/* * qemu user main * * Copyright (c) 2003-2008 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu-common.h" #include "qemu/units.h" #include "sysemu/tcg.h" #include "qemu-version.h" #include #include "qapi/error.h" #include "qemu.h" #include "qemu/config-file.h" #include "qemu/error-report.h" #include "qemu/path.h" #include "qemu/help_option.h" #include "qemu/module.h" #include "cpu.h" #include "exec/exec-all.h" #include "tcg/tcg.h" #include "qemu/timer.h" #include "qemu/envlist.h" #include "exec/log.h" #include "trace/control.h" int singlestep; unsigned long mmap_min_addr; unsigned long guest_base; bool have_guest_base; unsigned long reserved_va; static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; const char *qemu_uname_release; extern char **environ; enum BSDType bsd_type; /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so we allocate a bigger stack. Need a better solution, for example by remapping the process stack directly at the right place */ unsigned long x86_stack_size = 512 * 1024; void gemu_log(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); } #if defined(TARGET_I386) int cpu_get_pic_interrupt(CPUX86State *env) { return -1; } #endif void fork_start(void) { } void fork_end(int child) { if (child) { gdbserver_fork(thread_cpu); } } #ifdef TARGET_I386 /***********************************************************/ /* CPUX86 core interface */ uint64_t cpu_get_tsc(CPUX86State *env) { return cpu_get_host_ticks(); } static void write_dt(void *ptr, unsigned long addr, unsigned long limit, int flags) { unsigned int e1, e2; uint32_t *p; e1 = (addr << 16) | (limit & 0xffff); e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); e2 |= flags; p = ptr; p[0] = tswap32(e1); p[1] = tswap32(e2); } static uint64_t *idt_table; #ifdef TARGET_X86_64 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, uint64_t addr, unsigned int sel) { uint32_t *p, e1, e2; e1 = (addr & 0xffff) | (sel << 16); e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); p = ptr; p[0] = tswap32(e1); p[1] = tswap32(e2); p[2] = tswap32(addr >> 32); p[3] = 0; } /* only dpl matters as we do only user space emulation */ static void set_idt(int n, unsigned int dpl) { set_gate64(idt_table + n * 2, 0, dpl, 0, 0); } #else static void set_gate(void *ptr, unsigned int type, unsigned int dpl, uint32_t addr, unsigned int sel) { uint32_t *p, e1, e2; e1 = (addr & 0xffff) | (sel << 16); e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); p = ptr; p[0] = tswap32(e1); p[1] = tswap32(e2); } /* only dpl matters as we do only user space emulation */ static void set_idt(int n, unsigned int dpl) { set_gate(idt_table + n, 0, dpl, 0, 0); } #endif void cpu_loop(CPUX86State *env) { CPUState *cs = env_cpu(env); int trapnr; abi_ulong pc; //target_siginfo_t info; for(;;) { cpu_exec_start(cs); trapnr = cpu_exec(cs); cpu_exec_end(cs); process_queued_cpu_work(cs); switch(trapnr) { case 0x80: /* syscall from int $0x80 */ if (bsd_type == target_freebsd) { abi_ulong params = (abi_ulong) env->regs[R_ESP] + sizeof(int32_t); int32_t syscall_nr = env->regs[R_EAX]; int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8; if (syscall_nr == TARGET_FREEBSD_NR_syscall) { get_user_s32(syscall_nr, params); params += sizeof(int32_t); } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) { get_user_s32(syscall_nr, params); params += sizeof(int64_t); } get_user_s32(arg1, params); params += sizeof(int32_t); get_user_s32(arg2, params); params += sizeof(int32_t); get_user_s32(arg3, params); params += sizeof(int32_t); get_user_s32(arg4, params); params += sizeof(int32_t); get_user_s32(arg5, params); params += sizeof(int32_t); get_user_s32(arg6, params); params += sizeof(int32_t); get_user_s32(arg7, params); params += sizeof(int32_t); get_user_s32(arg8, params); env->regs[R_EAX] = do_freebsd_syscall(env, syscall_nr, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); } else { //if (bsd_type == target_openbsd) env->regs[R_EAX] = do_openbsd_syscall(env, env->regs[R_EAX], env->regs[R_EBX], env->regs[R_ECX], env->regs[R_EDX], env->regs[R_ESI], env->regs[R_EDI], env->regs[R_EBP]); } if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) { env->regs[R_EAX] = -env->regs[R_EAX]; env->eflags |= CC_C; } else { env->eflags &= ~CC_C; } break; #ifndef TARGET_ABI32 case EXCP_SYSCALL: /* syscall from syscall instruction */ if (bsd_type == target_freebsd) env->regs[R_EAX] = do_freebsd_syscall(env, env->regs[R_EAX], env->regs[R_EDI], env->regs[R_ESI], env->regs[R_EDX], env->regs[R_ECX], env->regs[8], env->regs[9], 0, 0); else { //if (bsd_type == target_openbsd) env->regs[R_EAX] = do_openbsd_syscall(env, env->regs[R_EAX], env->regs[R_EDI], env->regs[R_ESI], env->regs[R_EDX], env->regs[10], env->regs[8], env->regs[9]); } env->eip = env->exception_next_eip; if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) { env->regs[R_EAX] = -env->regs[R_EAX]; env->eflags |= CC_C; } else { env->eflags &= ~CC_C; } break; #endif #if 0 case EXCP0B_NOSEG: case EXCP0C_STACK: info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = TARGET_SI_KERNEL; info._sifields._sigfault._addr = 0; queue_signal(env, info.si_signo, &info); break; case EXCP0D_GPF: /* XXX: potential problem if ABI32 */ #ifndef TARGET_X86_64 if (env->eflags & VM_MASK) { handle_vm86_fault(env); } else #endif { info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = TARGET_SI_KERNEL; info._sifields._sigfault._addr = 0; queue_signal(env, info.si_signo, &info); } break; case EXCP0E_PAGE: info.si_signo = SIGSEGV; info.si_errno = 0; if (!(env->error_code & 1)) info.si_code = TARGET_SEGV_MAPERR; else info.si_code = TARGET_SEGV_ACCERR; info._sifields._sigfault._addr = env->cr[2]; queue_signal(env, info.si_signo, &info); break; case EXCP00_DIVZ: #ifndef TARGET_X86_64 if (env->eflags & VM_MASK) { handle_vm86_trap(env, trapnr); } else #endif { /* division by zero */ info.si_signo = SIGFPE; info.si_errno = 0; info.si_code = TARGET_FPE_INTDIV; info._sifields._sigfault._addr = env->eip; queue_signal(env, info.si_signo, &info); } break; case EXCP01_DB: case EXCP03_INT3: #ifndef TARGET_X86_64 if (env->eflags & VM_MASK) { handle_vm86_trap(env, trapnr); } else #endif { info.si_signo = SIGTRAP; info.si_errno = 0; if (trapnr == EXCP01_DB) { info.si_code = TARGET_TRAP_BRKPT; info._sifields._sigfault._addr = env->eip; } else { info.si_code = TARGET_SI_KERNEL; info._sifields._sigfault._addr = 0; } queue_signal(env, info.si_signo, &info); } break; case EXCP04_INTO: case EXCP05_BOUND: #ifndef TARGET_X86_64 if (env->eflags & VM_MASK) { handle_vm86_trap(env, trapnr); } else #endif { info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = TARGET_SI_KERNEL; info._sifields._sigfault._addr = 0; queue_signal(env, info.si_signo, &info); } break; case EXCP06_ILLOP: info.si_signo = SIGILL; info.si_errno = 0; info.si_code = TARGET_ILL_ILLOPN; info._sifields._sigfault._addr = env->eip; queue_signal(env, info.si_signo, &info); break; #endif case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; #if 0 case EXCP_DEBUG: { int sig; sig = gdb_handlesig (env, TARGET_SIGTRAP); if (sig) { info.si_signo = sig; info.si_errno = 0; info.si_code = TARGET_TRAP_BRKPT; queue_signal(env, info.si_signo, &info); } } break; #endif default: pc = env->segs[R_CS].base + env->eip; fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", (long)pc, trapnr); abort(); } process_pending_signals(env); } } #endif #ifdef TARGET_SPARC #define SPARC64_STACK_BIAS 2047 //#define DEBUG_WIN /* WARNING: dealing with register windows _is_ complicated. More info can be found at http://www.sics.se/~psm/sparcstack.html */ static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) { index = (index + cwp * 16) % (16 * env->nwindows); /* wrap handling : if cwp is on the last window, then we use the registers 'after' the end */ if (index < 8 && env->cwp == env->nwindows - 1) index += 16 * env->nwindows; return index; } /* save the register window 'cwp1' */ static inline void save_window_offset(CPUSPARCState *env, int cwp1) { unsigned int i; abi_ulong sp_ptr; sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; #ifdef TARGET_SPARC64 if (sp_ptr & 3) sp_ptr += SPARC64_STACK_BIAS; #endif #if defined(DEBUG_WIN) printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", sp_ptr, cwp1); #endif for(i = 0; i < 16; i++) { /* FIXME - what to do if put_user() fails? */ put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); sp_ptr += sizeof(abi_ulong); } } static void save_window(CPUSPARCState *env) { #ifndef TARGET_SPARC64 unsigned int new_wim; new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & ((1LL << env->nwindows) - 1); save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); env->wim = new_wim; #else /* * cansave is zero if the spill trap handler is triggered by `save` and * nonzero if triggered by a `flushw` */ save_window_offset(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2)); env->cansave++; env->canrestore--; #endif } static void restore_window(CPUSPARCState *env) { #ifndef TARGET_SPARC64 unsigned int new_wim; #endif unsigned int i, cwp1; abi_ulong sp_ptr; #ifndef TARGET_SPARC64 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & ((1LL << env->nwindows) - 1); #endif /* restore the invalid window */ cwp1 = cpu_cwp_inc(env, env->cwp + 1); sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; #ifdef TARGET_SPARC64 if (sp_ptr & 3) sp_ptr += SPARC64_STACK_BIAS; #endif #if defined(DEBUG_WIN) printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", sp_ptr, cwp1); #endif for(i = 0; i < 16; i++) { /* FIXME - what to do if get_user() fails? */ get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); sp_ptr += sizeof(abi_ulong); } #ifdef TARGET_SPARC64 env->canrestore++; if (env->cleanwin < env->nwindows - 1) env->cleanwin++; env->cansave--; #else env->wim = new_wim; #endif } static void flush_windows(CPUSPARCState *env) { int offset, cwp1; offset = 1; for(;;) { /* if restore would invoke restore_window(), then we can stop */ cwp1 = cpu_cwp_inc(env, env->cwp + offset); #ifndef TARGET_SPARC64 if (env->wim & (1 << cwp1)) break; #else if (env->canrestore == 0) break; env->cansave++; env->canrestore--; #endif save_window_offset(env, cwp1); offset++; } cwp1 = cpu_cwp_inc(env, env->cwp + 1); #ifndef TARGET_SPARC64 /* set wim so that restore will reload the registers */ env->wim = 1 << cwp1; #endif #if defined(DEBUG_WIN) printf("flush_windows: nb=%d\n", offset - 1); #endif } void cpu_loop(CPUSPARCState *env) { CPUState *cs = env_cpu(env); int trapnr, ret, syscall_nr; //target_siginfo_t info; while (1) { cpu_exec_start(cs); trapnr = cpu_exec(cs); cpu_exec_end(cs); process_queued_cpu_work(cs); switch (trapnr) { #ifndef TARGET_SPARC64 case 0x80: #else /* FreeBSD uses 0x141 for syscalls too */ case 0x141: if (bsd_type != target_freebsd) goto badtrap; /* fallthrough */ case 0x100: #endif syscall_nr = env->gregs[1]; if (bsd_type == target_freebsd) ret = do_freebsd_syscall(env, syscall_nr, env->regwptr[0], env->regwptr[1], env->regwptr[2], env->regwptr[3], env->regwptr[4], env->regwptr[5], 0, 0); else if (bsd_type == target_netbsd) ret = do_netbsd_syscall(env, syscall_nr, env->regwptr[0], env->regwptr[1], env->regwptr[2], env->regwptr[3], env->regwptr[4], env->regwptr[5]); else { //if (bsd_type == target_openbsd) #if defined(TARGET_SPARC64) syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG | TARGET_OPENBSD_SYSCALL_G2RFLAG); #endif ret = do_openbsd_syscall(env, syscall_nr, env->regwptr[0], env->regwptr[1], env->regwptr[2], env->regwptr[3], env->regwptr[4], env->regwptr[5]); } if ((unsigned int)ret >= (unsigned int)(-515)) { ret = -ret; #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) env->xcc |= PSR_CARRY; #else env->psr |= PSR_CARRY; #endif } else { #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) env->xcc &= ~PSR_CARRY; #else env->psr &= ~PSR_CARRY; #endif } env->regwptr[0] = ret; /* next instruction */ #if defined(TARGET_SPARC64) if (bsd_type == target_openbsd && env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) { env->pc = env->gregs[2]; env->npc = env->pc + 4; } else if (bsd_type == target_openbsd && env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) { env->pc = env->gregs[7]; env->npc = env->pc + 4; } else { env->pc = env->npc; env->npc = env->npc + 4; } #else env->pc = env->npc; env->npc = env->npc + 4; #endif break; case 0x83: /* flush windows */ #ifdef TARGET_ABI32 case 0x103: #endif flush_windows(env); /* next instruction */ env->pc = env->npc; env->npc = env->npc + 4; break; #ifndef TARGET_SPARC64 case TT_WIN_OVF: /* window overflow */ save_window(env); break; case TT_WIN_UNF: /* window underflow */ restore_window(env); break; case TT_TFAULT: case TT_DFAULT: #if 0 { info.si_signo = SIGSEGV; info.si_errno = 0; /* XXX: check env->error_code */ info.si_code = TARGET_SEGV_MAPERR; info._sifields._sigfault._addr = env->mmuregs[4]; queue_signal(env, info.si_signo, &info); } #endif break; #else case TT_SPILL: /* window overflow */ save_window(env); break; case TT_FILL: /* window underflow */ restore_window(env); break; case TT_TFAULT: case TT_DFAULT: #if 0 { info.si_signo = SIGSEGV; info.si_errno = 0; /* XXX: check env->error_code */ info.si_code = TARGET_SEGV_MAPERR; if (trapnr == TT_DFAULT) info._sifields._sigfault._addr = env->dmmuregs[4]; else info._sifields._sigfault._addr = env->tsptr->tpc; //queue_signal(env, info.si_signo, &info); } #endif break; #endif case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; case EXCP_DEBUG: { #if 0 int sig = #endif gdb_handlesig(cs, TARGET_SIGTRAP); #if 0 if (sig) { info.si_signo = sig; info.si_errno = 0; info.si_code = TARGET_TRAP_BRKPT; //queue_signal(env, info.si_signo, &info); } #endif } break; default: #ifdef TARGET_SPARC64 badtrap: #endif printf ("Unhandled trap: 0x%x\n", trapnr); cpu_dump_state(cs, stderr, 0); exit (1); } process_pending_signals (env); } } #endif static void usage(void) { printf("qemu-" TARGET_NAME " version " QEMU_FULL_VERSION "\n" QEMU_COPYRIGHT "\n" "usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" "BSD CPU emulator (compiled for %s emulation)\n" "\n" "Standard options:\n" "-h print this help\n" "-g port wait gdb connection to port\n" "-L path set the elf interpreter prefix (default=%s)\n" "-s size set the stack size in bytes (default=%ld)\n" "-cpu model select CPU (-cpu help for list)\n" "-drop-ld-preload drop LD_PRELOAD for target process\n" "-E var=value sets/modifies targets environment variable(s)\n" "-U var unsets targets environment variable(s)\n" "-B address set guest_base address to address\n" "-bsd type select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n" "\n" "Debug options:\n" "-d item1[,...] enable logging of specified items\n" " (use '-d help' for a list of log items)\n" "-D logfile write logs to 'logfile' (default stderr)\n" "-p pagesize set the host page size to 'pagesize'\n" "-singlestep always run in singlestep mode\n" "-strace log system calls\n" "-trace [[enable=]][,events=][,file=]\n" " specify tracing options\n" "\n" "Environment variables:\n" "QEMU_STRACE Print system calls and arguments similar to the\n" " 'strace' program. Enable by setting to any value.\n" "You can use -E and -U options to set/unset environment variables\n" "for target process. It is possible to provide several variables\n" "by repeating the option. For example:\n" " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" "Note that if you provide several changes to single variable\n" "last change will stay in effect.\n" "\n" QEMU_HELP_BOTTOM "\n" , TARGET_NAME, interp_prefix, x86_stack_size); exit(1); } THREAD CPUState *thread_cpu; bool qemu_cpu_is_self(CPUState *cpu) { return thread_cpu == cpu; } void qemu_cpu_kick(CPUState *cpu) { cpu_exit(cpu); } /* Assumes contents are already zeroed. */ void init_task_state(TaskState *ts) { int i; ts->used = 1; ts->first_free = ts->sigqueue_table; for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) { ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1]; } ts->sigqueue_table[i].next = NULL; } int main(int argc, char **argv) { const char *filename; const char *cpu_model; const char *cpu_type; const char *log_file = NULL; const char *log_mask = NULL; struct target_pt_regs regs1, *regs = ®s1; struct image_info info1, *info = &info1; TaskState ts1, *ts = &ts1; CPUArchState *env; CPUState *cpu; int optind; const char *r; const char *gdbstub = NULL; char **target_environ, **wrk; envlist_t *envlist = NULL; bsd_type = target_openbsd; if (argc <= 1) usage(); error_init(argv[0]); module_call_init(MODULE_INIT_TRACE); qemu_init_cpu_list(); module_call_init(MODULE_INIT_QOM); envlist = envlist_create(); /* add current environment into the list */ for (wrk = environ; *wrk != NULL; wrk++) { (void) envlist_setenv(envlist, *wrk); } cpu_model = NULL; qemu_add_opts(&qemu_trace_opts); optind = 1; for (;;) { if (optind >= argc) break; r = argv[optind]; if (r[0] != '-') break; optind++; r++; if (!strcmp(r, "-")) { break; } else if (!strcmp(r, "d")) { if (optind >= argc) { break; } log_mask = argv[optind++]; } else if (!strcmp(r, "D")) { if (optind >= argc) { break; } log_file = argv[optind++]; } else if (!strcmp(r, "E")) { r = argv[optind++]; if (envlist_setenv(envlist, r) != 0) usage(); } else if (!strcmp(r, "ignore-environment")) { envlist_free(envlist); envlist = envlist_create(); } else if (!strcmp(r, "U")) { r = argv[optind++]; if (envlist_unsetenv(envlist, r) != 0) usage(); } else if (!strcmp(r, "s")) { r = argv[optind++]; x86_stack_size = strtol(r, (char **)&r, 0); if (x86_stack_size <= 0) usage(); if (*r == 'M') x86_stack_size *= MiB; else if (*r == 'k' || *r == 'K') x86_stack_size *= KiB; } else if (!strcmp(r, "L")) { interp_prefix = argv[optind++]; } else if (!strcmp(r, "p")) { qemu_host_page_size = atoi(argv[optind++]); if (qemu_host_page_size == 0 || (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { fprintf(stderr, "page size must be a power of two\n"); exit(1); } } else if (!strcmp(r, "g")) { gdbstub = g_strdup(argv[optind++]); } else if (!strcmp(r, "r")) { qemu_uname_release = argv[optind++]; } else if (!strcmp(r, "cpu")) { cpu_model = argv[optind++]; if (is_help_option(cpu_model)) { /* XXX: implement xxx_cpu_list for targets that still miss it */ #if defined(cpu_list) cpu_list(); #endif exit(1); } } else if (!strcmp(r, "B")) { guest_base = strtol(argv[optind++], NULL, 0); have_guest_base = true; } else if (!strcmp(r, "drop-ld-preload")) { (void) envlist_unsetenv(envlist, "LD_PRELOAD"); } else if (!strcmp(r, "bsd")) { if (!strcasecmp(argv[optind], "freebsd")) { bsd_type = target_freebsd; } else if (!strcasecmp(argv[optind], "netbsd")) { bsd_type = target_netbsd; } else if (!strcasecmp(argv[optind], "openbsd")) { bsd_type = target_openbsd; } else { usage(); } optind++; } else if (!strcmp(r, "singlestep")) { singlestep = 1; } else if (!strcmp(r, "strace")) { do_strace = 1; } else if (!strcmp(r, "trace")) { trace_opt_parse(optarg); } else { usage(); } } /* init debug */ qemu_log_needs_buffers(); qemu_set_log_filename(log_file, &error_fatal); if (log_mask) { int mask; mask = qemu_str_to_log_mask(log_mask); if (!mask) { qemu_print_log_usage(stdout); exit(1); } qemu_set_log(mask); } if (optind >= argc) { usage(); } filename = argv[optind]; if (!trace_init_backends()) { exit(1); } trace_init_file(); /* Zero out regs */ memset(regs, 0, sizeof(struct target_pt_regs)); /* Zero out image_info */ memset(info, 0, sizeof(struct image_info)); /* Scan interp_prefix dir for replacement files. */ init_paths(interp_prefix); if (cpu_model == NULL) { #if defined(TARGET_I386) #ifdef TARGET_X86_64 cpu_model = "qemu64"; #else cpu_model = "qemu32"; #endif #elif defined(TARGET_SPARC) #ifdef TARGET_SPARC64 cpu_model = "TI UltraSparc II"; #else cpu_model = "Fujitsu MB86904"; #endif #else cpu_model = "any"; #endif } /* init tcg before creating CPUs and to get qemu_host_page_size */ tcg_exec_init(0); cpu_type = parse_cpu_option(cpu_model); cpu = cpu_create(cpu_type); env = cpu->env_ptr; #if defined(TARGET_SPARC) || defined(TARGET_PPC) cpu_reset(cpu); #endif thread_cpu = cpu; if (getenv("QEMU_STRACE")) { do_strace = 1; } target_environ = envlist_to_environ(envlist, NULL); envlist_free(envlist); /* * Now that page sizes are configured in tcg_exec_init() we can do * proper page alignment for guest_base. */ guest_base = HOST_PAGE_ALIGN(guest_base); /* * Read in mmap_min_addr kernel parameter. This value is used * When loading the ELF image to determine whether guest_base * is needed. * * When user has explicitly set the quest base, we skip this * test. */ if (!have_guest_base) { FILE *fp; if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { unsigned long tmp; if (fscanf(fp, "%lu", &tmp) == 1) { mmap_min_addr = tmp; qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr); } fclose(fp); } } if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) { printf("Error loading %s\n", filename); _exit(1); } for (wrk = target_environ; *wrk; wrk++) { g_free(*wrk); } g_free(target_environ); if (qemu_loglevel_mask(CPU_LOG_PAGE)) { qemu_log("guest_base 0x%lx\n", guest_base); log_page_dump("binary load"); qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", info->start_code); qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", info->start_data); qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", info->start_stack); qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); } target_set_brk(info->brk); syscall_init(); signal_init(); /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay generating the prologue until now so that the prologue can take the real value of GUEST_BASE into account. */ tcg_prologue_init(tcg_ctx); tcg_region_init(); /* build Task State */ memset(ts, 0, sizeof(TaskState)); init_task_state(ts); ts->info = info; cpu->opaque = ts; #if defined(TARGET_I386) env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; env->hflags |= HF_PE_MASK | HF_CPL_MASK; if (env->features[FEAT_1_EDX] & CPUID_SSE) { env->cr[4] |= CR4_OSFXSR_MASK; env->hflags |= HF_OSFXSR_MASK; } #ifndef TARGET_ABI32 /* enable 64 bit mode if possible */ if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); exit(1); } env->cr[4] |= CR4_PAE_MASK; env->efer |= MSR_EFER_LMA | MSR_EFER_LME; env->hflags |= HF_LMA_MASK; #endif /* flags setup : we activate the IRQs by default as in user mode */ env->eflags |= IF_MASK; /* linux register setup */ #ifndef TARGET_ABI32 env->regs[R_EAX] = regs->rax; env->regs[R_EBX] = regs->rbx; env->regs[R_ECX] = regs->rcx; env->regs[R_EDX] = regs->rdx; env->regs[R_ESI] = regs->rsi; env->regs[R_EDI] = regs->rdi; env->regs[R_EBP] = regs->rbp; env->regs[R_ESP] = regs->rsp; env->eip = regs->rip; #else env->regs[R_EAX] = regs->eax; env->regs[R_EBX] = regs->ebx; env->regs[R_ECX] = regs->ecx; env->regs[R_EDX] = regs->edx; env->regs[R_ESI] = regs->esi; env->regs[R_EDI] = regs->edi; env->regs[R_EBP] = regs->ebp; env->regs[R_ESP] = regs->esp; env->eip = regs->eip; #endif /* linux interrupt setup */ #ifndef TARGET_ABI32 env->idt.limit = 511; #else env->idt.limit = 255; #endif env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); idt_table = g2h(env->idt.base); set_idt(0, 0); set_idt(1, 0); set_idt(2, 0); set_idt(3, 3); set_idt(4, 3); set_idt(5, 0); set_idt(6, 0); set_idt(7, 0); set_idt(8, 0); set_idt(9, 0); set_idt(10, 0); set_idt(11, 0); set_idt(12, 0); set_idt(13, 0); set_idt(14, 0); set_idt(15, 0); set_idt(16, 0); set_idt(17, 0); set_idt(18, 0); set_idt(19, 0); set_idt(0x80, 3); /* linux segment setup */ { uint64_t *gdt_table; env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; gdt_table = g2h(env->gdt.base); #ifdef TARGET_ABI32 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); #else /* 64 bit code segment */ write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_L_MASK | (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); #endif write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); } cpu_x86_load_seg(env, R_CS, __USER_CS); cpu_x86_load_seg(env, R_SS, __USER_DS); #ifdef TARGET_ABI32 cpu_x86_load_seg(env, R_DS, __USER_DS); cpu_x86_load_seg(env, R_ES, __USER_DS); cpu_x86_load_seg(env, R_FS, __USER_DS); cpu_x86_load_seg(env, R_GS, __USER_DS); /* This hack makes Wine work... */ env->segs[R_FS].selector = 0; #else cpu_x86_load_seg(env, R_DS, 0); cpu_x86_load_seg(env, R_ES, 0); cpu_x86_load_seg(env, R_FS, 0); cpu_x86_load_seg(env, R_GS, 0); #endif #elif defined(TARGET_SPARC) { int i; env->pc = regs->pc; env->npc = regs->npc; env->y = regs->y; for(i = 0; i < 8; i++) env->gregs[i] = regs->u_regs[i]; for(i = 0; i < 8; i++) env->regwptr[i] = regs->u_regs[i + 8]; } #else #error unsupported target CPU #endif if (gdbstub) { gdbserver_start(gdbstub); gdb_handlesig(cpu, 0); } cpu_loop(env); /* never exits */ return 0; }