswap32(uint32_t x) { return bswap_32(x); } static inline uint64_t bswap64(uint64_t x) { return bswap_64(x); } #endif /* ! CONFIG_MACHINE_BSWAP_H */ static inline void bswap16s(uint16_t *s) { *s = bswap16(*s); } static inline void bswap32s(uint32_t *s) { *s = bswap32(*s); } static inline void bswap64s(uint64_t *s) { *s = bswap64(*s); } #if defined(HOST_WORDS_BIGENDIAN) #define be_bswap(v, size) (v) #define le_bswap(v, size) bswap ## size(v) #define be_bswaps(v, size) #define le_bswaps(p, size) *p = bswap ## size(*p); #else #define le_bswap(v, size) (v) #define be_bswap(v, size) bswap ## size(v) #define le_bswaps(v, size) #define be_bswaps(p, size) *p = bswap ## size(*p); #endif #define CPU_CONVERT(endian, size, type)\ static inline type endian ## size ## _to_cpu(type v)\ {\ return endian ## _bswap(v, size);\ }\ \ static inline type cpu_to_ ## endian ## size(type v)\ {\ return endian ## _bswap(v, size);\ }\ \ static inline void endian ## size ## _to_cpus(type *p)\ {\ endian ## _bswaps(p, size)\ }\ \ static inline void cpu_to_ ## endian ## size ## s(type *p)\ {\ endian ## _bswaps(p, size)\ }\ \ static inline type endian ## size ## _to_cpup(const type *p)\ {\ return endian ## size ## _to_cpu(*p);\ }\ \ static inline void cpu_to_ ## endian ## size ## w(type *p, type v)\ {\ *p = cpu_to_ ## endian ## size(v);\ } CPU_CONVERT(be, 16, uint16_t) CPU_CONVERT(be, 32, uint32_t) CPU_CONVERT(be, 64, uint64_t) CPU_CONVERT(le, 16, uint16_t) CPU_CONVERT(le, 32, uint32_t) CPU_CONVERT(le, 64, uint64_t) /* unaligned versions (optimized for frequent unaligned accesses)*/ #if defined(__i386__) || defined(_ARCH_PPC) #define cpu_to_le16wu(p, v) cpu_to_le16w(p, v) #define cpu_to_le32wu(p, v) cpu_to_le32w(p, v) #define le16_to_cpupu(p) le16_to_cpup(p) #define le32_to_cpupu(p) le32_to_cpup(p) #define be32_to_cpupu(p) be32_to_cpup(p) #define cpu_to_be16wu(p, v) cpu_to_be16w(p, v) #define cpu_to_be32wu(p, v) cpu_to_be32w(p, v) #define cpu_to_be64wu(p, v) cpu_to_be64w(p, v) #else static inline void cpu_to_le16wu(uint16_t *p, uint16_t v) { uint8_t *p1 = (uint8_t *)p; p1[0] = v & 0xff; p1[1] = v >> 8; } static inline void cpu_to_le32wu(uint32_t *p, uint32_t v) { uint8_t *p1 = (uint8_t *)p; p1[0] = v & 0xff; p1[1] = v >> 8; p1[2] = v >> 16; p1[3] = v >> 24; } static inline uint16_t le16_to_cpupu(const uint16_t *p) { const uint8_t *p1 = (const uint8_t *)p; return p1[0] | (p1[1] << 8); } static inline uint32_t le32_to_cpupu(const uint32_t *p) { const uint8_t *p1 = (const uint8_t *)p; return p1[0] | (p1[1] << 8) | (p1[2] << 16) | (p1[3] << 24); } static inline uint32_t be32_to_cpupu(const uint32_t *p) { const uint8_t *p1 = (const uint8_t *)p; return p1[3] | (p1[2] << 8) | (p1[1] << 16) | (p1[0] << 24); } static inline void cpu_to_be16wu(uint16_t *p, uint16_t v) { uint8_t *p1 = (uint8_t *)p; p1[0] = v >> 8; p1[1] = v & 0xff; } static inline void cpu_to_be32wu(uint32_t *p, uint32_t v) { uint8_t *p1 = (uint8_t *)p; p1[0] = v >> 24; p1[1] = v >> 16; p1[2] = v >> 8; p1[3] = v & 0xff; } static inline void cpu_to_be64wu(uint64_t *p, uint64_t v) { uint8_t *p1 = (uint8_t *)p; p1[0] = v >> 56; p1[1] = v >> 48; p1[2] = v >> 40; p1[3] = v >> 32; p1[4] = v >> 24; p1[5] = v >> 16; p1[6] = v >> 8; p1[7] = v & 0xff; } #endif #ifdef HOST_WORDS_BIGENDIAN #define cpu_to_32wu cpu_to_be32wu #define leul_to_cpu(v) glue(glue(le,HOST_LONG_BITS),_to_cpu)(v) #else #define cpu_to_32wu cpu_to_le32wu #define leul_to_cpu(v) (v) #endif #undef le_bswap #undef be_bswap #undef le_bswaps #undef be_bswaps /* len must be one of 1, 2, 4 */ static inline uint32_t qemu_bswap_len(uint32_t value, int len) { return bswap32(value) >> (32 - 8 * len); } typedef union { float32 f; uint32_t l; } CPU_FloatU; typedef union { float64 d; #if defined(HOST_WORDS_BIGENDIAN) struct { uint32_t upper; uint32_t lower; } l; #else struct { uint32_t lower; uint32_t upper; } l; #endif uint64_t ll; } CPU_DoubleU; typedef union { floatx80 d; struct { uint64_t lower; uint16_t upper; } l; } CPU_LDoubleU; typedef union { float128 q; #if defined(HOST_WORDS_BIGENDIAN) struct { uint32_t upmost; uint32_t upper; uint32_t lower; uint32_t lowest; } l; struct { uint64_t upper; uint64_t lower; } ll; #else struct { uint32_t lowest; uint32_t lower; uint32_t upper; uint32_t upmost; } l; struct { uint64_t lower; uint64_t upper; } ll; #endif } CPU_QuadU; /* unaligned/endian-independent pointer access */ /* * the generic syntax is: * * load: ld{type}{sign}{size}{endian}_p(ptr) * * store: st{type}{size}{endian}_p(ptr, val) * * Note there are small differences with the softmmu access API! * * type is: * (empty): integer access * f : float access * * sign is: * (empty): for floats or 32 bit size * u : unsigned * s : signed * * size is: * b: 8 bits * w: 16 bits * l: 32 bits * q: 64 bits * * endian is: * (empty): 8 bit access * be : big endian * le : little endian */ static inline int ldub_p(const void *ptr) { return *(uint8_t *)ptr; } static inline int ldsb_p(const void *ptr) { return *(int8_t *)ptr; } static inline void stb_p(void *ptr, int v) { *(uint8_t *)ptr = v; } /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the kernel handles unaligned load/stores may give better results, but it is a system wide setting : bad */ #if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED) /* conservative code for little endian unaligned accesses */ static inline int lduw_le_p(const void *ptr) { #ifdef _ARCH_PPC int val; __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return val; #else const uint8_t *p = ptr; return p[0] | (p[1] << 8); #endif } static inline int ldsw_le_p(const void *ptr) { #ifdef _ARCH_PPC int val; __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return (int16_t)val; #else const uint8_t *p = ptr; return (int16_t)(p[0] | (p[1] << 8)); #endif } static inline int ldl_le_p(const void *ptr) { #ifdef _ARCH_PPC int val; __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return val; #else const uint8_t *p = ptr; return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); #endif } static inline uint64_t ldq_le_p(const void *ptr) { const uint8_t *p = ptr; uint32_t v1, v2; v1 = ldl_le_p(p); v2 = ldl_le_p(p + 4); return v1 | ((uint64_t)v2 << 32); } static inline void stw_le_p(void *ptr, int v) { #ifdef _ARCH_PPC __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr)); #else uint8_t *p = ptr; p[0] = v; p[1] = v >> 8; #endif } static inline void stl_le_p(void *ptr, int v) { #ifdef _ARCH_PPC __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr)); #else uint8_t *p = ptr; p[0] = v; p[1] = v >> 8; p[2] = v >> 16; p[3] = v >> 24; #endif } static inline void stq_le_p(void *ptr, uint64_t v) { uint8_t *p = ptr; stl_le_p(p, (uint32_t)v); stl_le_p(p + 4, v >> 32); } /* float access */ static inline float32 ldfl_le_p(const void *ptr) { union { float32 f; uint32_t i; } u; u.i = ldl_le_p(ptr); return u.f; } static inline void stfl_le_p(void *ptr, float32 v) { union { float32 f; uint32_t i; } u; u.f = v; stl_le_p(ptr, u.i); } static inline float64 ldfq_le_p(const void *ptr) { CPU_DoubleU u; u.l.lower = ldl_le_p(ptr); u.l.upper = ldl_le_p(ptr + 4); return u.d; } static inline void stfq_le_p(void *ptr, float64 v) { CPU_DoubleU u; u.d = v; stl_le_p(ptr, u.l.lower); stl_le_p(ptr + 4, u.l.upper); } #else static inline int lduw_le_p(const void *ptr) { return *(uint16_t *)ptr; } static inline int ldsw_le_p(const void *ptr) { return *(int16_t *)ptr; } static inline int ldl_le_p(const void *ptr) { return *(uint32_t *)ptr; } static inline uint64_t ldq_le_p(const void *ptr) { return *(uint64_t *)ptr; } static inline void stw_le_p(void *ptr, int v) { *(uint16_t *)ptr = v; } static inline void stl_le_p(void *ptr, int v) { *(uint32_t *)ptr = v; } static inline void stq_le_p(void *ptr, uint64_t v) { *(uint64_t *)ptr = v; } /* float access */ static inline float32 ldfl_le_p(const void *ptr) { return *(float32 *)ptr; } static inline float64 ldfq_le_p(const void *ptr) { return *(float64 *)ptr; } static inline void stfl_le_p(void *ptr, float32 v) { *(float32 *)ptr = v; } static inline void stfq_le_p(void *ptr, float64 v) { *(float64 *)ptr = v; } #endif #if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED) static inline int lduw_be_p(const void *ptr) { #if defined(__i386__) int val; asm volatile ("movzwl %1, %0\n" "xchgb %b0, %h0\n" : "=q" (val) : "m" (*(uint16_t *)ptr)); return val; #else const uint8_t *b = ptr; return ((b[0] << 8) | b[1]); #endif } static inline int ldsw_be_p(const void *ptr) { #if defined(__i386__) int val; asm volatile ("movzwl %1, %0\n" "xchgb %b0, %h0\n" : "=q" (val) : "m" (*(uint16_t *)ptr)); return (int16_t)val; #else const uint8_t *b = ptr; return (int16_t)((b[0] << 8) | b[1]); #endif } static inline int ldl_be_p(const void *ptr) { #if defined(__i386__) || defined(__x86_64__) int val; asm volatile ("movl %1, %0\n" "bswap %0\n" : "=r" (val) : "m" (*(uint32_t *)ptr)); return val; #else const uint8_t *b = ptr; return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3]; #endif } static inline uint64_t ldq_be_p(const void *ptr) { uint32_t a,b; a = ldl_be_p(ptr); b = ldl_be_p((uint8_t *)ptr + 4); return (((uint64_t)a<<32)|b); } static inline void stw_be_p(void *ptr, int v) { #if defined(__i386__) asm volatile ("xchgb %b0, %h0\n" "movw %w0, %1\n" : "=q" (v) : "m" (*(uint16_t *)ptr), "0" (v)); #else uint8_t *d = (uint8_t *) ptr; d[0] = v >> 8; d[1] = v; #endif } static inline void stl_be_p(void *ptr, int v) { #if defined(__i386__) || defined(__x86_64__) asm volatile ("bswap %0\n" "movl %0, %1\n" : "=r" (v) : "m" (*(uint32_t *)ptr), "0" (v)); #else uint8_t *d = (uint8_t *) ptr; d[0] = v >> 24; d[1] = v >> 16; d[2] = v >> 8; d[3] = v; #endif } static inline void stq_be_p(void *ptr, uint64_t v) { stl_be_p(ptr, v >> 32); stl_be_p((uint8_t *)ptr + 4, v); } /* float access */ static inline float32 ldfl_be_p(const void *ptr) { union { float32 f; uint32_t i; } u; u.i = ldl_be_p(ptr); return u.f; } static inline void stfl_be_p(void *ptr, float32 v) { union { float32 f; uint32_t i; } u; u.f = v; stl_be_p(ptr, u.i); } static inline float64 ldfq_be_p(const void *ptr) { CPU_DoubleU u; u.l.upper = ldl_be_p(ptr); u.l.lower = ldl_be_p((uint8_t *)ptr + 4); return u.d; } static inline void stfq_be_p(void *ptr, float64 v) { CPU_DoubleU u; u.d = v; stl_be_p(ptr, u.l.upper); stl_be_p((uint8_t *)ptr + 4, u.l.lower); } #else static inline int lduw_be_p(const void *ptr) { return *(uint16_t *)ptr; } static inline int ldsw_be_p(const void *ptr) { return *(int16_t *)ptr; } static inline int ldl_be_p(const void *ptr) { return *(uint32_t *)ptr; } static inline uint64_t ldq_be_p(const void *ptr) { return *(uint64_t *)ptr; } static inline void stw_be_p(void *ptr, int v) { *(uint16_t *)ptr = v; } static inline void stl_be_p(void *ptr, int v) { *(uint32_t *)ptr = v; } static inline void stq_be_p(void *ptr, uint64_t v) { *(uint64_t *)ptr = v; } /* float access */ static inline float32 ldfl_be_p(const void *ptr) { return *(float32 *)ptr; } static inline float64 ldfq_be_p(const void *ptr) { return *(float64 *)ptr; } static inline void stfl_be_p(void *ptr, float32 v) { *(float32 *)ptr = v; } static inline void stfq_be_p(void *ptr, float64 v) { *(float64 *)ptr = v; } #endif #endif /* BSWAP_H */