/* * Block driver for the VMDK format * * Copyright (c) 2004 Fabrice Bellard * Copyright (c) 2005 Filip Navara * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu-common.h" #include "block/block_int.h" #include "qemu/module.h" #include "migration/migration.h" #include <zlib.h> #include <glib.h> #define VMDK3_MAGIC (('C' << 24) | ('O' << 16) | ('W' << 8) | 'D') #define VMDK4_MAGIC (('K' << 24) | ('D' << 16) | ('M' << 8) | 'V') #define VMDK4_COMPRESSION_DEFLATE 1 #define VMDK4_FLAG_NL_DETECT (1 << 0) #define VMDK4_FLAG_RGD (1 << 1) /* Zeroed-grain enable bit */ #define VMDK4_FLAG_ZERO_GRAIN (1 << 2) #define VMDK4_FLAG_COMPRESS (1 << 16) #define VMDK4_FLAG_MARKER (1 << 17) #define VMDK4_GD_AT_END 0xffffffffffffffffULL #define VMDK_GTE_ZEROED 0x1 /* VMDK internal error codes */ #define VMDK_OK 0 #define VMDK_ERROR (-1) /* Cluster not allocated */ #define VMDK_UNALLOC (-2) #define VMDK_ZEROED (-3) #define BLOCK_OPT_ZEROED_GRAIN "zeroed_grain" typedef struct { uint32_t version; uint32_t flags; uint32_t disk_sectors; uint32_t granularity; uint32_t l1dir_offset; uint32_t l1dir_size; uint32_t file_sectors; uint32_t cylinders; uint32_t heads; uint32_t sectors_per_track; } QEMU_PACKED VMDK3Header; typedef struct { uint32_t version; uint32_t flags; uint64_t capacity; uint64_t granularity; uint64_t desc_offset; uint64_t desc_size; /* Number of GrainTableEntries per GrainTable */ uint32_t num_gtes_per_gt; uint64_t rgd_offset; uint64_t gd_offset; uint64_t grain_offset; char filler[1]; char check_bytes[4]; uint16_t compressAlgorithm; } QEMU_PACKED VMDK4Header; #define L2_CACHE_SIZE 16 typedef struct VmdkExtent { BlockDriverState *file; bool flat; bool compressed; bool has_marker; bool has_zero_grain; int version; int64_t sectors; int64_t end_sector; int64_t flat_start_offset; int64_t l1_table_offset; int64_t l1_backup_table_offset; uint32_t *l1_table; uint32_t *l1_backup_table; unsigned int l1_size; uint32_t l1_entry_sectors; unsigned int l2_size; uint32_t *l2_cache; uint32_t l2_cache_offsets[L2_CACHE_SIZE]; uint32_t l2_cache_counts[L2_CACHE_SIZE]; int64_t cluster_sectors; int64_t next_cluster_sector; char *type; } VmdkExtent; typedef struct BDRVVmdkState { CoMutex lock; uint64_t desc_offset; bool cid_updated; bool cid_checked; uint32_t cid; uint32_t parent_cid; int num_extents; /* Extent array with num_extents entries, ascend ordered by address */ VmdkExtent *extents; Error *migration_blocker; char *create_type; } BDRVVmdkState; typedef struct VmdkMetaData { unsigned int l1_index; unsigned int l2_index; unsigned int l2_offset; int valid; uint32_t *l2_cache_entry; } VmdkMetaData; typedef struct VmdkGrainMarker { uint64_t lba; uint32_t size; uint8_t data[0]; } QEMU_PACKED VmdkGrainMarker; enum { MARKER_END_OF_STREAM = 0, MARKER_GRAIN_TABLE = 1, MARKER_GRAIN_DIRECTORY = 2, MARKER_FOOTER = 3, }; static int vmdk_probe(const uint8_t *buf, int buf_size, const char *filename) { uint32_t magic; if (buf_size < 4) { return 0; } magic = be32_to_cpu(*(uint32_t *)buf); if (magic == VMDK3_MAGIC || magic == VMDK4_MAGIC) { return 100; } else { const char *p = (const char *)buf; const char *end = p + buf_size; while (p < end) { if (*p == '#') { /* skip comment line */ while (p < end && *p != '\n') { p++; } p++; continue; } if (*p == ' ') { while (p < end && *p == ' ') { p++; } /* skip '\r' if windows line endings used. */ if (p < end && *p == '\r') { p++; } /* only accept blank lines before 'version=' line */ if (p == end || *p != '\n') { return 0; } p++; continue; } if (end - p >= strlen("version=X\n")) { if (strncmp("version=1\n", p, strlen("version=1\n")) == 0 || strncmp("version=2\n", p, strlen("version=2\n")) == 0) { return 100; } } if (end - p >= strlen("version=X\r\n")) { if (strncmp("version=1\r\n", p, strlen("version=1\r\n")) == 0 || strncmp("version=2\r\n", p, strlen("version=2\r\n")) == 0) { return 100; } } return 0; } return 0; } } #define SECTOR_SIZE 512 #define DESC_SIZE (20 * SECTOR_SIZE) /* 20 sectors of 512 bytes each */ #define BUF_SIZE 4096 #define HEADER_SIZE 512 /* first sector of 512 bytes */ static void vmdk_free_extents(BlockDriverState *bs) { int i; BDRVVmdkState *s = bs->opaque; VmdkExtent *e; for (i = 0; i < s->num_extents; i++) { e = &s->extents[i]; g_free(e->l1_table); g_free(e->l2_cache); g_free(e->l1_backup_table); g_free(e->type); if (e->file != bs->file) { bdrv_unref(e->file); } } g_free(s->extents); } static void vmdk_free_last_extent(BlockDriverState *bs) { BDRVVmdkState *s = bs->opaque; if (s->num_extents == 0) { return; } s->num_extents--; s->extents = g_renew(VmdkExtent, s->extents, s->num_extents); } static uint32_t vmdk_read_cid(BlockDriverState *bs, int parent) { char desc[DESC_SIZE]; uint32_t cid = 0xffffffff; const char *p_name, *cid_str; size_t cid_str_size; BDRVVmdkState *s = bs->opaque; int ret; ret = bdrv_pread(bs->file, s->desc_offset, desc, DESC_SIZE); if (ret < 0) { return 0; } if (parent) { cid_str = "parentCID"; cid_str_size = sizeof("parentCID"); } else { cid_str = "CID"; cid_str_size = sizeof("CID"); } desc[DESC_SIZE - 1] = '\0'; p_name = strstr(desc, cid_str); if (p_name != NULL) { p_name += cid_str_size; sscanf(p_name, "%" SCNx32, &cid); } return cid; } static int vmdk_write_cid(BlockDriverState *bs, uint32_t cid) { char desc[DESC_SIZE], tmp_desc[DESC_SIZE]; char *p_name, *tmp_str; BDRVVmdkState *s = bs->opaque; int ret; ret = bdrv_pread(bs->file, s->desc_offset, desc, DESC_SIZE); if (ret < 0) { return ret; } desc[DESC_SIZE - 1] = '\0'; tmp_str = strstr(desc, "parentCID"); if (tmp_str == NULL) { return -EINVAL; } pstrcpy(tmp_desc, sizeof(tmp_desc), tmp_str); p_name = strstr(desc, "CID"); if (p_name != NULL) { p_name += sizeof("CID"); snprintf(p_name, sizeof(desc) - (p_name - desc), "%" PRIx32 "\n", cid); pstrcat(desc, sizeof(desc), tmp_desc); } ret = bdrv_pwrite_sync(bs->file, s->desc_offset, desc, DESC_SIZE); if (ret < 0) { return ret; } return 0; } static int vmdk_is_cid_valid(BlockDriverState *bs) { BDRVVmdkState *s = bs->opaque; BlockDriverState *p_bs = bs->backing_hd; uint32_t cur_pcid; if (!s->cid_checked && p_bs) { cur_pcid = vmdk_read_cid(p_bs, 0); if (s->parent_cid != cur_pcid) { /* CID not valid */ return 0; } } s->cid_checked = true; /* CID valid */ return 1; } /* Queue extents, if any, for reopen() */ static int vmdk_reopen_prepare(BDRVReopenState *state, BlockReopenQueue *queue, Error **errp) { BDRVVmdkState *s; int ret = -1; int i; VmdkExtent *e; assert(state != NULL); assert(state->bs != NULL); if (queue == NULL) { error_setg(errp, "No reopen queue for VMDK extents"); goto exit; } s = state->bs->opaque; assert(s != NULL); for (i = 0; i < s->num_extents; i++) { e = &s->extents[i]; if (e->file != state->bs->file) { bdrv_reopen_queue(queue, e->file, state->flags); } } ret = 0; exit: return ret; } static int vmdk_parent_open(BlockDriverState *bs) { char *p_name; char desc[DESC_SIZE + 1]; BDRVVmdkState *s = bs->opaque; int ret; desc[DESC_SIZE] = '\0'; ret = bdrv_pread(bs->file, s->desc_offset, desc, DESC_SIZE); if (ret < 0) { return ret; } p_name = strstr(desc, "parentFileNameHint"); if (p_name != NULL) { char *end_name; p_name += sizeof("parentFileNameHint") + 1; end_name = strchr(p_name, '\"'); if (end_name == NULL) { return -EINVAL; } if ((end_name - p_name) > sizeof(bs->backing_file) - 1) { return -EINVAL; } pstrcpy(bs->backing_file, end_name - p_name + 1, p_name); } return 0; } /* Create and append extent to the extent array. Return the added VmdkExtent * address. return NULL if allocation failed. */ static int vmdk_add_extent(BlockDriverState *bs, BlockDriverState *file, bool flat, int64_t sectors, int64_t l1_offset, int64_t l1_backup_offset, uint32_t l1_size, int l2_size, uint64_t cluster_sectors, VmdkExtent **new_extent, Error **errp) { VmdkExtent *extent; BDRVVmdkState *s = bs->opaque; int64_t nb_sectors; if (cluster_sectors > 0x200000) { /* 0x200000 * 512Bytes = 1GB for one cluster is unrealistic */ error_setg(errp, "Invalid granularity, image may be corrupt"); return -EFBIG; } if (l1_size > 512 * 1024 * 1024) { /* Although with big capacity and small l1_entry_sectors, we can get a * big l1_size, we don't want unbounded value to allocate the table. * Limit it to 512M, which is 16PB for default cluster and L2 table * size */ error_setg(errp, "L1 size too big"); return -EFBIG; } nb_sectors = bdrv_nb_sectors(file); if (nb_sectors < 0) { return nb_sectors; } s->extents = g_renew(VmdkExtent, s->extents, s->num_extents + 1); extent = &s->extents[s->num_extents]; s->num_extents++; memset(extent, 0, sizeof(VmdkExtent)); extent->file = file; extent->flat = flat; extent->sectors = sectors; extent->l1_table_offset = l1_offset; extent->l1_backup_table_offset = l1_backup_offset; extent->l1_size = l1_size; extent->l1_entry_sectors = l2_size * cluster_sectors; extent->l2_size = l2_size; extent->cluster_sectors = flat ? sectors : cluster_sectors; extent->next_cluster_sector = ROUND_UP(nb_sectors, cluster_sectors); if (s->num_extents > 1) { extent->end_sector = (*(extent - 1)).end_sector + extent->sectors; } else { extent->end_sector = extent->sectors; } bs->total_sectors = extent->end_sector; if (new_extent) { *new_extent = extent; } return 0; } static int vmdk_init_tables(BlockDriverState *bs, VmdkExtent *extent, Error **errp) { int ret; int l1_size, i; /* read the L1 table */ l1_size = extent->l1_size * sizeof(uint32_t); extent->l1_table = g_try_malloc(l1_size); if (l1_size && extent->l1_table == NULL) { return -ENOMEM; } ret = bdrv_pread(extent->file, extent->l1_table_offset, extent->l1_table, l1_size); if (ret < 0) { error_setg_errno(errp, -ret, "Could not read l1 table from extent '%s'", extent->file->filename); goto fail_l1; } for (i = 0; i < extent->l1_size; i++) { le32_to_cpus(&extent->l1_table[i]); } if (extent->l1_backup_table_offset) { extent->l1_backup_table = g_try_malloc(l1_size); if (l1_size && extent->l1_backup_table == NULL) { ret = -ENOMEM; goto fail_l1; } ret = bdrv_pread(extent->file, extent->l1_backup_table_offset, extent->l1_backup_table, l1_size); if (ret < 0) { error_setg_errno(errp, -ret, "Could not read l1 backup table from extent '%s'", extent->file->filename); goto fail_l1b; } for (i = 0; i < extent->l1_size; i++) { le32_to_cpus(&extent->l1_backup_table[i]); } } extent->l2_cache = g_new(uint32_t, extent->l2_size * L2_CACHE_SIZE); return 0; fail_l1b: g_free(extent->l1_backup_table); fail_l1: g_free(extent->l1_table); return ret; } static int vmdk_open_vmfs_sparse(BlockDriverState *bs, BlockDriverState *file, int flags, Error **errp) { int ret; uint32_t magic; VMDK3Header header; VmdkExtent *extent; ret = bdrv_pread(file, sizeof(magic), &header, sizeof(header)); if (ret < 0) { error_setg_errno(errp, -ret, "Could not read header from file '%s'", file->filename); return ret; } ret = vmdk_add_extent(bs, file, false, le32_to_cpu(header.disk_sectors), (int64_t)le32_to_cpu(header.l1dir_offset) << 9, 0, le32_to_cpu(header.l1dir_size), 4096, le32_to_cpu(header.granularity), &extent, errp); if (ret < 0) { return ret; } ret = vmdk_init_tables(bs, extent, errp); if (ret) { /* free extent allocated by vmdk_add_extent */ vmdk_free_last_extent(bs); } return ret; } static int vmdk_open_desc_file(BlockDriverState *bs, int flags, char *buf, Error **errp); static char *vmdk_read_desc(BlockDriverState *file, uint64_t desc_offset, Error **errp) { int64_t size; char *buf; int ret; size = bdrv_getlength(file); if (size < 0) { error_setg_errno(errp, -size, "Could not access file"); return NULL; } if (size < 4) { /* Both descriptor file and sparse image must be much larger than 4 * bytes, also callers of vmdk_read_desc want to compare the first 4 * bytes with VMDK4_MAGIC, let's error out if less is read. */ error_setg(errp, "File is too small, not a valid image"); return NULL; } size = MIN(size, (1 << 20) - 1); /* avoid unbounded allocation */ buf = g_malloc(size + 1); ret = bdrv_pread(file, desc_offset, buf, size); if (ret < 0) { error_setg_errno(errp, -ret, "Could not read from file"); g_free(buf); return NULL; } buf[ret] = 0; return buf; } static int vmdk_open_vmdk4(BlockDriverState *bs, BlockDriverState *file, int flags, Error **errp) { int ret; uint32_t magic; uint32_t l1_size, l1_entry_sectors; VMDK4Header header; VmdkExtent *extent; BDRVVmdkState *s = bs->opaque; int64_t l1_backup_offset = 0; ret = bdrv_pread(file, sizeof(magic), &header, sizeof(header)); if (ret < 0) { error_setg_errno(errp, -ret, "Could not read header from file '%s'", file->filename); return -EINVAL; } if (header.capacity == 0) { uint64_t desc_offset = le64_to_cpu(header.desc_offset); if (desc_offset) { char *buf = vmdk_read_desc(file, desc_offset << 9, errp); if (!buf) { return -EINVAL; } ret = vmdk_open_desc_file(bs, flags, buf, errp); g_free(buf); return ret; } } if (!s->create_type) { s->create_type = g_strdup("monolithicSparse"); } if (le64_to_cpu(header.gd_offset) == VMDK4_GD_AT_END) { /* * The footer takes precedence over the header, so read it in. The * footer starts at offset -1024 from the end: One sector for the * footer, and another one for the end-of-stream marker. */ struct { struct { uint64_t val; uint32_t size; uint32_t type; uint8_t pad[512 - 16]; } QEMU_PACKED footer_marker; uint32_t magic; VMDK4Header header; uint8_t pad[512 - 4 - sizeof(VMDK4Header)]; struct { uint64_t val; uint32_t size; uint32_t type; uint8_t pad[512 - 16]; } QEMU_PACKED eos_marker; } QEMU_PACKED footer; ret = bdrv_pread(file, bs->file->total_sectors * 512 - 1536, &footer, sizeof(footer)); if (ret < 0) { error_setg_errno(errp, -ret, "Failed to read footer"); return ret; } /* Some sanity checks for the footer */ if (be32_to_cpu(footer.magic) != VMDK4_MAGIC || le32_to_cpu(footer.footer_marker.size) != 0 || le32_to_cpu(footer.footer_marker.type) != MARKER_FOOTER || le64_to_cpu(footer.eos_marker.val) != 0 || le32_to_cpu(footer.eos_marker.size) != 0 || le32_to_cpu(footer.eos_marker.type) != MARKER_END_OF_STREAM) { error_setg(errp, "Invalid footer"); return -EINVAL; } header = footer.header; } if (le32_to_cpu(header.version) > 3) { char buf[64]; snprintf(buf, sizeof(buf), "VMDK version %" PRId32, le32_to_cpu(header.version)); error_set(errp, QERR_UNKNOWN_BLOCK_FORMAT_FEATURE, bdrv_get_device_or_node_name(bs), "vmdk", buf); return -ENOTSUP; } else if (le32_to_cpu(header.version) == 3 && (flags & BDRV_O_RDWR)) { /* VMware KB 2064959 explains that version 3 added support for * persistent changed block tracking (CBT), and backup software can * read it as version=1 if it doesn't care about the changed area * information. So we are safe to enable read only. */ error_setg(errp, "VMDK version 3 must be read only"); return -EINVAL; } if (le32_to_cpu(header.num_gtes_per_gt) > 512) { error_setg(errp, "L2 table size too big"); return -EINVAL; } l1_entry_sectors = le32_to_cpu(header.num_gtes_per_gt) * le64_to_cpu(header.granularity); if (l1_entry_sectors == 0) { error_setg(errp, "L1 entry size is invalid"); return -EINVAL; } l1_size = (le64_to_cpu(header.capacity) + l1_entry_sectors - 1) / l1_entry_sectors; if (le32_to_cpu(header.flags) & VMDK4_FLAG_RGD) { l1_backup_offset = le64_to_cpu(header.rgd_offset) << 9; } if (bdrv_nb_sectors(file) < le64_to_cpu(header.grain_offset)) { error_setg(errp, "File truncated, expecting at least %" PRId64 " bytes", (int64_t)(le64_to_cpu(header.grain_offset) * BDRV_SECTOR_SIZE)); return -EINVAL; } ret = vmdk_add_extent(bs, file, false, le64_to_cpu(header.capacity), le64_to_cpu(header.gd_offset) << 9, l1_backup_offset, l1_size, le32_to_cpu(header.num_gtes_per_gt), le64_to_cpu(header.granularity), &extent, errp); if (ret < 0) { return ret; } extent->compressed = le16_to_cpu(header.compressAlgorithm) == VMDK4_COMPRESSION_DEFLATE; if (extent->compressed) { g_free(s->create_type); s->create_type = g_strdup("streamOptimized"); } extent->has_marker = le32_to_cpu(header.flags) & VMDK4_FLAG_MARKER; extent->version = le32_to_cpu(header.version); extent->has_zero_grain = le32_to_cpu(header.flags) & VMDK4_FLAG_ZERO_GRAIN; ret = vmdk_init_tables(bs, extent, errp); if (ret) { /* free extent allocated by vmdk_add_extent */ vmdk_free_last_extent(bs); } return ret; } /* find an option value out of descriptor file */ static int vmdk_parse_description(const char *desc, const char *opt_name, char *buf, int buf_size) { char *opt_pos, *opt_end; const char *end = desc + strlen(desc); opt_pos = strstr(desc, opt_name); if (!opt_pos) { return VMDK_ERROR; } /* Skip "=\"" following opt_name */ opt_pos += strlen(opt_name) + 2; if (opt_pos >= end) { return VMDK_ERROR; } opt_end = opt_pos; while (opt_end < end && *opt_end != '"') { opt_end++; } if (opt_end == end || buf_size < opt_end - opt_pos + 1) { return VMDK_ERROR; } pstrcpy(buf, opt_end - opt_pos + 1, opt_pos); return VMDK_OK; } /* Open an extent file and append to bs array */ static int vmdk_open_sparse(BlockDriverState *bs, BlockDriverState *file, int flags, char *buf, Error **errp) { uint32_t magic; magic = ldl_be_p(buf); switch (magic) { case VMDK3_MAGIC: return vmdk_open_vmfs_sparse(bs, file, flags, errp); break; case VMDK4_MAGIC: return vmdk_open_vmdk4(bs, file, flags, errp); break; default: error_setg(errp, "Image not in VMDK format"); return -EINVAL; break; } } static int vmdk_parse_extents(const char *desc, BlockDriverState *bs, const char *desc_file_path, Error **errp) { int ret; int matches; char access[11]; char type[11]; char fname[512]; const char *p = desc; int64_t sectors = 0; int64_t flat_offset; char *extent_path; BlockDriverState *extent_file; BDRVVmdkState *s = bs->opaque; VmdkExtent *extent; while (*p) { /* parse extent line in one of below formats: * * RW [size in sectors] FLAT "file-name.vmdk" OFFSET * RW [size in sectors] SPARSE "file-name.vmdk" * RW [size in sectors] VMFS "file-name.vmdk" * RW [size in sectors] VMFSSPARSE "file-name.vmdk" */ flat_offset = -1; matches = sscanf(p, "%10s %" SCNd64 " %10s \"%511[^\n\r\"]\" %" SCNd64, access, §ors, type, fname, &flat_offset); if (matches < 4 || strcmp(access, "RW")) { goto next_line; } else if (!strcmp(type, "FLAT")) { if (matches != 5 || flat_offset < 0) { error_setg(errp, "Invalid extent lines: \n%s", p); return -EINVAL; } } else if (!strcmp(type, "VMFS")) { if (matches == 4) { flat_offset = 0; } else { error_setg(errp, "Invalid extent lines:\n%s", p); return -EINVAL; } } else if (matches != 4) { error_setg(errp, "Invalid extent lines:\n%s", p); return -EINVAL; } if (sectors <= 0 || (strcmp(type, "FLAT") && strcmp(type, "SPARSE") && strcmp(type, "VMFS") && strcmp(type, "VMFSSPARSE")) || (strcmp(access, "RW"))) { goto next_line; } if (!path_is_absolute(fname) && !path_has_protocol(fname) && !desc_file_path[0]) { error_setg(errp, "Cannot use relative extent paths with VMDK " "descriptor file '%s'", bs->file->filename); return -EINVAL; } extent_path = g_malloc0(PATH_MAX); path_combine(extent_path, PATH_MAX, desc_file_path, fname); extent_file = NULL; ret = bdrv_open(&extent_file, extent_path, NULL, NULL, bs->open_flags | BDRV_O_PROTOCOL, NULL, errp); g_free(extent_path); if (ret) { return ret; } /* save to extents array */ if (!strcmp(type, "FLAT") || !strcmp(type, "VMFS")) { /* FLAT extent */ ret = vmdk_add_extent(bs, extent_file, true, sectors, 0, 0, 0, 0, 0, &extent, errp); if (ret < 0) { bdrv_unref(extent_file); return ret; } extent->flat_start_offset = flat_offset << 9; } else if (!strcmp(type, "SPARSE") || !strcmp(type, "VMFSSPARSE")) { /* SPARSE extent and VMFSSPARSE extent are both "COWD" sparse file*/ char *buf = vmdk_read_desc(extent_file, 0, errp); if (!buf) { ret = -EINVAL; } else { ret = vmdk_open_sparse(bs, extent_file, bs->open_flags, buf, errp); } g_free(buf); if (ret) { bdrv_unref(extent_file); return ret; } extent = &s->extents[s->num_extents - 1]; } else { error_setg(errp, "Unsupported extent type '%s'", type); bdrv_unref(extent_file); return -ENOTSUP; } extent->type = g_strdup(type); next_line: /* move to next line */ while (*p) { if (*p == '\n') { p++; break; } p++; } } return 0; } static int vmdk_open_desc_file(BlockDriverState *bs, int flags, char *buf, Error **errp) { int ret; char ct[128]; BDRVVmdkState *s = bs->opaque; if (vmdk_parse_description(buf, "createType", ct, sizeof(ct))) { error_setg(errp, "invalid VMDK image descriptor"); ret = -EINVAL; goto exit; } if (strcmp(ct, "monolithicFlat") && strcmp(ct, "vmfs") && strcmp(ct, "vmfsSparse") && strcmp(ct, "twoGbMaxExtentSparse") && strcmp(ct, "twoGbMaxExtentFlat")) { error_setg(errp, "Unsupported image type '%s'", ct); ret = -ENOTSUP; goto exit; } s->create_type = g_strdup(ct); s->desc_offset = 0; ret = vmdk_parse_extents(buf, bs, bs->file->exact_filename, errp); exit: return ret; } static int vmdk_open(BlockDriverState *bs, QDict *options, int flags, Error **errp) { char *buf; int ret; BDRVVmdkState *s = bs->opaque; uint32_t magic; buf = vmdk_read_desc(bs->file, 0, errp); if (!buf) { return -EINVAL; } magic = ldl_be_p(buf); switch (magic) { case VMDK3_MAGIC: case VMDK4_MAGIC: ret = vmdk_open_sparse(bs, bs->file, flags, buf, errp); s->desc_offset = 0x200; break; default: ret = vmdk_open_desc_file(bs, flags, buf, errp); break; } if (ret) { goto fail; } /* try to open parent images, if exist */ ret = vmdk_parent_open(bs); if (ret) { goto fail; } s->cid = vmdk_read_cid(bs, 0); s->parent_cid = vmdk_read_cid(bs, 1); qemu_co_mutex_init(&s->lock); /* Disable migration when VMDK images are used */ error_setg(&s->migration_blocker, "The vmdk format used by node '%s' " "does not support live migration", bdrv_get_device_or_node_name(bs)); migrate_add_blocker(s->migration_blocker); g_free(buf); return 0; fail: g_free(buf); g_free(s->create_type); s->create_type = NULL; vmdk_free_extents(bs); return ret; } static void vmdk_refresh_limits(BlockDriverState *bs, Error **errp) { BDRVVmdkState *s = bs->opaque; int i; for (i = 0; i < s->num_extents; i++) { if (!s->extents[i].flat) { bs->bl.write_zeroes_alignment = MAX(bs->bl.write_zeroes_alignment, s->extents[i].cluster_sectors); } } } /** * get_whole_cluster * * Copy backing file's cluster that covers @sector_num, otherwise write zero, * to the cluster at @cluster_sector_num. * * If @skip_start_sector < @skip_end_sector, the relative range * [@skip_start_sector, @skip_end_sector) is not copied or written, and leave * it for call to write user data in the request. */ static int get_whole_cluster(BlockDriverState *bs, VmdkExtent *extent, uint64_t cluster_sector_num, uint64_t sector_num, uint64_t skip_start_sector, uint64_t skip_end_sector) { int ret = VMDK_OK; int64_t cluster_bytes; uint8_t *whole_grain; /* For COW, align request sector_num to cluster start */ sector_num = QEMU_ALIGN_DOWN(sector_num, extent->cluster_sectors); cluster_bytes = extent->cluster_sectors << BDRV_SECTOR_BITS; whole_grain = qemu_blockalign(bs, cluster_bytes); if (!bs->backing_hd) { memset(whole_grain, 0, skip_start_sector << BDRV_SECTOR_BITS); memset(whole_grain + (skip_end_sector << BDRV_SECTOR_BITS), 0, cluster_bytes - (skip_end_sector << BDRV_SECTOR_BITS)); } assert(skip_end_sector <= extent->cluster_sectors); /* we will be here if it's first write on non-exist grain(cluster). * try to read from parent image, if exist */ if (bs->backing_hd && !vmdk_is_cid_valid(bs)) { ret = VMDK_ERROR; goto exit; } /* Read backing data before skip range */ if (skip_start_sector > 0) { if (bs->backing_hd) { ret = bdrv_read(bs->backing_hd, sector_num, whole_grain, skip_start_sector); if (ret < 0) { ret = VMDK_ERROR; goto exit; } } ret = bdrv_write(extent->file, cluster_sector_num, whole_grain, skip_start_sector); if (ret < 0) { ret = VMDK_ERROR; goto exit; } } /* Read backing data after skip range */ if (skip_end_sector < extent->cluster_sectors) { if (bs->backing_hd) { ret = bdrv_read(bs->backing_hd, sector_num + skip_end_sector, whole_grain + (skip_end_sector << BDRV_SECTOR_BITS), extent->cluster_sectors - skip_end_sector); if (ret < 0) { ret = VMDK_ERROR; goto exit; } } ret = bdrv_write(extent->file, cluster_sector_num + skip_end_sector, whole_grain + (skip_end_sector << BDRV_SECTOR_BITS), extent->cluster_sectors - skip_end_sector); if (ret < 0) { ret = VMDK_ERROR; goto exit; } } exit: qemu_vfree(whole_grain); return ret; } static int vmdk_L2update(VmdkExtent *extent, VmdkMetaData *m_data, uint32_t offset) { offset = cpu_to_le32(offset); /* update L2 table */ if (bdrv_pwrite_sync( extent->file, ((int64_t)m_data->l2_offset * 512) + (m_data->l2_index * sizeof(offset)), &offset, sizeof(offset)) < 0) { return VMDK_ERROR; } /* update backup L2 table */ if (extent->l1_backup_table_offset != 0) { m_data->l2_offset = extent->l1_backup_table[m_data->l1_index]; if (bdrv_pwrite_sync( extent->file, ((int64_t)m_data->l2_offset * 512) + (m_data->l2_index * sizeof(offset)), &offset, sizeof(offset)) < 0) { return VMDK_ERROR; } } if (m_data->l2_cache_entry) { *m_data->l2_cache_entry = offset; } return VMDK_OK; } /** * get_cluster_offset * * Look up cluster offset in extent file by sector number, and store in * @cluster_offset. * * For flat extents, the start offset as parsed from the description file is * returned. * * For sparse extents, look up in L1, L2 table. If allocate is true, return an * offset for a new cluster and update L2 cache. If there is a backing file, * COW is done before returning; otherwise, zeroes are written to the allocated * cluster. Both COW and zero writing skips the sector range * [@skip_start_sector, @skip_end_sector) passed in by caller, because caller * has new data to write there. * * Returns: VMDK_OK if cluster exists and mapped in the image. * VMDK_UNALLOC if cluster is not mapped and @allocate is false. * VMDK_ERROR if failed. */ static int get_cluster_offset(BlockDriverState *bs, VmdkExtent *extent, VmdkMetaData *m_data, uint64_t offset, bool allocate, uint64_t *cluster_offset, uint64_t skip_start_sector, uint64_t skip_end_sector) { unsigned int l1_index, l2_offset, l2_index; int min_index, i, j; uint32_t min_count, *l2_table; bool zeroed = false; int64_t ret; int64_t cluster_sector; if (m_data) { m_data->valid = 0; } if (extent->flat) { *cluster_offset = extent->flat_start_offset; return VMDK_OK; } offset -= (extent->end_sector - extent->sectors) * SECTOR_SIZE; l1_index = (offset >> 9) / extent->l1_entry_sectors; if (l1_index >= extent->l1_size) { return VMDK_ERROR; } l2_offset = extent->l1_table[l1_index]; if (!l2_offset) { return VMDK_UNALLOC; } for (i = 0; i < L2_CACHE_SIZE; i++) { if (l2_offset == extent->l2_cache_offsets[i]) { /* increment the hit count */ if (++extent->l2_cache_counts[i] == 0xffffffff) { for (j = 0; j < L2_CACHE_SIZE; j++) { extent->l2_cache_counts[j] >>= 1; } } l2_table = extent->l2_cache + (i * extent->l2_size); goto found; } } /* not found: load a new entry in the least used one */ min_index = 0; min_count = 0xffffffff; for (i = 0; i < L2_CACHE_SIZE; i++) { if (extent->l2_cache_counts[i] < min_count) { min_count = extent->l2_cache_counts[i]; min_index = i; } } l2_table = extent->l2_cache + (min_index * extent->l2_size); if (bdrv_pread( extent->file, (int64_t)l2_offset * 512, l2_table, extent->l2_size * sizeof(uint32_t) ) != extent->l2_size * sizeof(uint32_t)) { return VMDK_ERROR; } extent->l2_cache_offsets[min_index] = l2_offset; extent->l2_cache_counts[min_index] = 1; found: l2_index = ((offset >> 9) / extent->cluster_sectors) % extent->l2_size; cluster_sector = le32_to_cpu(l2_table[l2_index]); if (m_data) { m_data->valid = 1; m_data->l1_index = l1_index; m_data->l2_index = l2_index; m_data->l2_offset = l2_offset; m_data->l2_cache_entry = &l2_table[l2_index]; } if (extent->has_zero_grain && cluster_sector == VMDK_GTE_ZEROED) { zeroed = true; } if (!cluster_sector || zeroed) { if (!allocate) { return zeroed ? VMDK_ZEROED : VMDK_UNALLOC; } cluster_sector = extent->next_cluster_sector; extent->next_cluster_sector += extent->cluster_sectors; /* First of all we write grain itself, to avoid race condition * that may to corrupt the image. * This problem may occur because of insufficient space on host disk * or inappropriate VM shutdown. */ ret = get_whole_cluster(bs, extent, cluster_sector, offset >> BDRV_SECTOR_BITS, skip_start_sector, skip_end_sector); if (ret) { return ret; } } *cluster_offset = cluster_sector << BDRV_SECTOR_BITS; return VMDK_OK; } static VmdkExtent *find_extent(BDRVVmdkState *s, int64_t sector_num, VmdkExtent *start_hint) { VmdkExtent *extent = start_hint; if (!extent) { extent = &s->extents[0]; } while (extent < &s->extents[s->num_extents]) { if (sector_num < extent->end_sector) { return extent; } extent++; } return NULL; } static int64_t coroutine_fn vmdk_co_get_block_status(BlockDriverState *bs, int64_t sector_num, int nb_sectors, int *pnum) { BDRVVmdkState *s = bs->opaque; int64_t index_in_cluster, n, ret; uint64_t offset; VmdkExtent *extent; extent = find_extent(s, sector_num, NULL); if (!extent) { return 0; } qemu_co_mutex_lock(&s->lock); ret = get_cluster_offset(bs, extent, NULL, sector_num * 512, false, &offset, 0, 0); qemu_co_mutex_unlock(&s->lock); switch (ret) { case VMDK_ERROR: ret = -EIO; break; case VMDK_UNALLOC: ret = 0; break; case VMDK_ZEROED: ret = BDRV_BLOCK_ZERO; break; case VMDK_OK: ret = BDRV_BLOCK_DATA; if (extent->file == bs->file && !extent->compressed) { ret |= BDRV_BLOCK_OFFSET_VALID | offset; } break; } index_in_cluster = sector_num % extent->cluster_sectors; n = extent->cluster_sectors - index_in_cluster; if (n > nb_sectors) { n = nb_sectors; } *pnum = n; return ret; } static int vmdk_write_extent(VmdkExtent *extent, int64_t cluster_offset, int64_t offset_in_cluster, const uint8_t *buf, int nb_sectors, int64_t sector_num) { int ret; VmdkGrainMarker *data = NULL; uLongf buf_len; const uint8_t *write_buf = buf; int write_len = nb_sectors * 512; if (extent->compressed) { if (!extent->has_marker) { ret = -EINVAL; goto out; } buf_len = (extent->cluster_sectors << 9) * 2; data = g_malloc(buf_len + sizeof(VmdkGrainMarker)); if (compress(data->data, &buf_len, buf, nb_sectors << 9) != Z_OK || buf_len == 0) { ret = -EINVAL; goto out; } data->lba = sector_num; data->size = buf_len; write_buf = (uint8_t *)data; write_len = buf_len + sizeof(VmdkGrainMarker); } ret = bdrv_pwrite(extent->file, cluster_offset + offset_in_cluster, write_buf, write_len); if (ret != write_len) { ret = ret < 0 ? ret : -EIO; goto out; } ret = 0; out: g_free(data); return ret; } static int vmdk_read_extent(VmdkExtent *extent, int64_t cluster_offset, int64_t offset_in_cluster, uint8_t *buf, int nb_sectors) { int ret; int cluster_bytes, buf_bytes; uint8_t *cluster_buf, *compressed_data; uint8_t *uncomp_buf; uint32_t data_len; VmdkGrainMarker *marker; uLongf buf_len; if (!extent->compressed) { ret = bdrv_pread(extent->file, cluster_offset + offset_in_cluster, buf, nb_sectors * 512); if (ret == nb_sectors * 512) { return 0; } else { return -EIO; } } cluster_bytes = extent->cluster_sectors * 512; /* Read two clusters in case GrainMarker + compressed data > one cluster */ buf_bytes = cluster_bytes * 2; cluster_buf = g_malloc(buf_bytes); uncomp_buf = g_malloc(cluster_bytes); ret = bdrv_pread(extent->file, cluster_offset, cluster_buf, buf_bytes); if (ret < 0) { goto out; } compressed_data = cluster_buf; buf_len = cluster_bytes; data_len = cluster_bytes; if (extent->has_marker) { marker = (VmdkGrainMarker *)cluster_buf; compressed_data = marker->data; data_len = le32_to_cpu(marker->size); } if (!data_len || data_len > buf_bytes) { ret = -EINVAL; goto out; } ret = uncompress(uncomp_buf, &buf_len, compressed_data, data_len); if (ret != Z_OK) { ret = -EINVAL; goto out; } if (offset_in_cluster < 0 || offset_in_cluster + nb_sectors * 512 > buf_len) { ret = -EINVAL; goto out; } memcpy(buf, uncomp_buf + offset_in_cluster, nb_sectors * 512); ret = 0; out: g_free(uncomp_buf); g_free(cluster_buf); return ret; } static int vmdk_read(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, int nb_sectors) { BDRVVmdkState *s = bs->opaque; int ret; uint64_t n, index_in_cluster; uint64_t extent_begin_sector, extent_relative_sector_num; VmdkExtent *extent = NULL; uint64_t cluster_offset; while (nb_sectors > 0) { extent = find_extent(s, sector_num, extent); if (!extent) { return -EIO; } ret = get_cluster_offset(bs, extent, NULL, sector_num << 9, false, &cluster_offset, 0, 0); extent_begin_sector = extent->end_sector - extent->sectors; extent_relative_sector_num = sector_num - extent_begin_sector; index_in_cluster = extent_relative_sector_num % extent->cluster_sectors; n = extent->cluster_sectors - index_in_cluster; if (n > nb_sectors) { n = nb_sectors; } if (ret != VMDK_OK) { /* if not allocated, try to read from parent image, if exist */ if (bs->backing_hd && ret != VMDK_ZEROED) { if (!vmdk_is_cid_valid(bs)) { return -EINVAL; } ret = bdrv_read(bs->backing_hd, sector_num, buf, n); if (ret < 0) { return ret; } } else { memset(buf, 0, 512 * n); } } else { ret = vmdk_read_extent(extent, cluster_offset, index_in_cluster * 512, buf, n); if (ret) { return ret; } } nb_sectors -= n; sector_num += n; buf += n * 512; } return 0; } static coroutine_fn int vmdk_co_read(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, int nb_sectors) { int ret; BDRVVmdkState *s = bs->opaque; qemu_co_mutex_lock(&s->lock); ret = vmdk_read(bs, sector_num, buf, nb_sectors); qemu_co_mutex_unlock(&s->lock); return ret; } /** * vmdk_write: * @zeroed: buf is ignored (data is zero), use zeroed_grain GTE feature * if possible, otherwise return -ENOTSUP. * @zero_dry_run: used for zeroed == true only, don't update L2 table, just try * with each cluster. By dry run we can find if the zero write * is possible without modifying image data. * * Returns: error code with 0 for success. */ static int vmdk_write(BlockDriverState *bs, int64_t sector_num, const uint8_t *buf, int nb_sectors, bool zeroed, bool zero_dry_run) { BDRVVmdkState *s = bs->opaque; VmdkExtent *extent = NULL; int ret; int64_t index_in_cluster, n; uint64_t extent_begin_sector, extent_relative_sector_num; uint64_t cluster_offset; VmdkMetaData m_data; if (sector_num > bs->total_sectors) { error_report("Wrong offset: sector_num=0x%" PRIx64 " total_sectors=0x%" PRIx64 "\n", sector_num, bs->total_sectors); return -EIO; } while (nb_sectors > 0) { extent = find_extent(s, sector_num, extent); if (!extent) { return -EIO; } extent_begin_sector = extent->end_sector - extent->sectors; extent_relative_sector_num = sector_num - extent_begin_sector; index_in_cluster = extent_relative_sector_num % extent->cluster_sectors; n = extent->cluster_sectors - index_in_cluster; if (n > nb_sectors) { n = nb_sectors; } ret = get_cluster_offset(bs, extent, &m_data, sector_num << 9, !(extent->compressed || zeroed), &cluster_offset, index_in_cluster, index_in_cluster + n); if (extent->compressed) { if (ret == VMDK_OK) { /* Refuse write to allocated cluster for streamOptimized */ error_report("Could not write to allocated cluster" " for streamOptimized"); return -EIO; } else { /* allocate */ ret = get_cluster_offset(bs, extent, &m_data, sector_num << 9, true, &cluster_offset, 0, 0); } } if (ret == VMDK_ERROR) { return -EINVAL; } if (zeroed) { /* Do zeroed write, buf is ignored */ if (extent->has_zero_grain && index_in_cluster == 0 && n >= extent->cluster_sectors) { n = extent->cluster_sectors; if (!zero_dry_run) { /* update L2 tables */ if (vmdk_L2update(extent, &m_data, VMDK_GTE_ZEROED) != VMDK_OK) { return -EIO; } } } else { return -ENOTSUP; } } else { ret = vmdk_write_extent(extent, cluster_offset, index_in_cluster * 512, buf, n, sector_num); if (ret) { return ret; } if (m_data.valid) { /* update L2 tables */ if (vmdk_L2update(extent, &m_data, cluster_offset >> BDRV_SECTOR_BITS) != VMDK_OK) { return -EIO; } } } nb_sectors -= n; sector_num += n; buf += n * 512; /* update CID on the first write every time the virtual disk is * opened */ if (!s->cid_updated) { ret = vmdk_write_cid(bs, g_random_int()); if (ret < 0) { return ret; } s->cid_updated = true; } } return 0; } static coroutine_fn int vmdk_co_write(BlockDriverState *bs, int64_t sector_num, const uint8_t *buf, int nb_sectors) { int ret; BDRVVmdkState *s = bs->opaque; qemu_co_mutex_lock(&s->lock); ret = vmdk_write(bs, sector_num, buf, nb_sectors, false, false); qemu_co_mutex_unlock(&s->lock); return ret; } static int vmdk_write_compressed(BlockDriverState *bs, int64_t sector_num, const uint8_t *buf, int nb_sectors) { BDRVVmdkState *s = bs->opaque; if (s->num_extents == 1 && s->extents[0].compressed) { return vmdk_write(bs, sector_num, buf, nb_sectors, false, false); } else { return -ENOTSUP; } } static int coroutine_fn vmdk_co_write_zeroes(BlockDriverState *bs, int64_t sector_num, int nb_sectors, BdrvRequestFlags flags) { int ret; BDRVVmdkState *s = bs->opaque; qemu_co_mutex_lock(&s->lock); /* write zeroes could fail if sectors not aligned to cluster, test it with * dry_run == true before really updating image */ ret = vmdk_write(bs, sector_num, NULL, nb_sectors, true, true); if (!ret) { ret = vmdk_write(bs, sector_num, NULL, nb_sectors, true, false); } qemu_co_mutex_unlock(&s->lock); return ret; } static int vmdk_create_extent(const char *filename, int64_t filesize, bool flat, bool compress, bool zeroed_grain, QemuOpts *opts, Error **errp) { int ret, i; BlockDriverState *bs = NULL; VMDK4Header header; Error *local_err = NULL; uint32_t tmp, magic, grains, gd_sectors, gt_size, gt_count; uint32_t *gd_buf = NULL; int gd_buf_size; ret = bdrv_create_file(filename, opts, &local_err); if (ret < 0) { error_propagate(errp, local_err); goto exit; } assert(bs == NULL); ret = bdrv_open(&bs, filename, NULL, NULL, BDRV_O_RDWR | BDRV_O_PROTOCOL, NULL, &local_err); if (ret < 0) { error_propagate(errp, local_err); goto exit; } if (flat) { ret = bdrv_truncate(bs, filesize); if (ret < 0) { error_setg_errno(errp, -ret, "Could not truncate file"); } goto exit; } magic = cpu_to_be32(VMDK4_MAGIC); memset(&header, 0, sizeof(header)); header.version = zeroed_grain ? 2 : 1; header.flags = VMDK4_FLAG_RGD | VMDK4_FLAG_NL_DETECT | (compress ? VMDK4_FLAG_COMPRESS | VMDK4_FLAG_MARKER : 0) | (zeroed_grain ? VMDK4_FLAG_ZERO_GRAIN : 0); header.compressAlgorithm = compress ? VMDK4_COMPRESSION_DEFLATE : 0; header.capacity = filesize / BDRV_SECTOR_SIZE; header.granularity = 128; header.num_gtes_per_gt = BDRV_SECTOR_SIZE; grains = DIV_ROUND_UP(filesize / BDRV_SECTOR_SIZE, header.granularity); gt_size = DIV_ROUND_UP(header.num_gtes_per_gt * sizeof(uint32_t), BDRV_SECTOR_SIZE); gt_count = DIV_ROUND_UP(grains, header.num_gtes_per_gt); gd_sectors = DIV_ROUND_UP(gt_count * sizeof(uint32_t), BDRV_SECTOR_SIZE); header.desc_offset = 1; header.desc_size = 20; header.rgd_offset = header.desc_offset + header.desc_size; header.gd_offset = header.rgd_offset + gd_sectors + (gt_size * gt_count); header.grain_offset = ROUND_UP(header.gd_offset + gd_sectors + (gt_size * gt_count), header.granularity); /* swap endianness for all header fields */ header.version = cpu_to_le32(header.version); header.flags = cpu_to_le32(header.flags); header.capacity = cpu_to_le64(header.capacity); header.granularity = cpu_to_le64(header.granularity); header.num_gtes_per_gt = cpu_to_le32(header.num_gtes_per_gt); header.desc_offset = cpu_to_le64(header.desc_offset); header.desc_size = cpu_to_le64(header.desc_size); header.rgd_offset = cpu_to_le64(header.rgd_offset); header.gd_offset = cpu_to_le64(header.gd_offset); header.grain_offset = cpu_to_le64(header.grain_offset); header.compressAlgorithm = cpu_to_le16(header.compressAlgorithm); header.check_bytes[0] = 0xa; header.check_bytes[1] = 0x20; header.check_bytes[2] = 0xd; header.check_bytes[3] = 0xa; /* write all the data */ ret = bdrv_pwrite(bs, 0, &magic, sizeof(magic)); if (ret < 0) { error_set(errp, QERR_IO_ERROR); goto exit; } ret = bdrv_pwrite(bs, sizeof(magic), &header, sizeof(header)); if (ret < 0) { error_set(errp, QERR_IO_ERROR); goto exit; } ret = bdrv_truncate(bs, le64_to_cpu(header.grain_offset) << 9); if (ret < 0) { error_setg_errno(errp, -ret, "Could not truncate file"); goto exit; } /* write grain directory */ gd_buf_size = gd_sectors * BDRV_SECTOR_SIZE; gd_buf = g_malloc0(gd_buf_size); for (i = 0, tmp = le64_to_cpu(header.rgd_offset) + gd_sectors; i < gt_count; i++, tmp += gt_size) { gd_buf[i] = cpu_to_le32(tmp); } ret = bdrv_pwrite(bs, le64_to_cpu(header.rgd_offset) * BDRV_SECTOR_SIZE, gd_buf, gd_buf_size); if (ret < 0) { error_set(errp, QERR_IO_ERROR); goto exit; } /* write backup grain directory */ for (i = 0, tmp = le64_to_cpu(header.gd_offset) + gd_sectors; i < gt_count; i++, tmp += gt_size) { gd_buf[i] = cpu_to_le32(tmp); } ret = bdrv_pwrite(bs, le64_to_cpu(header.gd_offset) * BDRV_SECTOR_SIZE, gd_buf, gd_buf_size); if (ret < 0) { error_set(errp, QERR_IO_ERROR); goto exit; } ret = 0; exit: if (bs) { bdrv_unref(bs); } g_free(gd_buf); return ret; } static int filename_decompose(const char *filename, char *path, char *prefix, char *postfix, size_t buf_len, Error **errp) { const char *p, *q; if (filename == NULL || !strlen(filename)) { error_setg(errp, "No filename provided"); return VMDK_ERROR; } p = strrchr(filename, '/'); if (p == NULL) { p = strrchr(filename, '\\'); } if (p == NULL) { p = strrchr(filename, ':'); } if (p != NULL) { p++; if (p - filename >= buf_len) { return VMDK_ERROR; } pstrcpy(path, p - filename + 1, filename); } else { p = filename; path[0] = '\0'; } q = strrchr(p, '.'); if (q == NULL) { pstrcpy(prefix, buf_len, p); postfix[0] = '\0'; } else { if (q - p >= buf_len) { return VMDK_ERROR; } pstrcpy(prefix, q - p + 1, p); pstrcpy(postfix, buf_len, q); } return VMDK_OK; } static int vmdk_create(const char *filename, QemuOpts *opts, Error **errp) { int idx = 0; BlockDriverState *new_bs = NULL; Error *local_err = NULL; char *desc = NULL; int64_t total_size = 0, filesize; char *adapter_type = NULL; char *backing_file = NULL; char *fmt = NULL; int flags = 0; int ret = 0; bool flat, split, compress; GString *ext_desc_lines; char *path = g_malloc0(PATH_MAX); char *prefix = g_malloc0(PATH_MAX); char *postfix = g_malloc0(PATH_MAX); char *desc_line = g_malloc0(BUF_SIZE); char *ext_filename = g_malloc0(PATH_MAX); char *desc_filename = g_malloc0(PATH_MAX); const int64_t split_size = 0x80000000; /* VMDK has constant split size */ const char *desc_extent_line; char *parent_desc_line = g_malloc0(BUF_SIZE); uint32_t parent_cid = 0xffffffff; uint32_t number_heads = 16; bool zeroed_grain = false; uint32_t desc_offset = 0, desc_len; const char desc_template[] = "# Disk DescriptorFile\n" "version=1\n" "CID=%" PRIx32 "\n" "parentCID=%" PRIx32 "\n" "createType=\"%s\"\n" "%s" "\n" "# Extent description\n" "%s" "\n" "# The Disk Data Base\n" "#DDB\n" "\n" "ddb.virtualHWVersion = \"%d\"\n" "ddb.geometry.cylinders = \"%" PRId64 "\"\n" "ddb.geometry.heads = \"%" PRIu32 "\"\n" "ddb.geometry.sectors = \"63\"\n" "ddb.adapterType = \"%s\"\n"; ext_desc_lines = g_string_new(NULL); if (filename_decompose(filename, path, prefix, postfix, PATH_MAX, errp)) { ret = -EINVAL; goto exit; } /* Read out options */ total_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0), BDRV_SECTOR_SIZE); adapter_type = qemu_opt_get_del(opts, BLOCK_OPT_ADAPTER_TYPE); backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE); if (qemu_opt_get_bool_del(opts, BLOCK_OPT_COMPAT6, false)) { flags |= BLOCK_FLAG_COMPAT6; } fmt = qemu_opt_get_del(opts, BLOCK_OPT_SUBFMT); if (qemu_opt_get_bool_del(opts, BLOCK_OPT_ZEROED_GRAIN, false)) { zeroed_grain = true; } if (!adapter_type) { adapter_type = g_strdup("ide"); } else if (strcmp(adapter_type, "ide") && strcmp(adapter_type, "buslogic") && strcmp(adapter_type, "lsilogic") && strcmp(adapter_type, "legacyESX")) { error_setg(errp, "Unknown adapter type: '%s'", adapter_type); ret = -EINVAL; goto exit; } if (strcmp(adapter_type, "ide") != 0) { /* that's the number of heads with which vmware operates when creating, exporting, etc. vmdk files with a non-ide adapter type */ number_heads = 255; } if (!fmt) { /* Default format to monolithicSparse */ fmt = g_strdup("monolithicSparse"); } else if (strcmp(fmt, "monolithicFlat") && strcmp(fmt, "monolithicSparse") && strcmp(fmt, "twoGbMaxExtentSparse") && strcmp(fmt, "twoGbMaxExtentFlat") && strcmp(fmt, "streamOptimized")) { error_setg(errp, "Unknown subformat: '%s'", fmt); ret = -EINVAL; goto exit; } split = !(strcmp(fmt, "twoGbMaxExtentFlat") && strcmp(fmt, "twoGbMaxExtentSparse")); flat = !(strcmp(fmt, "monolithicFlat") && strcmp(fmt, "twoGbMaxExtentFlat")); compress = !strcmp(fmt, "streamOptimized"); if (flat) { desc_extent_line = "RW %" PRId64 " FLAT \"%s\" 0\n"; } else { desc_extent_line = "RW %" PRId64 " SPARSE \"%s\"\n"; } if (flat && backing_file) { error_setg(errp, "Flat image can't have backing file"); ret = -ENOTSUP; goto exit; } if (flat && zeroed_grain) { error_setg(errp, "Flat image can't enable zeroed grain"); ret = -ENOTSUP; goto exit; } if (backing_file) { BlockDriverState *bs = NULL; char *full_backing = g_new0(char, PATH_MAX); bdrv_get_full_backing_filename_from_filename(filename, backing_file, full_backing, PATH_MAX, &local_err); if (local_err) { g_free(full_backing); error_propagate(errp, local_err); ret = -ENOENT; goto exit; } ret = bdrv_open(&bs, full_backing, NULL, NULL, BDRV_O_NO_BACKING, NULL, errp); g_free(full_backing); if (ret != 0) { goto exit; } if (strcmp(bs->drv->format_name, "vmdk")) { bdrv_unref(bs); ret = -EINVAL; goto exit; } parent_cid = vmdk_read_cid(bs, 0); bdrv_unref(bs); snprintf(parent_desc_line, BUF_SIZE, "parentFileNameHint=\"%s\"", backing_file); } /* Create extents */ filesize = total_size; while (filesize > 0) { int64_t size = filesize; if (split && size > split_size) { size = split_size; } if (split) { snprintf(desc_filename, PATH_MAX, "%s-%c%03d%s", prefix, flat ? 'f' : 's', ++idx, postfix); } else if (flat) { snprintf(desc_filename, PATH_MAX, "%s-flat%s", prefix, postfix); } else { snprintf(desc_filename, PATH_MAX, "%s%s", prefix, postfix); } snprintf(ext_filename, PATH_MAX, "%s%s", path, desc_filename); if (vmdk_create_extent(ext_filename, size, flat, compress, zeroed_grain, opts, errp)) { ret = -EINVAL; goto exit; } filesize -= size; /* Format description line */ snprintf(desc_line, BUF_SIZE, desc_extent_line, size / BDRV_SECTOR_SIZE, desc_filename); g_string_append(ext_desc_lines, desc_line); } /* generate descriptor file */ desc = g_strdup_printf(desc_template, g_random_int(), parent_cid, fmt, parent_desc_line, ext_desc_lines->str, (flags & BLOCK_FLAG_COMPAT6 ? 6 : 4), total_size / (int64_t)(63 * number_heads * BDRV_SECTOR_SIZE), number_heads, adapter_type); desc_len = strlen(desc); /* the descriptor offset = 0x200 */ if (!split && !flat) { desc_offset = 0x200; } else { ret = bdrv_create_file(filename, opts, &local_err); if (ret < 0) { error_propagate(errp, local_err); goto exit; } } assert(new_bs == NULL); ret = bdrv_open(&new_bs, filename, NULL, NULL, BDRV_O_RDWR | BDRV_O_PROTOCOL, NULL, &local_err); if (ret < 0) { error_propagate(errp, local_err); goto exit; } ret = bdrv_pwrite(new_bs, desc_offset, desc, desc_len); if (ret < 0) { error_setg_errno(errp, -ret, "Could not write description"); goto exit; } /* bdrv_pwrite write padding zeros to align to sector, we don't need that * for description file */ if (desc_offset == 0) { ret = bdrv_truncate(new_bs, desc_len); if (ret < 0) { error_setg_errno(errp, -ret, "Could not truncate file"); } } exit: if (new_bs) { bdrv_unref(new_bs); } g_free(adapter_type); g_free(backing_file); g_free(fmt); g_free(desc); g_free(path); g_free(prefix); g_free(postfix); g_free(desc_line); g_free(ext_filename); g_free(desc_filename); g_free(parent_desc_line); g_string_free(ext_desc_lines, true); return ret; } static void vmdk_close(BlockDriverState *bs) { BDRVVmdkState *s = bs->opaque; vmdk_free_extents(bs); g_free(s->create_type); migrate_del_blocker(s->migration_blocker); error_free(s->migration_blocker); } static coroutine_fn int vmdk_co_flush(BlockDriverState *bs) { BDRVVmdkState *s = bs->opaque; int i, err; int ret = 0; for (i = 0; i < s->num_extents; i++) { err = bdrv_co_flush(s->extents[i].file); if (err < 0) { ret = err; } } return ret; } static int64_t vmdk_get_allocated_file_size(BlockDriverState *bs) { int i; int64_t ret = 0; int64_t r; BDRVVmdkState *s = bs->opaque; ret = bdrv_get_allocated_file_size(bs->file); if (ret < 0) { return ret; } for (i = 0; i < s->num_extents; i++) { if (s->extents[i].file == bs->file) { continue; } r = bdrv_get_allocated_file_size(s->extents[i].file); if (r < 0) { return r; } ret += r; } return ret; } static int vmdk_has_zero_init(BlockDriverState *bs) { int i; BDRVVmdkState *s = bs->opaque; /* If has a flat extent and its underlying storage doesn't have zero init, * return 0. */ for (i = 0; i < s->num_extents; i++) { if (s->extents[i].flat) { if (!bdrv_has_zero_init(s->extents[i].file)) { return 0; } } } return 1; } static ImageInfo *vmdk_get_extent_info(VmdkExtent *extent) { ImageInfo *info = g_new0(ImageInfo, 1); *info = (ImageInfo){ .filename = g_strdup(extent->file->filename), .format = g_strdup(extent->type), .virtual_size = extent->sectors * BDRV_SECTOR_SIZE, .compressed = extent->compressed, .has_compressed = extent->compressed, .cluster_size = extent->cluster_sectors * BDRV_SECTOR_SIZE, .has_cluster_size = !extent->flat, }; return info; } static int vmdk_check(BlockDriverState *bs, BdrvCheckResult *result, BdrvCheckMode fix) { BDRVVmdkState *s = bs->opaque; VmdkExtent *extent = NULL; int64_t sector_num = 0; int64_t total_sectors = bdrv_nb_sectors(bs); int ret; uint64_t cluster_offset; if (fix) { return -ENOTSUP; } for (;;) { if (sector_num >= total_sectors) { return 0; } extent = find_extent(s, sector_num, extent); if (!extent) { fprintf(stderr, "ERROR: could not find extent for sector %" PRId64 "\n", sector_num); break; } ret = get_cluster_offset(bs, extent, NULL, sector_num << BDRV_SECTOR_BITS, false, &cluster_offset, 0, 0); if (ret == VMDK_ERROR) { fprintf(stderr, "ERROR: could not get cluster_offset for sector %" PRId64 "\n", sector_num); break; } if (ret == VMDK_OK && cluster_offset >= bdrv_getlength(extent->file)) { fprintf(stderr, "ERROR: cluster offset for sector %" PRId64 " points after EOF\n", sector_num); break; } sector_num += extent->cluster_sectors; } result->corruptions++; return 0; } static ImageInfoSpecific *vmdk_get_specific_info(BlockDriverState *bs) { int i; BDRVVmdkState *s = bs->opaque; ImageInfoSpecific *spec_info = g_new0(ImageInfoSpecific, 1); ImageInfoList **next; *spec_info = (ImageInfoSpecific){ .kind = IMAGE_INFO_SPECIFIC_KIND_VMDK, { .vmdk = g_new0(ImageInfoSpecificVmdk, 1), }, }; *spec_info->vmdk = (ImageInfoSpecificVmdk) { .create_type = g_strdup(s->create_type), .cid = s->cid, .parent_cid = s->parent_cid, }; next = &spec_info->vmdk->extents; for (i = 0; i < s->num_extents; i++) { *next = g_new0(ImageInfoList, 1); (*next)->value = vmdk_get_extent_info(&s->extents[i]); (*next)->next = NULL; next = &(*next)->next; } return spec_info; } static bool vmdk_extents_type_eq(const VmdkExtent *a, const VmdkExtent *b) { return a->flat == b->flat && a->compressed == b->compressed && (a->flat || a->cluster_sectors == b->cluster_sectors); } static int vmdk_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) { int i; BDRVVmdkState *s = bs->opaque; assert(s->num_extents); /* See if we have multiple extents but they have different cases */ for (i = 1; i < s->num_extents; i++) { if (!vmdk_extents_type_eq(&s->extents[0], &s->extents[i])) { return -ENOTSUP; } } bdi->needs_compressed_writes = s->extents[0].compressed; if (!s->extents[0].flat) { bdi->cluster_size = s->extents[0].cluster_sectors << BDRV_SECTOR_BITS; } return 0; } static void vmdk_detach_aio_context(BlockDriverState *bs) { BDRVVmdkState *s = bs->opaque; int i; for (i = 0; i < s->num_extents; i++) { bdrv_detach_aio_context(s->extents[i].file); } } static void vmdk_attach_aio_context(BlockDriverState *bs, AioContext *new_context) { BDRVVmdkState *s = bs->opaque; int i; for (i = 0; i < s->num_extents; i++) { bdrv_attach_aio_context(s->extents[i].file, new_context); } } static QemuOptsList vmdk_create_opts = { .name = "vmdk-create-opts", .head = QTAILQ_HEAD_INITIALIZER(vmdk_create_opts.head), .desc = { { .name = BLOCK_OPT_SIZE, .type = QEMU_OPT_SIZE, .help = "Virtual disk size" }, { .name = BLOCK_OPT_ADAPTER_TYPE, .type = QEMU_OPT_STRING, .help = "Virtual adapter type, can be one of " "ide (default), lsilogic, buslogic or legacyESX" }, { .name = BLOCK_OPT_BACKING_FILE, .type = QEMU_OPT_STRING, .help = "File name of a base image" }, { .name = BLOCK_OPT_COMPAT6, .type = QEMU_OPT_BOOL, .help = "VMDK version 6 image", .def_value_str = "off" }, { .name = BLOCK_OPT_SUBFMT, .type = QEMU_OPT_STRING, .help = "VMDK flat extent format, can be one of " "{monolithicSparse (default) | monolithicFlat | twoGbMaxExtentSparse | twoGbMaxExtentFlat | streamOptimized} " }, { .name = BLOCK_OPT_ZEROED_GRAIN, .type = QEMU_OPT_BOOL, .help = "Enable efficient zero writes " "using the zeroed-grain GTE feature" }, { /* end of list */ } } }; static BlockDriver bdrv_vmdk = { .format_name = "vmdk", .instance_size = sizeof(BDRVVmdkState), .bdrv_probe = vmdk_probe, .bdrv_open = vmdk_open, .bdrv_check = vmdk_check, .bdrv_reopen_prepare = vmdk_reopen_prepare, .bdrv_read = vmdk_co_read, .bdrv_write = vmdk_co_write, .bdrv_write_compressed = vmdk_write_compressed, .bdrv_co_write_zeroes = vmdk_co_write_zeroes, .bdrv_close = vmdk_close, .bdrv_create = vmdk_create, .bdrv_co_flush_to_disk = vmdk_co_flush, .bdrv_co_get_block_status = vmdk_co_get_block_status, .bdrv_get_allocated_file_size = vmdk_get_allocated_file_size, .bdrv_has_zero_init = vmdk_has_zero_init, .bdrv_get_specific_info = vmdk_get_specific_info, .bdrv_refresh_limits = vmdk_refresh_limits, .bdrv_get_info = vmdk_get_info, .bdrv_detach_aio_context = vmdk_detach_aio_context, .bdrv_attach_aio_context = vmdk_attach_aio_context, .supports_backing = true, .create_opts = &vmdk_create_opts, }; static void bdrv_vmdk_init(void) { bdrv_register(&bdrv_vmdk); } block_init(bdrv_vmdk_init);