/* * Block driver for RAW files (posix) * * Copyright (c) 2006 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu/cutils.h" #include "qemu/error-report.h" #include "block/block-io.h" #include "block/block_int.h" #include "qemu/module.h" #include "qemu/option.h" #include "qemu/units.h" #include "qemu/memalign.h" #include "trace.h" #include "block/thread-pool.h" #include "qemu/iov.h" #include "block/raw-aio.h" #include "qapi/qmp/qdict.h" #include "qapi/qmp/qstring.h" #include "scsi/pr-manager.h" #include "scsi/constants.h" #if defined(__APPLE__) && (__MACH__) #include #if defined(HAVE_HOST_BLOCK_DEVICE) #include #include #include #include #include #include #include #include //#include #include #include #endif /* defined(HAVE_HOST_BLOCK_DEVICE) */ #endif #ifdef __sun__ #define _POSIX_PTHREAD_SEMANTICS 1 #include #endif #ifdef __linux__ #include #include #include #include #if defined(CONFIG_BLKZONED) #include #endif #include #include #include #include #include #include #ifdef __s390__ #include #endif #ifndef FS_NOCOW_FL #define FS_NOCOW_FL 0x00800000 /* Do not cow file */ #endif #endif #if defined(CONFIG_FALLOCATE_PUNCH_HOLE) || defined(CONFIG_FALLOCATE_ZERO_RANGE) #include #endif #if defined (__FreeBSD__) || defined(__FreeBSD_kernel__) #include #include #endif #ifdef __OpenBSD__ #include #include #include #endif #ifdef __NetBSD__ #include #include #include #include #endif #ifdef __DragonFly__ #include #include #endif /* OS X does not have O_DSYNC */ #ifndef O_DSYNC #ifdef O_SYNC #define O_DSYNC O_SYNC #elif defined(O_FSYNC) #define O_DSYNC O_FSYNC #endif #endif /* Approximate O_DIRECT with O_DSYNC if O_DIRECT isn't available */ #ifndef O_DIRECT #define O_DIRECT O_DSYNC #endif #define FTYPE_FILE 0 #define FTYPE_CD 1 #define MAX_BLOCKSIZE 4096 /* Posix file locking bytes. Libvirt takes byte 0, we start from higher bytes, * leaving a few more bytes for its future use. */ #define RAW_LOCK_PERM_BASE 100 #define RAW_LOCK_SHARED_BASE 200 typedef struct BDRVRawState { int fd; bool use_lock; int type; int open_flags; size_t buf_align; /* The current permissions. */ uint64_t perm; uint64_t shared_perm; /* The perms bits whose corresponding bytes are already locked in * s->fd. */ uint64_t locked_perm; uint64_t locked_shared_perm; uint64_t aio_max_batch; int perm_change_fd; int perm_change_flags; BDRVReopenState *reopen_state; bool has_discard:1; bool has_write_zeroes:1; bool use_linux_aio:1; bool has_laio_fdsync:1; bool use_linux_io_uring:1; int page_cache_inconsistent; /* errno from fdatasync failure */ bool has_fallocate; bool needs_alignment; bool force_alignment; bool drop_cache; bool check_cache_dropped; struct { uint64_t discard_nb_ok; uint64_t discard_nb_failed; uint64_t discard_bytes_ok; } stats; PRManager *pr_mgr; } BDRVRawState; typedef struct BDRVRawReopenState { int open_flags; bool drop_cache; bool check_cache_dropped; } BDRVRawReopenState; static int fd_open(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; /* this is just to ensure s->fd is sane (its called by io ops) */ if (s->fd >= 0) { return 0; } return -EIO; } static int64_t raw_getlength(BlockDriverState *bs); typedef struct RawPosixAIOData { BlockDriverState *bs; int aio_type; int aio_fildes; off_t aio_offset; uint64_t aio_nbytes; union { struct { struct iovec *iov; int niov; } io; struct { uint64_t cmd; void *buf; } ioctl; struct { int aio_fd2; off_t aio_offset2; } copy_range; struct { PreallocMode prealloc; Error **errp; } truncate; struct { unsigned int *nr_zones; BlockZoneDescriptor *zones; } zone_report; struct { unsigned long op; } zone_mgmt; }; } RawPosixAIOData; #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) static int cdrom_reopen(BlockDriverState *bs); #endif /* * Elide EAGAIN and EACCES details when failing to lock, as this * indicates that the specified file region is already locked by * another process, which is considered a common scenario. */ #define raw_lock_error_setg_errno(errp, err, fmt, ...) \ do { \ if ((err) == EAGAIN || (err) == EACCES) { \ error_setg((errp), (fmt), ## __VA_ARGS__); \ } else { \ error_setg_errno((errp), (err), (fmt), ## __VA_ARGS__); \ } \ } while (0) #if defined(__NetBSD__) static int raw_normalize_devicepath(const char **filename, Error **errp) { static char namebuf[PATH_MAX]; const char *dp, *fname; struct stat sb; fname = *filename; dp = strrchr(fname, '/'); if (lstat(fname, &sb) < 0) { error_setg_file_open(errp, errno, fname); return -errno; } if (!S_ISBLK(sb.st_mode)) { return 0; } if (dp == NULL) { snprintf(namebuf, PATH_MAX, "r%s", fname); } else { snprintf(namebuf, PATH_MAX, "%.*s/r%s", (int)(dp - fname), fname, dp + 1); } *filename = namebuf; warn_report("%s is a block device, using %s", fname, *filename); return 0; } #else static int raw_normalize_devicepath(const char **filename, Error **errp) { return 0; } #endif /* * Get logical block size via ioctl. On success store it in @sector_size_p. */ static int probe_logical_blocksize(int fd, unsigned int *sector_size_p) { unsigned int sector_size; bool success = false; int i; errno = ENOTSUP; static const unsigned long ioctl_list[] = { #ifdef BLKSSZGET BLKSSZGET, #endif #ifdef DKIOCGETBLOCKSIZE DKIOCGETBLOCKSIZE, #endif #ifdef DIOCGSECTORSIZE DIOCGSECTORSIZE, #endif }; /* Try a few ioctls to get the right size */ for (i = 0; i < (int)ARRAY_SIZE(ioctl_list); i++) { if (ioctl(fd, ioctl_list[i], §or_size) >= 0) { *sector_size_p = sector_size; success = true; } } return success ? 0 : -errno; } /** * Get physical block size of @fd. * On success, store it in @blk_size and return 0. * On failure, return -errno. */ static int probe_physical_blocksize(int fd, unsigned int *blk_size) { #ifdef BLKPBSZGET if (ioctl(fd, BLKPBSZGET, blk_size) < 0) { return -errno; } return 0; #else return -ENOTSUP; #endif } /* * Returns true if no alignment restrictions are necessary even for files * opened with O_DIRECT. * * raw_probe_alignment() probes the required alignment and assume that 1 means * the probing failed, so it falls back to a safe default of 4k. This can be * avoided if we know that byte alignment is okay for the file. */ static bool dio_byte_aligned(int fd) { #ifdef __linux__ struct statfs buf; int ret; ret = fstatfs(fd, &buf); if (ret == 0 && buf.f_type == NFS_SUPER_MAGIC) { return true; } #endif return false; } static bool raw_needs_alignment(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; if ((bs->open_flags & BDRV_O_NOCACHE) != 0 && !dio_byte_aligned(s->fd)) { return true; } return s->force_alignment; } /* Check if read is allowed with given memory buffer and length. * * This function is used to check O_DIRECT memory buffer and request alignment. */ static bool raw_is_io_aligned(int fd, void *buf, size_t len) { ssize_t ret = pread(fd, buf, len, 0); if (ret >= 0) { return true; } #ifdef __linux__ /* The Linux kernel returns EINVAL for misaligned O_DIRECT reads. Ignore * other errors (e.g. real I/O error), which could happen on a failed * drive, since we only care about probing alignment. */ if (errno != EINVAL) { return true; } #endif return false; } static void raw_probe_alignment(BlockDriverState *bs, int fd, Error **errp) { BDRVRawState *s = bs->opaque; char *buf; size_t max_align = MAX(MAX_BLOCKSIZE, qemu_real_host_page_size()); size_t alignments[] = {1, 512, 1024, 2048, 4096}; /* For SCSI generic devices the alignment is not really used. With buffered I/O, we don't have any restrictions. */ if (bdrv_is_sg(bs) || !s->needs_alignment) { bs->bl.request_alignment = 1; s->buf_align = 1; return; } bs->bl.request_alignment = 0; s->buf_align = 0; /* Let's try to use the logical blocksize for the alignment. */ if (probe_logical_blocksize(fd, &bs->bl.request_alignment) < 0) { bs->bl.request_alignment = 0; } #ifdef __linux__ /* * The XFS ioctl definitions are shipped in extra packages that might * not always be available. Since we just need the XFS_IOC_DIOINFO ioctl * here, we simply use our own definition instead: */ struct xfs_dioattr { uint32_t d_mem; uint32_t d_miniosz; uint32_t d_maxiosz; } da; if (ioctl(fd, _IOR('X', 30, struct xfs_dioattr), &da) >= 0) { bs->bl.request_alignment = da.d_miniosz; /* The kernel returns wrong information for d_mem */ /* s->buf_align = da.d_mem; */ } #endif /* * If we could not get the sizes so far, we can only guess them. First try * to detect request alignment, since it is more likely to succeed. Then * try to detect buf_align, which cannot be detected in some cases (e.g. * Gluster). If buf_align cannot be detected, we fallback to the value of * request_alignment. */ if (!bs->bl.request_alignment) { int i; size_t align; buf = qemu_memalign(max_align, max_align); for (i = 0; i < ARRAY_SIZE(alignments); i++) { align = alignments[i]; if (raw_is_io_aligned(fd, buf, align)) { /* Fallback to safe value. */ bs->bl.request_alignment = (align != 1) ? align : max_align; break; } } qemu_vfree(buf); } if (!s->buf_align) { int i; size_t align; buf = qemu_memalign(max_align, 2 * max_align); for (i = 0; i < ARRAY_SIZE(alignments); i++) { align = alignments[i]; if (raw_is_io_aligned(fd, buf + align, max_align)) { /* Fallback to request_alignment. */ s->buf_align = (align != 1) ? align : bs->bl.request_alignment; break; } } qemu_vfree(buf); } if (!s->buf_align || !bs->bl.request_alignment) { error_setg(errp, "Could not find working O_DIRECT alignment"); error_append_hint(errp, "Try cache.direct=off\n"); } } static int check_hdev_writable(int fd) { #if defined(BLKROGET) /* Linux block devices can be configured "read-only" using blockdev(8). * This is independent of device node permissions and therefore open(2) * with O_RDWR succeeds. Actual writes fail with EPERM. * * bdrv_open() is supposed to fail if the disk is read-only. Explicitly * check for read-only block devices so that Linux block devices behave * properly. */ struct stat st; int readonly = 0; if (fstat(fd, &st)) { return -errno; } if (!S_ISBLK(st.st_mode)) { return 0; } if (ioctl(fd, BLKROGET, &readonly) < 0) { return -errno; } if (readonly) { return -EACCES; } #endif /* defined(BLKROGET) */ return 0; } static void raw_parse_flags(int bdrv_flags, int *open_flags, bool has_writers) { bool read_write = false; assert(open_flags != NULL); *open_flags |= O_BINARY; *open_flags &= ~O_ACCMODE; if (bdrv_flags & BDRV_O_AUTO_RDONLY) { read_write = has_writers; } else if (bdrv_flags & BDRV_O_RDWR) { read_write = true; } if (read_write) { *open_flags |= O_RDWR; } else { *open_flags |= O_RDONLY; } /* Use O_DSYNC for write-through caching, no flags for write-back caching, * and O_DIRECT for no caching. */ if ((bdrv_flags & BDRV_O_NOCACHE)) { *open_flags |= O_DIRECT; } } static void raw_parse_filename(const char *filename, QDict *options, Error **errp) { bdrv_parse_filename_strip_prefix(filename, "file:", options); } static QemuOptsList raw_runtime_opts = { .name = "raw", .head = QTAILQ_HEAD_INITIALIZER(raw_runtime_opts.head), .desc = { { .name = "filename", .type = QEMU_OPT_STRING, .help = "File name of the image", }, { .name = "aio", .type = QEMU_OPT_STRING, .help = "host AIO implementation (threads, native, io_uring)", }, { .name = "aio-max-batch", .type = QEMU_OPT_NUMBER, .help = "AIO max batch size (0 = auto handled by AIO backend, default: 0)", }, { .name = "locking", .type = QEMU_OPT_STRING, .help = "file locking mode (on/off/auto, default: auto)", }, { .name = "pr-manager", .type = QEMU_OPT_STRING, .help = "id of persistent reservation manager object (default: none)", }, #if defined(__linux__) { .name = "drop-cache", .type = QEMU_OPT_BOOL, .help = "invalidate page cache during live migration (default: on)", }, #endif { .name = "x-check-cache-dropped", .type = QEMU_OPT_BOOL, .help = "check that page cache was dropped on live migration (default: off)" }, { /* end of list */ } }, }; static const char *const mutable_opts[] = { "x-check-cache-dropped", NULL }; static int raw_open_common(BlockDriverState *bs, QDict *options, int bdrv_flags, int open_flags, bool device, Error **errp) { BDRVRawState *s = bs->opaque; QemuOpts *opts; Error *local_err = NULL; const char *filename = NULL; const char *str; BlockdevAioOptions aio, aio_default; int fd, ret; struct stat st; OnOffAuto locking; opts = qemu_opts_create(&raw_runtime_opts, NULL, 0, &error_abort); if (!qemu_opts_absorb_qdict(opts, options, errp)) { ret = -EINVAL; goto fail; } filename = qemu_opt_get(opts, "filename"); ret = raw_normalize_devicepath(&filename, errp); if (ret != 0) { goto fail; } if (bdrv_flags & BDRV_O_NATIVE_AIO) { aio_default = BLOCKDEV_AIO_OPTIONS_NATIVE; #ifdef CONFIG_LINUX_IO_URING } else if (bdrv_flags & BDRV_O_IO_URING) { aio_default = BLOCKDEV_AIO_OPTIONS_IO_URING; #endif } else { aio_default = BLOCKDEV_AIO_OPTIONS_THREADS; } aio = qapi_enum_parse(&BlockdevAioOptions_lookup, qemu_opt_get(opts, "aio"), aio_default, &local_err); if (local_err) { error_propagate(errp, local_err); ret = -EINVAL; goto fail; } s->use_linux_aio = (aio == BLOCKDEV_AIO_OPTIONS_NATIVE); #ifdef CONFIG_LINUX_IO_URING s->use_linux_io_uring = (aio == BLOCKDEV_AIO_OPTIONS_IO_URING); #endif s->aio_max_batch = qemu_opt_get_number(opts, "aio-max-batch", 0); locking = qapi_enum_parse(&OnOffAuto_lookup, qemu_opt_get(opts, "locking"), ON_OFF_AUTO_AUTO, &local_err); if (local_err) { error_propagate(errp, local_err); ret = -EINVAL; goto fail; } switch (locking) { case ON_OFF_AUTO_ON: s->use_lock = true; if (!qemu_has_ofd_lock()) { warn_report("File lock requested but OFD locking syscall is " "unavailable, falling back to POSIX file locks"); error_printf("Due to the implementation, locks can be lost " "unexpectedly.\n"); } break; case ON_OFF_AUTO_OFF: s->use_lock = false; break; case ON_OFF_AUTO_AUTO: s->use_lock = qemu_has_ofd_lock(); break; default: abort(); } str = qemu_opt_get(opts, "pr-manager"); if (str) { s->pr_mgr = pr_manager_lookup(str, &local_err); if (local_err) { error_propagate(errp, local_err); ret = -EINVAL; goto fail; } } s->drop_cache = qemu_opt_get_bool(opts, "drop-cache", true); s->check_cache_dropped = qemu_opt_get_bool(opts, "x-check-cache-dropped", false); s->open_flags = open_flags; raw_parse_flags(bdrv_flags, &s->open_flags, false); s->fd = -1; fd = qemu_open(filename, s->open_flags, errp); ret = fd < 0 ? -errno : 0; if (ret < 0) { if (ret == -EROFS) { ret = -EACCES; } goto fail; } s->fd = fd; /* Check s->open_flags rather than bdrv_flags due to auto-read-only */ if (s->open_flags & O_RDWR) { ret = check_hdev_writable(s->fd); if (ret < 0) { error_setg_errno(errp, -ret, "The device is not writable"); goto fail; } } s->perm = 0; s->shared_perm = BLK_PERM_ALL; #ifdef CONFIG_LINUX_AIO /* Currently Linux does AIO only for files opened with O_DIRECT */ if (s->use_linux_aio && !(s->open_flags & O_DIRECT)) { error_setg(errp, "aio=native was specified, but it requires " "cache.direct=on, which was not specified."); ret = -EINVAL; goto fail; } if (s->use_linux_aio) { s->has_laio_fdsync = laio_has_fdsync(s->fd); } #else if (s->use_linux_aio) { error_setg(errp, "aio=native was specified, but is not supported " "in this build."); ret = -EINVAL; goto fail; } #endif /* !defined(CONFIG_LINUX_AIO) */ #ifndef CONFIG_LINUX_IO_URING if (s->use_linux_io_uring) { error_setg(errp, "aio=io_uring was specified, but is not supported " "in this build."); ret = -EINVAL; goto fail; } #endif /* !defined(CONFIG_LINUX_IO_URING) */ s->has_discard = true; s->has_write_zeroes = true; if (fstat(s->fd, &st) < 0) { ret = -errno; error_setg_errno(errp, errno, "Could not stat file"); goto fail; } if (!device) { if (!S_ISREG(st.st_mode)) { error_setg(errp, "'%s' driver requires '%s' to be a regular file", bs->drv->format_name, bs->filename); ret = -EINVAL; goto fail; } else { s->has_fallocate = true; } } else { if (!(S_ISCHR(st.st_mode) || S_ISBLK(st.st_mode))) { error_setg(errp, "'%s' driver requires '%s' to be either " "a character or block device", bs->drv->format_name, bs->filename); ret = -EINVAL; goto fail; } } #ifdef CONFIG_BLKZONED /* * The kernel page cache does not reliably work for writes to SWR zones * of zoned block device because it can not guarantee the order of writes. */ if ((bs->bl.zoned != BLK_Z_NONE) && (!(s->open_flags & O_DIRECT))) { error_setg(errp, "The driver supports zoned devices, and it requires " "cache.direct=on, which was not specified."); return -EINVAL; /* No host kernel page cache */ } #endif if (S_ISBLK(st.st_mode)) { #ifdef __linux__ /* On Linux 3.10, BLKDISCARD leaves stale data in the page cache. Do * not rely on the contents of discarded blocks unless using O_DIRECT. * Same for BLKZEROOUT. */ if (!(bs->open_flags & BDRV_O_NOCACHE)) { s->has_write_zeroes = false; } #endif } #ifdef __FreeBSD__ if (S_ISCHR(st.st_mode)) { /* * The file is a char device (disk), which on FreeBSD isn't behind * a pager, so force all requests to be aligned. This is needed * so QEMU makes sure all IO operations on the device are aligned * to sector size, or else FreeBSD will reject them with EINVAL. */ s->force_alignment = true; } #endif s->needs_alignment = raw_needs_alignment(bs); bs->supported_zero_flags = BDRV_REQ_MAY_UNMAP | BDRV_REQ_NO_FALLBACK; if (S_ISREG(st.st_mode)) { /* When extending regular files, we get zeros from the OS */ bs->supported_truncate_flags = BDRV_REQ_ZERO_WRITE; } ret = 0; fail: if (ret < 0 && s->fd != -1) { qemu_close(s->fd); } if (filename && (bdrv_flags & BDRV_O_TEMPORARY)) { unlink(filename); } qemu_opts_del(opts); return ret; } static int raw_open(BlockDriverState *bs, QDict *options, int flags, Error **errp) { BDRVRawState *s = bs->opaque; s->type = FTYPE_FILE; return raw_open_common(bs, options, flags, 0, false, errp); } typedef enum { RAW_PL_PREPARE, RAW_PL_COMMIT, RAW_PL_ABORT, } RawPermLockOp; #define PERM_FOREACH(i) \ for ((i) = 0; (1ULL << (i)) <= BLK_PERM_ALL; i++) /* Lock bytes indicated by @perm_lock_bits and @shared_perm_lock_bits in the * file; if @unlock == true, also unlock the unneeded bytes. * @shared_perm_lock_bits is the mask of all permissions that are NOT shared. */ static int raw_apply_lock_bytes(BDRVRawState *s, int fd, uint64_t perm_lock_bits, uint64_t shared_perm_lock_bits, bool unlock, Error **errp) { int ret; int i; uint64_t locked_perm, locked_shared_perm; if (s) { locked_perm = s->locked_perm; locked_shared_perm = s->locked_shared_perm; } else { /* * We don't have the previous bits, just lock/unlock for each of the * requested bits. */ if (unlock) { locked_perm = BLK_PERM_ALL; locked_shared_perm = BLK_PERM_ALL; } else { locked_perm = 0; locked_shared_perm = 0; } } PERM_FOREACH(i) { int off = RAW_LOCK_PERM_BASE + i; uint64_t bit = (1ULL << i); if ((perm_lock_bits & bit) && !(locked_perm & bit)) { ret = qemu_lock_fd(fd, off, 1, false); if (ret) { raw_lock_error_setg_errno(errp, -ret, "Failed to lock byte %d", off); return ret; } else if (s) { s->locked_perm |= bit; } } else if (unlock && (locked_perm & bit) && !(perm_lock_bits & bit)) { ret = qemu_unlock_fd(fd, off, 1); if (ret) { error_setg_errno(errp, -ret, "Failed to unlock byte %d", off); return ret; } else if (s) { s->locked_perm &= ~bit; } } } PERM_FOREACH(i) { int off = RAW_LOCK_SHARED_BASE + i; uint64_t bit = (1ULL << i); if ((shared_perm_lock_bits & bit) && !(locked_shared_perm & bit)) { ret = qemu_lock_fd(fd, off, 1, false); if (ret) { raw_lock_error_setg_errno(errp, -ret, "Failed to lock byte %d", off); return ret; } else if (s) { s->locked_shared_perm |= bit; } } else if (unlock && (locked_shared_perm & bit) && !(shared_perm_lock_bits & bit)) { ret = qemu_unlock_fd(fd, off, 1); if (ret) { error_setg_errno(errp, -ret, "Failed to unlock byte %d", off); return ret; } else if (s) { s->locked_shared_perm &= ~bit; } } } return 0; } /* Check "unshared" bytes implied by @perm and ~@shared_perm in the file. */ static int raw_check_lock_bytes(int fd, uint64_t perm, uint64_t shared_perm, Error **errp) { int ret; int i; PERM_FOREACH(i) { int off = RAW_LOCK_SHARED_BASE + i; uint64_t p = 1ULL << i; if (perm & p) { ret = qemu_lock_fd_test(fd, off, 1, true); if (ret) { char *perm_name = bdrv_perm_names(p); raw_lock_error_setg_errno(errp, -ret, "Failed to get \"%s\" lock", perm_name); g_free(perm_name); return ret; } } } PERM_FOREACH(i) { int off = RAW_LOCK_PERM_BASE + i; uint64_t p = 1ULL << i; if (!(shared_perm & p)) { ret = qemu_lock_fd_test(fd, off, 1, true); if (ret) { char *perm_name = bdrv_perm_names(p); raw_lock_error_setg_errno(errp, -ret, "Failed to get shared \"%s\" lock", perm_name); g_free(perm_name); return ret; } } } return 0; } static int raw_handle_perm_lock(BlockDriverState *bs, RawPermLockOp op, uint64_t new_perm, uint64_t new_shared, Error **errp) { BDRVRawState *s = bs->opaque; int ret = 0; Error *local_err = NULL; if (!s->use_lock) { return 0; } if (bdrv_get_flags(bs) & BDRV_O_INACTIVE) { return 0; } switch (op) { case RAW_PL_PREPARE: if ((s->perm | new_perm) == s->perm && (s->shared_perm & new_shared) == s->shared_perm) { /* * We are going to unlock bytes, it should not fail. If it fail due * to some fs-dependent permission-unrelated reasons (which occurs * sometimes on NFS and leads to abort in bdrv_replace_child) we * can't prevent such errors by any check here. And we ignore them * anyway in ABORT and COMMIT. */ return 0; } ret = raw_apply_lock_bytes(s, s->fd, s->perm | new_perm, ~s->shared_perm | ~new_shared, false, errp); if (!ret) { ret = raw_check_lock_bytes(s->fd, new_perm, new_shared, errp); if (!ret) { return 0; } error_append_hint(errp, "Is another process using the image [%s]?\n", bs->filename); } /* fall through to unlock bytes. */ case RAW_PL_ABORT: raw_apply_lock_bytes(s, s->fd, s->perm, ~s->shared_perm, true, &local_err); if (local_err) { /* Theoretically the above call only unlocks bytes and it cannot * fail. Something weird happened, report it. */ warn_report_err(local_err); } break; case RAW_PL_COMMIT: raw_apply_lock_bytes(s, s->fd, new_perm, ~new_shared, true, &local_err); if (local_err) { /* Theoretically the above call only unlocks bytes and it cannot * fail. Something weird happened, report it. */ warn_report_err(local_err); } break; } return ret; } /* Sets a specific flag */ static int fcntl_setfl(int fd, int flag) { int flags; flags = fcntl(fd, F_GETFL); if (flags == -1) { return -errno; } if (fcntl(fd, F_SETFL, flags | flag) == -1) { return -errno; } return 0; } static int raw_reconfigure_getfd(BlockDriverState *bs, int flags, int *open_flags, uint64_t perm, Error **errp) { BDRVRawState *s = bs->opaque; int fd = -1; int ret; bool has_writers = perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED | BLK_PERM_RESIZE); int fcntl_flags = O_APPEND | O_NONBLOCK; #ifdef O_NOATIME fcntl_flags |= O_NOATIME; #endif *open_flags = 0; if (s->type == FTYPE_CD) { *open_flags |= O_NONBLOCK; } raw_parse_flags(flags, open_flags, has_writers); #ifdef O_ASYNC /* Not all operating systems have O_ASYNC, and those that don't * will not let us track the state into rs->open_flags (typically * you achieve the same effect with an ioctl, for example I_SETSIG * on Solaris). But we do not use O_ASYNC, so that's fine. */ assert((s->open_flags & O_ASYNC) == 0); #endif if (*open_flags == s->open_flags) { /* We're lucky, the existing fd is fine */ return s->fd; } if ((*open_flags & ~fcntl_flags) == (s->open_flags & ~fcntl_flags)) { /* dup the original fd */ fd = qemu_dup(s->fd); if (fd >= 0) { ret = fcntl_setfl(fd, *open_flags); if (ret) { qemu_close(fd); fd = -1; } } } /* If we cannot use fcntl, or fcntl failed, fall back to qemu_open() */ if (fd == -1) { const char *normalized_filename = bs->filename; ret = raw_normalize_devicepath(&normalized_filename, errp); if (ret >= 0) { fd = qemu_open(normalized_filename, *open_flags, errp); if (fd == -1) { return -1; } } } if (fd != -1 && (*open_flags & O_RDWR)) { ret = check_hdev_writable(fd); if (ret < 0) { qemu_close(fd); error_setg_errno(errp, -ret, "The device is not writable"); return -1; } } return fd; } static int raw_reopen_prepare(BDRVReopenState *state, BlockReopenQueue *queue, Error **errp) { BDRVRawState *s; BDRVRawReopenState *rs; QemuOpts *opts; int ret; assert(state != NULL); assert(state->bs != NULL); s = state->bs->opaque; state->opaque = g_new0(BDRVRawReopenState, 1); rs = state->opaque; /* Handle options changes */ opts = qemu_opts_create(&raw_runtime_opts, NULL, 0, &error_abort); if (!qemu_opts_absorb_qdict(opts, state->options, errp)) { ret = -EINVAL; goto out; } rs->drop_cache = qemu_opt_get_bool_del(opts, "drop-cache", true); rs->check_cache_dropped = qemu_opt_get_bool_del(opts, "x-check-cache-dropped", false); /* This driver's reopen function doesn't currently allow changing * other options, so let's put them back in the original QDict and * bdrv_reopen_prepare() will detect changes and complain. */ qemu_opts_to_qdict(opts, state->options); /* * As part of reopen prepare we also want to create new fd by * raw_reconfigure_getfd(). But it wants updated "perm", when in * bdrv_reopen_multiple() .bdrv_reopen_prepare() callback called prior to * permission update. Happily, permission update is always a part * (a separate stage) of bdrv_reopen_multiple() so we can rely on this * fact and reconfigure fd in raw_check_perm(). */ s->reopen_state = state; ret = 0; out: qemu_opts_del(opts); return ret; } static void raw_reopen_commit(BDRVReopenState *state) { BDRVRawReopenState *rs = state->opaque; BDRVRawState *s = state->bs->opaque; s->drop_cache = rs->drop_cache; s->check_cache_dropped = rs->check_cache_dropped; s->open_flags = rs->open_flags; g_free(state->opaque); state->opaque = NULL; assert(s->reopen_state == state); s->reopen_state = NULL; } static void raw_reopen_abort(BDRVReopenState *state) { BDRVRawReopenState *rs = state->opaque; BDRVRawState *s = state->bs->opaque; /* nothing to do if NULL, we didn't get far enough */ if (rs == NULL) { return; } g_free(state->opaque); state->opaque = NULL; assert(s->reopen_state == state); s->reopen_state = NULL; } static int hdev_get_max_hw_transfer(int fd, struct stat *st) { #ifdef BLKSECTGET if (S_ISBLK(st->st_mode)) { unsigned short max_sectors = 0; if (ioctl(fd, BLKSECTGET, &max_sectors) == 0) { return max_sectors * 512; } } else { int max_bytes = 0; if (ioctl(fd, BLKSECTGET, &max_bytes) == 0) { return max_bytes; } } return -errno; #else return -ENOSYS; #endif } /* * Get a sysfs attribute value as character string. */ #ifdef CONFIG_LINUX static int get_sysfs_str_val(struct stat *st, const char *attribute, char **val) { g_autofree char *sysfspath = NULL; size_t len; if (!S_ISBLK(st->st_mode)) { return -ENOTSUP; } sysfspath = g_strdup_printf("/sys/dev/block/%u:%u/queue/%s", major(st->st_rdev), minor(st->st_rdev), attribute); if (!g_file_get_contents(sysfspath, val, &len, NULL)) { return -ENOENT; } /* The file is ended with '\n' */ char *p; p = *val; if (*(p + len - 1) == '\n') { *(p + len - 1) = '\0'; } return 0; } #endif #if defined(CONFIG_BLKZONED) static int get_sysfs_zoned_model(struct stat *st, BlockZoneModel *zoned) { g_autofree char *val = NULL; int ret; ret = get_sysfs_str_val(st, "zoned", &val); if (ret < 0) { return ret; } if (strcmp(val, "host-managed") == 0) { *zoned = BLK_Z_HM; } else if (strcmp(val, "host-aware") == 0) { *zoned = BLK_Z_HA; } else if (strcmp(val, "none") == 0) { *zoned = BLK_Z_NONE; } else { return -ENOTSUP; } return 0; } #endif /* defined(CONFIG_BLKZONED) */ /* * Get a sysfs attribute value as a long integer. */ #ifdef CONFIG_LINUX static long get_sysfs_long_val(struct stat *st, const char *attribute) { g_autofree char *str = NULL; const char *end; long val; int ret; ret = get_sysfs_str_val(st, attribute, &str); if (ret < 0) { return ret; } /* The file is ended with '\n', pass 'end' to accept that. */ ret = qemu_strtol(str, &end, 10, &val); if (ret == 0 && end && *end == '\0') { ret = val; } return ret; } #endif static int hdev_get_max_segments(int fd, struct stat *st) { #ifdef CONFIG_LINUX int ret; if (S_ISCHR(st->st_mode)) { if (ioctl(fd, SG_GET_SG_TABLESIZE, &ret) == 0) { return ret; } return -ENOTSUP; } return get_sysfs_long_val(st, "max_segments"); #else return -ENOTSUP; #endif } #if defined(CONFIG_BLKZONED) /* * If the reset_all flag is true, then the wps of zone whose state is * not readonly or offline should be all reset to the start sector. * Else, take the real wp of the device. */ static int get_zones_wp(BlockDriverState *bs, int fd, int64_t offset, unsigned int nrz, bool reset_all) { struct blk_zone *blkz; size_t rep_size; uint64_t sector = offset >> BDRV_SECTOR_BITS; BlockZoneWps *wps = bs->wps; unsigned int j = offset / bs->bl.zone_size; unsigned int n = 0, i = 0; int ret; rep_size = sizeof(struct blk_zone_report) + nrz * sizeof(struct blk_zone); g_autofree struct blk_zone_report *rep = NULL; rep = g_malloc(rep_size); blkz = (struct blk_zone *)(rep + 1); while (n < nrz) { memset(rep, 0, rep_size); rep->sector = sector; rep->nr_zones = nrz - n; do { ret = ioctl(fd, BLKREPORTZONE, rep); } while (ret != 0 && errno == EINTR); if (ret != 0) { error_report("%d: ioctl BLKREPORTZONE at %" PRId64 " failed %d", fd, offset, errno); return -errno; } if (!rep->nr_zones) { break; } for (i = 0; i < rep->nr_zones; ++i, ++n, ++j) { /* * The wp tracking cares only about sequential writes required and * sequential write preferred zones so that the wp can advance to * the right location. * Use the most significant bit of the wp location to indicate the * zone type: 0 for SWR/SWP zones and 1 for conventional zones. */ if (blkz[i].type == BLK_ZONE_TYPE_CONVENTIONAL) { wps->wp[j] |= 1ULL << 63; } else { switch(blkz[i].cond) { case BLK_ZONE_COND_FULL: case BLK_ZONE_COND_READONLY: /* Zone not writable */ wps->wp[j] = (blkz[i].start + blkz[i].len) << BDRV_SECTOR_BITS; break; case BLK_ZONE_COND_OFFLINE: /* Zone not writable nor readable */ wps->wp[j] = (blkz[i].start) << BDRV_SECTOR_BITS; break; default: if (reset_all) { wps->wp[j] = blkz[i].start << BDRV_SECTOR_BITS; } else { wps->wp[j] = blkz[i].wp << BDRV_SECTOR_BITS; } break; } } } sector = blkz[i - 1].start + blkz[i - 1].len; } return 0; } static void update_zones_wp(BlockDriverState *bs, int fd, int64_t offset, unsigned int nrz) { if (get_zones_wp(bs, fd, offset, nrz, 0) < 0) { error_report("update zone wp failed"); } } static void raw_refresh_zoned_limits(BlockDriverState *bs, struct stat *st, Error **errp) { BDRVRawState *s = bs->opaque; BlockZoneModel zoned = BLK_Z_NONE; int ret; ret = get_sysfs_zoned_model(st, &zoned); if (ret < 0 || zoned == BLK_Z_NONE) { goto no_zoned; } bs->bl.zoned = zoned; ret = get_sysfs_long_val(st, "max_open_zones"); if (ret >= 0) { bs->bl.max_open_zones = ret; } ret = get_sysfs_long_val(st, "max_active_zones"); if (ret >= 0) { bs->bl.max_active_zones = ret; } /* * The zoned device must at least have zone size and nr_zones fields. */ ret = get_sysfs_long_val(st, "chunk_sectors"); if (ret < 0) { error_setg_errno(errp, -ret, "Unable to read chunk_sectors " "sysfs attribute"); goto no_zoned; } else if (!ret) { error_setg(errp, "Read 0 from chunk_sectors sysfs attribute"); goto no_zoned; } bs->bl.zone_size = ret << BDRV_SECTOR_BITS; ret = get_sysfs_long_val(st, "nr_zones"); if (ret < 0) { error_setg_errno(errp, -ret, "Unable to read nr_zones " "sysfs attribute"); goto no_zoned; } else if (!ret) { error_setg(errp, "Read 0 from nr_zones sysfs attribute"); goto no_zoned; } bs->bl.nr_zones = ret; ret = get_sysfs_long_val(st, "zone_append_max_bytes"); if (ret > 0) { bs->bl.max_append_sectors = ret >> BDRV_SECTOR_BITS; } ret = get_sysfs_long_val(st, "physical_block_size"); if (ret >= 0) { bs->bl.write_granularity = ret; } /* The refresh_limits() function can be called multiple times. */ g_free(bs->wps); bs->wps = g_malloc(sizeof(BlockZoneWps) + sizeof(int64_t) * bs->bl.nr_zones); ret = get_zones_wp(bs, s->fd, 0, bs->bl.nr_zones, 0); if (ret < 0) { error_setg_errno(errp, -ret, "report wps failed"); goto no_zoned; } qemu_co_mutex_init(&bs->wps->colock); return; no_zoned: bs->bl.zoned = BLK_Z_NONE; g_free(bs->wps); bs->wps = NULL; } #else /* !defined(CONFIG_BLKZONED) */ static void raw_refresh_zoned_limits(BlockDriverState *bs, struct stat *st, Error **errp) { bs->bl.zoned = BLK_Z_NONE; } #endif /* !defined(CONFIG_BLKZONED) */ static void raw_refresh_limits(BlockDriverState *bs, Error **errp) { BDRVRawState *s = bs->opaque; struct stat st; s->needs_alignment = raw_needs_alignment(bs); raw_probe_alignment(bs, s->fd, errp); bs->bl.min_mem_alignment = s->buf_align; bs->bl.opt_mem_alignment = MAX(s->buf_align, qemu_real_host_page_size()); /* * Maximum transfers are best effort, so it is okay to ignore any * errors. That said, based on the man page errors in fstat would be * very much unexpected; the only possible case seems to be ENOMEM. */ if (fstat(s->fd, &st)) { return; } #if defined(__APPLE__) && (__MACH__) struct statfs buf; if (!fstatfs(s->fd, &buf)) { bs->bl.opt_transfer = buf.f_iosize; bs->bl.pdiscard_alignment = buf.f_bsize; } #endif if (bdrv_is_sg(bs) || S_ISBLK(st.st_mode)) { int ret = hdev_get_max_hw_transfer(s->fd, &st); if (ret > 0 && ret <= BDRV_REQUEST_MAX_BYTES) { bs->bl.max_hw_transfer = ret; } ret = hdev_get_max_segments(s->fd, &st); if (ret > 0) { bs->bl.max_hw_iov = ret; } } raw_refresh_zoned_limits(bs, &st, errp); } static int check_for_dasd(int fd) { #ifdef BIODASDINFO2 struct dasd_information2_t info = {0}; return ioctl(fd, BIODASDINFO2, &info); #else return -1; #endif } /** * Try to get @bs's logical and physical block size. * On success, store them in @bsz and return zero. * On failure, return negative errno. */ static int hdev_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz) { BDRVRawState *s = bs->opaque; int ret; /* If DASD or zoned devices, get blocksizes */ if (check_for_dasd(s->fd) < 0) { /* zoned devices are not DASD */ if (bs->bl.zoned == BLK_Z_NONE) { return -ENOTSUP; } } ret = probe_logical_blocksize(s->fd, &bsz->log); if (ret < 0) { return ret; } return probe_physical_blocksize(s->fd, &bsz->phys); } /** * Try to get @bs's geometry: cyls, heads, sectors. * On success, store them in @geo and return 0. * On failure return -errno. * (Allows block driver to assign default geometry values that guest sees) */ #ifdef __linux__ static int hdev_probe_geometry(BlockDriverState *bs, HDGeometry *geo) { BDRVRawState *s = bs->opaque; struct hd_geometry ioctl_geo = {0}; /* If DASD, get its geometry */ if (check_for_dasd(s->fd) < 0) { return -ENOTSUP; } if (ioctl(s->fd, HDIO_GETGEO, &ioctl_geo) < 0) { return -errno; } /* HDIO_GETGEO may return success even though geo contains zeros (e.g. certain multipath setups) */ if (!ioctl_geo.heads || !ioctl_geo.sectors || !ioctl_geo.cylinders) { return -ENOTSUP; } /* Do not return a geometry for partition */ if (ioctl_geo.start != 0) { return -ENOTSUP; } geo->heads = ioctl_geo.heads; geo->sectors = ioctl_geo.sectors; geo->cylinders = ioctl_geo.cylinders; return 0; } #else /* __linux__ */ static int hdev_probe_geometry(BlockDriverState *bs, HDGeometry *geo) { return -ENOTSUP; } #endif #if defined(__linux__) static int handle_aiocb_ioctl(void *opaque) { RawPosixAIOData *aiocb = opaque; int ret; ret = RETRY_ON_EINTR( ioctl(aiocb->aio_fildes, aiocb->ioctl.cmd, aiocb->ioctl.buf) ); if (ret == -1) { return -errno; } return 0; } #endif /* linux */ static int handle_aiocb_flush(void *opaque) { RawPosixAIOData *aiocb = opaque; BDRVRawState *s = aiocb->bs->opaque; int ret; if (s->page_cache_inconsistent) { return -s->page_cache_inconsistent; } ret = qemu_fdatasync(aiocb->aio_fildes); if (ret == -1) { trace_file_flush_fdatasync_failed(errno); /* There is no clear definition of the semantics of a failing fsync(), * so we may have to assume the worst. The sad truth is that this * assumption is correct for Linux. Some pages are now probably marked * clean in the page cache even though they are inconsistent with the * on-disk contents. The next fdatasync() call would succeed, but no * further writeback attempt will be made. We can't get back to a state * in which we know what is on disk (we would have to rewrite * everything that was touched since the last fdatasync() at least), so * make bdrv_flush() fail permanently. Given that the behaviour isn't * really defined, I have little hope that other OSes are doing better. * * Obviously, this doesn't affect O_DIRECT, which bypasses the page * cache. */ if ((s->open_flags & O_DIRECT) == 0) { s->page_cache_inconsistent = errno; } return -errno; } return 0; } #ifdef CONFIG_PREADV static bool preadv_present = true; static ssize_t qemu_preadv(int fd, const struct iovec *iov, int nr_iov, off_t offset) { return preadv(fd, iov, nr_iov, offset); } static ssize_t qemu_pwritev(int fd, const struct iovec *iov, int nr_iov, off_t offset) { return pwritev(fd, iov, nr_iov, offset); } #else static bool preadv_present = false; static ssize_t qemu_preadv(int fd, const struct iovec *iov, int nr_iov, off_t offset) { return -ENOSYS; } static ssize_t qemu_pwritev(int fd, const struct iovec *iov, int nr_iov, off_t offset) { return -ENOSYS; } #endif static ssize_t handle_aiocb_rw_vector(RawPosixAIOData *aiocb) { ssize_t len; len = RETRY_ON_EINTR( (aiocb->aio_type & (QEMU_AIO_WRITE | QEMU_AIO_ZONE_APPEND)) ? qemu_pwritev(aiocb->aio_fildes, aiocb->io.iov, aiocb->io.niov, aiocb->aio_offset) : qemu_preadv(aiocb->aio_fildes, aiocb->io.iov, aiocb->io.niov, aiocb->aio_offset) ); if (len == -1) { return -errno; } return len; } /* * Read/writes the data to/from a given linear buffer. * * Returns the number of bytes handles or -errno in case of an error. Short * reads are only returned if the end of the file is reached. */ static ssize_t handle_aiocb_rw_linear(RawPosixAIOData *aiocb, char *buf) { ssize_t offset = 0; ssize_t len; while (offset < aiocb->aio_nbytes) { if (aiocb->aio_type & (QEMU_AIO_WRITE | QEMU_AIO_ZONE_APPEND)) { len = pwrite(aiocb->aio_fildes, (const char *)buf + offset, aiocb->aio_nbytes - offset, aiocb->aio_offset + offset); } else { len = pread(aiocb->aio_fildes, buf + offset, aiocb->aio_nbytes - offset, aiocb->aio_offset + offset); } if (len == -1 && errno == EINTR) { continue; } else if (len == -1 && errno == EINVAL && (aiocb->bs->open_flags & BDRV_O_NOCACHE) && !(aiocb->aio_type & QEMU_AIO_WRITE) && offset > 0) { /* O_DIRECT pread() may fail with EINVAL when offset is unaligned * after a short read. Assume that O_DIRECT short reads only occur * at EOF. Therefore this is a short read, not an I/O error. */ break; } else if (len == -1) { offset = -errno; break; } else if (len == 0) { break; } offset += len; } return offset; } static int handle_aiocb_rw(void *opaque) { RawPosixAIOData *aiocb = opaque; ssize_t nbytes; char *buf; if (!(aiocb->aio_type & QEMU_AIO_MISALIGNED)) { /* * If there is just a single buffer, and it is properly aligned * we can just use plain pread/pwrite without any problems. */ if (aiocb->io.niov == 1) { nbytes = handle_aiocb_rw_linear(aiocb, aiocb->io.iov->iov_base); goto out; } /* * We have more than one iovec, and all are properly aligned. * * Try preadv/pwritev first and fall back to linearizing the * buffer if it's not supported. */ if (preadv_present) { nbytes = handle_aiocb_rw_vector(aiocb); if (nbytes == aiocb->aio_nbytes || (nbytes < 0 && nbytes != -ENOSYS)) { goto out; } preadv_present = false; } /* * XXX(hch): short read/write. no easy way to handle the reminder * using these interfaces. For now retry using plain * pread/pwrite? */ } /* * Ok, we have to do it the hard way, copy all segments into * a single aligned buffer. */ buf = qemu_try_blockalign(aiocb->bs, aiocb->aio_nbytes); if (buf == NULL) { nbytes = -ENOMEM; goto out; } if (aiocb->aio_type & QEMU_AIO_WRITE) { char *p = buf; int i; for (i = 0; i < aiocb->io.niov; ++i) { memcpy(p, aiocb->io.iov[i].iov_base, aiocb->io.iov[i].iov_len); p += aiocb->io.iov[i].iov_len; } assert(p - buf == aiocb->aio_nbytes); } nbytes = handle_aiocb_rw_linear(aiocb, buf); if (!(aiocb->aio_type & (QEMU_AIO_WRITE | QEMU_AIO_ZONE_APPEND))) { char *p = buf; size_t count = aiocb->aio_nbytes, copy; int i; for (i = 0; i < aiocb->io.niov && count; ++i) { copy = count; if (copy > aiocb->io.iov[i].iov_len) { copy = aiocb->io.iov[i].iov_len; } memcpy(aiocb->io.iov[i].iov_base, p, copy); assert(count >= copy); p += copy; count -= copy; } assert(count == 0); } qemu_vfree(buf); out: if (nbytes == aiocb->aio_nbytes) { return 0; } else if (nbytes >= 0 && nbytes < aiocb->aio_nbytes) { if (aiocb->aio_type & QEMU_AIO_WRITE) { return -EINVAL; } else { iov_memset(aiocb->io.iov, aiocb->io.niov, nbytes, 0, aiocb->aio_nbytes - nbytes); return 0; } } else { assert(nbytes < 0); return nbytes; } } #if defined(CONFIG_FALLOCATE) || defined(BLKZEROOUT) || defined(BLKDISCARD) static int translate_err(int err) { if (err == -ENODEV || err == -ENOSYS || err == -EOPNOTSUPP || err == -ENOTTY) { err = -ENOTSUP; } return err; } #endif #ifdef CONFIG_FALLOCATE static int do_fallocate(int fd, int mode, off_t offset, off_t len) { do { if (fallocate(fd, mode, offset, len) == 0) { return 0; } } while (errno == EINTR); return translate_err(-errno); } #endif static ssize_t handle_aiocb_write_zeroes_block(RawPosixAIOData *aiocb) { int ret = -ENOTSUP; BDRVRawState *s = aiocb->bs->opaque; if (!s->has_write_zeroes) { return -ENOTSUP; } #ifdef BLKZEROOUT /* The BLKZEROOUT implementation in the kernel doesn't set * BLKDEV_ZERO_NOFALLBACK, so we can't call this if we have to avoid slow * fallbacks. */ if (!(aiocb->aio_type & QEMU_AIO_NO_FALLBACK)) { do { uint64_t range[2] = { aiocb->aio_offset, aiocb->aio_nbytes }; if (ioctl(aiocb->aio_fildes, BLKZEROOUT, range) == 0) { return 0; } } while (errno == EINTR); ret = translate_err(-errno); if (ret == -ENOTSUP) { s->has_write_zeroes = false; } } #endif return ret; } static int handle_aiocb_write_zeroes(void *opaque) { RawPosixAIOData *aiocb = opaque; #ifdef CONFIG_FALLOCATE BDRVRawState *s = aiocb->bs->opaque; int64_t len; #endif if (aiocb->aio_type & QEMU_AIO_BLKDEV) { return handle_aiocb_write_zeroes_block(aiocb); } #ifdef CONFIG_FALLOCATE_ZERO_RANGE if (s->has_write_zeroes) { int ret = do_fallocate(s->fd, FALLOC_FL_ZERO_RANGE, aiocb->aio_offset, aiocb->aio_nbytes); if (ret == -ENOTSUP) { s->has_write_zeroes = false; } else if (ret == 0 || ret != -EINVAL) { return ret; } /* * Note: Some file systems do not like unaligned byte ranges, and * return EINVAL in such a case, though they should not do it according * to the man-page of fallocate(). Thus we simply ignore this return * value and try the other fallbacks instead. */ } #endif #ifdef CONFIG_FALLOCATE_PUNCH_HOLE if (s->has_discard && s->has_fallocate) { int ret = do_fallocate(s->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, aiocb->aio_offset, aiocb->aio_nbytes); if (ret == 0) { ret = do_fallocate(s->fd, 0, aiocb->aio_offset, aiocb->aio_nbytes); if (ret == 0 || ret != -ENOTSUP) { return ret; } s->has_fallocate = false; } else if (ret == -EINVAL) { /* * Some file systems like older versions of GPFS do not like un- * aligned byte ranges, and return EINVAL in such a case, though * they should not do it according to the man-page of fallocate(). * Warn about the bad filesystem and try the final fallback instead. */ warn_report_once("Your file system is misbehaving: " "fallocate(FALLOC_FL_PUNCH_HOLE) returned EINVAL. " "Please report this bug to your file system " "vendor."); } else if (ret != -ENOTSUP) { return ret; } else { s->has_discard = false; } } #endif #ifdef CONFIG_FALLOCATE /* Last resort: we are trying to extend the file with zeroed data. This * can be done via fallocate(fd, 0) */ len = raw_getlength(aiocb->bs); if (s->has_fallocate && len >= 0 && aiocb->aio_offset >= len) { int ret = do_fallocate(s->fd, 0, aiocb->aio_offset, aiocb->aio_nbytes); if (ret == 0 || ret != -ENOTSUP) { return ret; } s->has_fallocate = false; } #endif return -ENOTSUP; } static int handle_aiocb_write_zeroes_unmap(void *opaque) { RawPosixAIOData *aiocb = opaque; BDRVRawState *s G_GNUC_UNUSED = aiocb->bs->opaque; /* First try to write zeros and unmap at the same time */ #ifdef CONFIG_FALLOCATE_PUNCH_HOLE int ret = do_fallocate(s->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, aiocb->aio_offset, aiocb->aio_nbytes); switch (ret) { case -ENOTSUP: case -EINVAL: case -EBUSY: break; default: return ret; } #endif /* If we couldn't manage to unmap while guaranteed that the area reads as * all-zero afterwards, just write zeroes without unmapping */ return handle_aiocb_write_zeroes(aiocb); } #ifndef HAVE_COPY_FILE_RANGE static off_t copy_file_range(int in_fd, off_t *in_off, int out_fd, off_t *out_off, size_t len, unsigned int flags) { #ifdef __NR_copy_file_range return syscall(__NR_copy_file_range, in_fd, in_off, out_fd, out_off, len, flags); #else errno = ENOSYS; return -1; #endif } #endif /* * parse_zone - Fill a zone descriptor */ #if defined(CONFIG_BLKZONED) static inline int parse_zone(struct BlockZoneDescriptor *zone, const struct blk_zone *blkz) { zone->start = blkz->start << BDRV_SECTOR_BITS; zone->length = blkz->len << BDRV_SECTOR_BITS; zone->wp = blkz->wp << BDRV_SECTOR_BITS; #ifdef HAVE_BLK_ZONE_REP_CAPACITY zone->cap = blkz->capacity << BDRV_SECTOR_BITS; #else zone->cap = blkz->len << BDRV_SECTOR_BITS; #endif switch (blkz->type) { case BLK_ZONE_TYPE_SEQWRITE_REQ: zone->type = BLK_ZT_SWR; break; case BLK_ZONE_TYPE_SEQWRITE_PREF: zone->type = BLK_ZT_SWP; break; case BLK_ZONE_TYPE_CONVENTIONAL: zone->type = BLK_ZT_CONV; break; default: error_report("Unsupported zone type: 0x%x", blkz->type); return -ENOTSUP; } switch (blkz->cond) { case BLK_ZONE_COND_NOT_WP: zone->state = BLK_ZS_NOT_WP; break; case BLK_ZONE_COND_EMPTY: zone->state = BLK_ZS_EMPTY; break; case BLK_ZONE_COND_IMP_OPEN: zone->state = BLK_ZS_IOPEN; break; case BLK_ZONE_COND_EXP_OPEN: zone->state = BLK_ZS_EOPEN; break; case BLK_ZONE_COND_CLOSED: zone->state = BLK_ZS_CLOSED; break; case BLK_ZONE_COND_READONLY: zone->state = BLK_ZS_RDONLY; break; case BLK_ZONE_COND_FULL: zone->state = BLK_ZS_FULL; break; case BLK_ZONE_COND_OFFLINE: zone->state = BLK_ZS_OFFLINE; break; default: error_report("Unsupported zone state: 0x%x", blkz->cond); return -ENOTSUP; } return 0; } #endif #if defined(CONFIG_BLKZONED) static int handle_aiocb_zone_report(void *opaque) { RawPosixAIOData *aiocb = opaque; int fd = aiocb->aio_fildes; unsigned int *nr_zones = aiocb->zone_report.nr_zones; BlockZoneDescriptor *zones = aiocb->zone_report.zones; /* zoned block devices use 512-byte sectors */ uint64_t sector = aiocb->aio_offset / 512; struct blk_zone *blkz; size_t rep_size; unsigned int nrz; int ret; unsigned int n = 0, i = 0; nrz = *nr_zones; rep_size = sizeof(struct blk_zone_report) + nrz * sizeof(struct blk_zone); g_autofree struct blk_zone_report *rep = NULL; rep = g_malloc(rep_size); blkz = (struct blk_zone *)(rep + 1); while (n < nrz) { memset(rep, 0, rep_size); rep->sector = sector; rep->nr_zones = nrz - n; do { ret = ioctl(fd, BLKREPORTZONE, rep); } while (ret != 0 && errno == EINTR); if (ret != 0) { error_report("%d: ioctl BLKREPORTZONE at %" PRId64 " failed %d", fd, sector, errno); return -errno; } if (!rep->nr_zones) { break; } for (i = 0; i < rep->nr_zones; i++, n++) { ret = parse_zone(&zones[n], &blkz[i]); if (ret != 0) { return ret; } /* The next report should start after the last zone reported */ sector = blkz[i].start + blkz[i].len; } } *nr_zones = n; return 0; } #endif #if defined(CONFIG_BLKZONED) static int handle_aiocb_zone_mgmt(void *opaque) { RawPosixAIOData *aiocb = opaque; int fd = aiocb->aio_fildes; uint64_t sector = aiocb->aio_offset / 512; int64_t nr_sectors = aiocb->aio_nbytes / 512; struct blk_zone_range range; int ret; /* Execute the operation */ range.sector = sector; range.nr_sectors = nr_sectors; do { ret = ioctl(fd, aiocb->zone_mgmt.op, &range); } while (ret != 0 && errno == EINTR); return ret < 0 ? -errno : ret; } #endif static int handle_aiocb_copy_range(void *opaque) { RawPosixAIOData *aiocb = opaque; uint64_t bytes = aiocb->aio_nbytes; off_t in_off = aiocb->aio_offset; off_t out_off = aiocb->copy_range.aio_offset2; while (bytes) { ssize_t ret = copy_file_range(aiocb->aio_fildes, &in_off, aiocb->copy_range.aio_fd2, &out_off, bytes, 0); trace_file_copy_file_range(aiocb->bs, aiocb->aio_fildes, in_off, aiocb->copy_range.aio_fd2, out_off, bytes, 0, ret); if (ret == 0) { /* No progress (e.g. when beyond EOF), let the caller fall back to * buffer I/O. */ return -ENOSPC; } if (ret < 0) { switch (errno) { case ENOSYS: return -ENOTSUP; case EINTR: continue; default: return -errno; } } bytes -= ret; } return 0; } static int handle_aiocb_discard(void *opaque) { RawPosixAIOData *aiocb = opaque; int ret = -ENOTSUP; BDRVRawState *s = aiocb->bs->opaque; if (!s->has_discard) { return -ENOTSUP; } if (aiocb->aio_type & QEMU_AIO_BLKDEV) { #ifdef BLKDISCARD do { uint64_t range[2] = { aiocb->aio_offset, aiocb->aio_nbytes }; if (ioctl(aiocb->aio_fildes, BLKDISCARD, range) == 0) { return 0; } } while (errno == EINTR); ret = translate_err(-errno); #endif } else { #ifdef CONFIG_FALLOCATE_PUNCH_HOLE ret = do_fallocate(s->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, aiocb->aio_offset, aiocb->aio_nbytes); ret = translate_err(ret); #elif defined(__APPLE__) && (__MACH__) fpunchhole_t fpunchhole; fpunchhole.fp_flags = 0; fpunchhole.reserved = 0; fpunchhole.fp_offset = aiocb->aio_offset; fpunchhole.fp_length = aiocb->aio_nbytes; if (fcntl(s->fd, F_PUNCHHOLE, &fpunchhole) == -1) { ret = errno == ENODEV ? -ENOTSUP : -errno; } else { ret = 0; } #endif } if (ret == -ENOTSUP) { s->has_discard = false; } return ret; } /* * Help alignment probing by allocating the first block. * * When reading with direct I/O from unallocated area on Gluster backed by XFS, * reading succeeds regardless of request length. In this case we fallback to * safe alignment which is not optimal. Allocating the first block avoids this * fallback. * * fd may be opened with O_DIRECT, but we don't know the buffer alignment or * request alignment, so we use safe values. * * Returns: 0 on success, -errno on failure. Since this is an optimization, * caller may ignore failures. */ static int allocate_first_block(int fd, size_t max_size) { size_t write_size = (max_size < MAX_BLOCKSIZE) ? BDRV_SECTOR_SIZE : MAX_BLOCKSIZE; size_t max_align = MAX(MAX_BLOCKSIZE, qemu_real_host_page_size()); void *buf; ssize_t n; int ret; buf = qemu_memalign(max_align, write_size); memset(buf, 0, write_size); n = RETRY_ON_EINTR(pwrite(fd, buf, write_size, 0)); ret = (n == -1) ? -errno : 0; qemu_vfree(buf); return ret; } static int handle_aiocb_truncate(void *opaque) { RawPosixAIOData *aiocb = opaque; int result = 0; int64_t current_length = 0; char *buf = NULL; struct stat st; int fd = aiocb->aio_fildes; int64_t offset = aiocb->aio_offset; PreallocMode prealloc = aiocb->truncate.prealloc; Error **errp = aiocb->truncate.errp; if (fstat(fd, &st) < 0) { result = -errno; error_setg_errno(errp, -result, "Could not stat file"); return result; } current_length = st.st_size; if (current_length > offset && prealloc != PREALLOC_MODE_OFF) { error_setg(errp, "Cannot use preallocation for shrinking files"); return -ENOTSUP; } switch (prealloc) { #ifdef CONFIG_POSIX_FALLOCATE case PREALLOC_MODE_FALLOC: /* * Truncating before posix_fallocate() makes it about twice slower on * file systems that do not support fallocate(), trying to check if a * block is allocated before allocating it, so don't do that here. */ if (offset != current_length) { result = -posix_fallocate(fd, current_length, offset - current_length); if (result != 0) { /* posix_fallocate() doesn't set errno. */ error_setg_errno(errp, -result, "Could not preallocate new data"); } else if (current_length == 0) { /* * posix_fallocate() uses fallocate() if the filesystem * supports it, or fallback to manually writing zeroes. If * fallocate() was used, unaligned reads from the fallocated * area in raw_probe_alignment() will succeed, hence we need to * allocate the first block. * * Optimize future alignment probing; ignore failures. */ allocate_first_block(fd, offset); } } else { result = 0; } goto out; #endif case PREALLOC_MODE_FULL: { int64_t num = 0, left = offset - current_length; off_t seek_result; /* * Knowing the final size from the beginning could allow the file * system driver to do less allocations and possibly avoid * fragmentation of the file. */ if (ftruncate(fd, offset) != 0) { result = -errno; error_setg_errno(errp, -result, "Could not resize file"); goto out; } buf = g_malloc0(65536); seek_result = lseek(fd, current_length, SEEK_SET); if (seek_result < 0) { result = -errno; error_setg_errno(errp, -result, "Failed to seek to the old end of file"); goto out; } while (left > 0) { num = MIN(left, 65536); result = write(fd, buf, num); if (result < 0) { if (errno == EINTR) { continue; } result = -errno; error_setg_errno(errp, -result, "Could not write zeros for preallocation"); goto out; } left -= result; } if (result >= 0) { result = fsync(fd); if (result < 0) { result = -errno; error_setg_errno(errp, -result, "Could not flush file to disk"); goto out; } } goto out; } case PREALLOC_MODE_OFF: if (ftruncate(fd, offset) != 0) { result = -errno; error_setg_errno(errp, -result, "Could not resize file"); } else if (current_length == 0 && offset > current_length) { /* Optimize future alignment probing; ignore failures. */ allocate_first_block(fd, offset); } return result; default: result = -ENOTSUP; error_setg(errp, "Unsupported preallocation mode: %s", PreallocMode_str(prealloc)); return result; } out: if (result < 0) { if (ftruncate(fd, current_length) < 0) { error_report("Failed to restore old file length: %s", strerror(errno)); } } g_free(buf); return result; } static int coroutine_fn raw_thread_pool_submit(ThreadPoolFunc func, void *arg) { return thread_pool_submit_co(func, arg); } /* * Check if all memory in this vector is sector aligned. */ static bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) { int i; size_t alignment = bdrv_min_mem_align(bs); size_t len = bs->bl.request_alignment; IO_CODE(); for (i = 0; i < qiov->niov; i++) { if ((uintptr_t) qiov->iov[i].iov_base % alignment) { return false; } if (qiov->iov[i].iov_len % len) { return false; } } return true; } #ifdef CONFIG_LINUX_IO_URING static inline bool raw_check_linux_io_uring(BDRVRawState *s) { Error *local_err = NULL; AioContext *ctx; if (!s->use_linux_io_uring) { return false; } ctx = qemu_get_current_aio_context(); if (unlikely(!aio_setup_linux_io_uring(ctx, &local_err))) { error_reportf_err(local_err, "Unable to use linux io_uring, " "falling back to thread pool: "); s->use_linux_io_uring = false; return false; } return true; } #endif #ifdef CONFIG_LINUX_AIO static inline bool raw_check_linux_aio(BDRVRawState *s) { Error *local_err = NULL; AioContext *ctx; if (!s->use_linux_aio) { return false; } ctx = qemu_get_current_aio_context(); if (unlikely(!aio_setup_linux_aio(ctx, &local_err))) { error_reportf_err(local_err, "Unable to use Linux AIO, " "falling back to thread pool: "); s->use_linux_aio = false; return false; } return true; } #endif static int coroutine_fn raw_co_prw(BlockDriverState *bs, int64_t *offset_ptr, uint64_t bytes, QEMUIOVector *qiov, int type) { BDRVRawState *s = bs->opaque; RawPosixAIOData acb; int ret; uint64_t offset = *offset_ptr; if (fd_open(bs) < 0) return -EIO; #if defined(CONFIG_BLKZONED) if ((type & (QEMU_AIO_WRITE | QEMU_AIO_ZONE_APPEND)) && bs->bl.zoned != BLK_Z_NONE) { qemu_co_mutex_lock(&bs->wps->colock); if (type & QEMU_AIO_ZONE_APPEND) { int index = offset / bs->bl.zone_size; offset = bs->wps->wp[index]; } } #endif /* * When using O_DIRECT, the request must be aligned to be able to use * either libaio or io_uring interface. If not fail back to regular thread * pool read/write code which emulates this for us if we * set QEMU_AIO_MISALIGNED. */ if (s->needs_alignment && !bdrv_qiov_is_aligned(bs, qiov)) { type |= QEMU_AIO_MISALIGNED; #ifdef CONFIG_LINUX_IO_URING } else if (raw_check_linux_io_uring(s)) { assert(qiov->size == bytes); ret = luring_co_submit(bs, s->fd, offset, qiov, type); goto out; #endif #ifdef CONFIG_LINUX_AIO } else if (raw_check_linux_aio(s)) { assert(qiov->size == bytes); ret = laio_co_submit(s->fd, offset, qiov, type, s->aio_max_batch); goto out; #endif } acb = (RawPosixAIOData) { .bs = bs, .aio_fildes = s->fd, .aio_type = type, .aio_offset = offset, .aio_nbytes = bytes, .io = { .iov = qiov->iov, .niov = qiov->niov, }, }; assert(qiov->size == bytes); ret = raw_thread_pool_submit(handle_aiocb_rw, &acb); goto out; /* Avoid the compiler err of unused label */ out: #if defined(CONFIG_BLKZONED) if ((type & (QEMU_AIO_WRITE | QEMU_AIO_ZONE_APPEND)) && bs->bl.zoned != BLK_Z_NONE) { BlockZoneWps *wps = bs->wps; if (ret == 0) { uint64_t *wp = &wps->wp[offset / bs->bl.zone_size]; if (!BDRV_ZT_IS_CONV(*wp)) { if (type & QEMU_AIO_ZONE_APPEND) { *offset_ptr = *wp; trace_zbd_zone_append_complete(bs, *offset_ptr >> BDRV_SECTOR_BITS); } /* Advance the wp if needed */ if (offset + bytes > *wp) { *wp = offset + bytes; } } } else { /* * write and append write are not allowed to cross zone boundaries */ update_zones_wp(bs, s->fd, offset, 1); } qemu_co_mutex_unlock(&wps->colock); } #endif return ret; } static int coroutine_fn raw_co_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes, QEMUIOVector *qiov, BdrvRequestFlags flags) { return raw_co_prw(bs, &offset, bytes, qiov, QEMU_AIO_READ); } static int coroutine_fn raw_co_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes, QEMUIOVector *qiov, BdrvRequestFlags flags) { return raw_co_prw(bs, &offset, bytes, qiov, QEMU_AIO_WRITE); } static int coroutine_fn raw_co_flush_to_disk(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; RawPosixAIOData acb; int ret; ret = fd_open(bs); if (ret < 0) { return ret; } acb = (RawPosixAIOData) { .bs = bs, .aio_fildes = s->fd, .aio_type = QEMU_AIO_FLUSH, }; #ifdef CONFIG_LINUX_IO_URING if (raw_check_linux_io_uring(s)) { return luring_co_submit(bs, s->fd, 0, NULL, QEMU_AIO_FLUSH); } #endif #ifdef CONFIG_LINUX_AIO if (s->has_laio_fdsync && raw_check_linux_aio(s)) { return laio_co_submit(s->fd, 0, NULL, QEMU_AIO_FLUSH, 0); } #endif return raw_thread_pool_submit(handle_aiocb_flush, &acb); } static void raw_close(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; if (s->fd >= 0) { #if defined(CONFIG_BLKZONED) g_free(bs->wps); #endif qemu_close(s->fd); s->fd = -1; } } /** * Truncates the given regular file @fd to @offset and, when growing, fills the * new space according to @prealloc. * * Returns: 0 on success, -errno on failure. */ static int coroutine_fn raw_regular_truncate(BlockDriverState *bs, int fd, int64_t offset, PreallocMode prealloc, Error **errp) { RawPosixAIOData acb; acb = (RawPosixAIOData) { .bs = bs, .aio_fildes = fd, .aio_type = QEMU_AIO_TRUNCATE, .aio_offset = offset, .truncate = { .prealloc = prealloc, .errp = errp, }, }; return raw_thread_pool_submit(handle_aiocb_truncate, &acb); } static int coroutine_fn raw_co_truncate(BlockDriverState *bs, int64_t offset, bool exact, PreallocMode prealloc, BdrvRequestFlags flags, Error **errp) { BDRVRawState *s = bs->opaque; struct stat st; int ret; if (fstat(s->fd, &st)) { ret = -errno; error_setg_errno(errp, -ret, "Failed to fstat() the file"); return ret; } if (S_ISREG(st.st_mode)) { /* Always resizes to the exact @offset */ return raw_regular_truncate(bs, s->fd, offset, prealloc, errp); } if (prealloc != PREALLOC_MODE_OFF) { error_setg(errp, "Preallocation mode '%s' unsupported for this " "non-regular file", PreallocMode_str(prealloc)); return -ENOTSUP; } if (S_ISCHR(st.st_mode) || S_ISBLK(st.st_mode)) { int64_t cur_length = raw_getlength(bs); if (offset != cur_length && exact) { error_setg(errp, "Cannot resize device files"); return -ENOTSUP; } else if (offset > cur_length) { error_setg(errp, "Cannot grow device files"); return -EINVAL; } } else { error_setg(errp, "Resizing this file is not supported"); return -ENOTSUP; } return 0; } #ifdef __OpenBSD__ static int64_t raw_getlength(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; int fd = s->fd; struct stat st; if (fstat(fd, &st)) return -errno; if (S_ISCHR(st.st_mode) || S_ISBLK(st.st_mode)) { struct disklabel dl; if (ioctl(fd, DIOCGDINFO, &dl)) return -errno; return (uint64_t)dl.d_secsize * dl.d_partitions[DISKPART(st.st_rdev)].p_size; } else return st.st_size; } #elif defined(__NetBSD__) static int64_t raw_getlength(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; int fd = s->fd; struct stat st; if (fstat(fd, &st)) return -errno; if (S_ISCHR(st.st_mode) || S_ISBLK(st.st_mode)) { struct dkwedge_info dkw; if (ioctl(fd, DIOCGWEDGEINFO, &dkw) != -1) { return dkw.dkw_size * 512; } else { struct disklabel dl; if (ioctl(fd, DIOCGDINFO, &dl)) return -errno; return (uint64_t)dl.d_secsize * dl.d_partitions[DISKPART(st.st_rdev)].p_size; } } else return st.st_size; } #elif defined(__sun__) static int64_t raw_getlength(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; struct dk_minfo minfo; int ret; int64_t size; ret = fd_open(bs); if (ret < 0) { return ret; } /* * Use the DKIOCGMEDIAINFO ioctl to read the size. */ ret = ioctl(s->fd, DKIOCGMEDIAINFO, &minfo); if (ret != -1) { return minfo.dki_lbsize * minfo.dki_capacity; } /* * There are reports that lseek on some devices fails, but * irc discussion said that contingency on contingency was overkill. */ size = lseek(s->fd, 0, SEEK_END); if (size < 0) { return -errno; } return size; } #elif defined(CONFIG_BSD) static int64_t raw_getlength(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; int fd = s->fd; int64_t size; struct stat sb; #if defined (__FreeBSD__) || defined(__FreeBSD_kernel__) int reopened = 0; #endif int ret; ret = fd_open(bs); if (ret < 0) return ret; #if defined (__FreeBSD__) || defined(__FreeBSD_kernel__) again: #endif if (!fstat(fd, &sb) && (S_IFCHR & sb.st_mode)) { size = 0; #ifdef DIOCGMEDIASIZE if (ioctl(fd, DIOCGMEDIASIZE, (off_t *)&size)) { size = 0; } #endif #ifdef DIOCGPART if (size == 0) { struct partinfo pi; if (ioctl(fd, DIOCGPART, &pi) == 0) { size = pi.media_size; } } #endif #if defined(DKIOCGETBLOCKCOUNT) && defined(DKIOCGETBLOCKSIZE) if (size == 0) { uint64_t sectors = 0; uint32_t sector_size = 0; if (ioctl(fd, DKIOCGETBLOCKCOUNT, §ors) == 0 && ioctl(fd, DKIOCGETBLOCKSIZE, §or_size) == 0) { size = sectors * sector_size; } } #endif if (size == 0) { size = lseek(fd, 0LL, SEEK_END); } if (size < 0) { return -errno; } #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) switch(s->type) { case FTYPE_CD: /* XXX FreeBSD acd returns UINT_MAX sectors for an empty drive */ if (size == 2048LL * (unsigned)-1) size = 0; /* XXX no disc? maybe we need to reopen... */ if (size <= 0 && !reopened && cdrom_reopen(bs) >= 0) { reopened = 1; goto again; } } #endif } else { size = lseek(fd, 0, SEEK_END); if (size < 0) { return -errno; } } return size; } #else static int64_t raw_getlength(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; int ret; int64_t size; ret = fd_open(bs); if (ret < 0) { return ret; } size = lseek(s->fd, 0, SEEK_END); if (size < 0) { return -errno; } return size; } #endif static int64_t coroutine_fn raw_co_getlength(BlockDriverState *bs) { return raw_getlength(bs); } static int64_t coroutine_fn raw_co_get_allocated_file_size(BlockDriverState *bs) { struct stat st; BDRVRawState *s = bs->opaque; if (fstat(s->fd, &st) < 0) { return -errno; } return (int64_t)st.st_blocks * 512; } static int coroutine_fn raw_co_create(BlockdevCreateOptions *options, Error **errp) { BlockdevCreateOptionsFile *file_opts; Error *local_err = NULL; int fd; uint64_t perm, shared; int result = 0; /* Validate options and set default values */ assert(options->driver == BLOCKDEV_DRIVER_FILE); file_opts = &options->u.file; if (!file_opts->has_nocow) { file_opts->nocow = false; } if (!file_opts->has_preallocation) { file_opts->preallocation = PREALLOC_MODE_OFF; } if (!file_opts->has_extent_size_hint) { file_opts->extent_size_hint = 1 * MiB; } if (file_opts->extent_size_hint > UINT32_MAX) { result = -EINVAL; error_setg(errp, "Extent size hint is too large"); goto out; } /* Create file */ fd = qemu_create(file_opts->filename, O_RDWR | O_BINARY, 0644, errp); if (fd < 0) { result = -errno; goto out; } /* Take permissions: We want to discard everything, so we need * BLK_PERM_WRITE; and truncation to the desired size requires * BLK_PERM_RESIZE. * On the other hand, we cannot share the RESIZE permission * because we promise that after this function, the file has the * size given in the options. If someone else were to resize it * concurrently, we could not guarantee that. * Note that after this function, we can no longer guarantee that * the file is not touched by a third party, so it may be resized * then. */ perm = BLK_PERM_WRITE | BLK_PERM_RESIZE; shared = BLK_PERM_ALL & ~BLK_PERM_RESIZE; /* Step one: Take locks */ result = raw_apply_lock_bytes(NULL, fd, perm, ~shared, false, errp); if (result < 0) { goto out_close; } /* Step two: Check that nobody else has taken conflicting locks */ result = raw_check_lock_bytes(fd, perm, shared, errp); if (result < 0) { error_append_hint(errp, "Is another process using the image [%s]?\n", file_opts->filename); goto out_unlock; } /* Clear the file by truncating it to 0 */ result = raw_regular_truncate(NULL, fd, 0, PREALLOC_MODE_OFF, errp); if (result < 0) { goto out_unlock; } if (file_opts->nocow) { #ifdef __linux__ /* Set NOCOW flag to solve performance issue on fs like btrfs. * This is an optimisation. The FS_IOC_SETFLAGS ioctl return value * will be ignored since any failure of this operation should not * block the left work. */ int attr; if (ioctl(fd, FS_IOC_GETFLAGS, &attr) == 0) { attr |= FS_NOCOW_FL; ioctl(fd, FS_IOC_SETFLAGS, &attr); } #endif } #ifdef FS_IOC_FSSETXATTR /* * Try to set the extent size hint. Failure is not fatal, and a warning is * only printed if the option was explicitly specified. */ { struct fsxattr attr; result = ioctl(fd, FS_IOC_FSGETXATTR, &attr); if (result == 0) { attr.fsx_xflags |= FS_XFLAG_EXTSIZE; attr.fsx_extsize = file_opts->extent_size_hint; result = ioctl(fd, FS_IOC_FSSETXATTR, &attr); } if (result < 0 && file_opts->has_extent_size_hint && file_opts->extent_size_hint) { warn_report("Failed to set extent size hint: %s", strerror(errno)); } } #endif /* Resize and potentially preallocate the file to the desired * final size */ result = raw_regular_truncate(NULL, fd, file_opts->size, file_opts->preallocation, errp); if (result < 0) { goto out_unlock; } out_unlock: raw_apply_lock_bytes(NULL, fd, 0, 0, true, &local_err); if (local_err) { /* The above call should not fail, and if it does, that does * not mean the whole creation operation has failed. So * report it the user for their convenience, but do not report * it to the caller. */ warn_report_err(local_err); } out_close: if (qemu_close(fd) != 0 && result == 0) { result = -errno; error_setg_errno(errp, -result, "Could not close the new file"); } out: return result; } static int coroutine_fn GRAPH_RDLOCK raw_co_create_opts(BlockDriver *drv, const char *filename, QemuOpts *opts, Error **errp) { BlockdevCreateOptions options; int64_t total_size = 0; int64_t extent_size_hint = 0; bool has_extent_size_hint = false; bool nocow = false; PreallocMode prealloc; char *buf = NULL; Error *local_err = NULL; /* Skip file: protocol prefix */ strstart(filename, "file:", &filename); /* Read out options */ total_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0), BDRV_SECTOR_SIZE); if (qemu_opt_get(opts, BLOCK_OPT_EXTENT_SIZE_HINT)) { has_extent_size_hint = true; extent_size_hint = qemu_opt_get_size_del(opts, BLOCK_OPT_EXTENT_SIZE_HINT, -1); } nocow = qemu_opt_get_bool(opts, BLOCK_OPT_NOCOW, false); buf = qemu_opt_get_del(opts, BLOCK_OPT_PREALLOC); prealloc = qapi_enum_parse(&PreallocMode_lookup, buf, PREALLOC_MODE_OFF, &local_err); g_free(buf); if (local_err) { error_propagate(errp, local_err); return -EINVAL; } options = (BlockdevCreateOptions) { .driver = BLOCKDEV_DRIVER_FILE, .u.file = { .filename = (char *) filename, .size = total_size, .has_preallocation = true, .preallocation = prealloc, .has_nocow = true, .nocow = nocow, .has_extent_size_hint = has_extent_size_hint, .extent_size_hint = extent_size_hint, }, }; return raw_co_create(&options, errp); } static int coroutine_fn raw_co_delete_file(BlockDriverState *bs, Error **errp) { struct stat st; int ret; if (!(stat(bs->filename, &st) == 0) || !S_ISREG(st.st_mode)) { error_setg_errno(errp, ENOENT, "%s is not a regular file", bs->filename); return -ENOENT; } ret = unlink(bs->filename); if (ret < 0) { ret = -errno; error_setg_errno(errp, -ret, "Error when deleting file %s", bs->filename); } return ret; } /* * Find allocation range in @bs around offset @start. * May change underlying file descriptor's file offset. * If @start is not in a hole, store @start in @data, and the * beginning of the next hole in @hole, and return 0. * If @start is in a non-trailing hole, store @start in @hole and the * beginning of the next non-hole in @data, and return 0. * If @start is in a trailing hole or beyond EOF, return -ENXIO. * If we can't find out, return a negative errno other than -ENXIO. */ static int find_allocation(BlockDriverState *bs, off_t start, off_t *data, off_t *hole) { #if defined SEEK_HOLE && defined SEEK_DATA BDRVRawState *s = bs->opaque; off_t offs; /* * SEEK_DATA cases: * D1. offs == start: start is in data * D2. offs > start: start is in a hole, next data at offs * D3. offs < 0, errno = ENXIO: either start is in a trailing hole * or start is beyond EOF * If the latter happens, the file has been truncated behind * our back since we opened it. All bets are off then. * Treating like a trailing hole is simplest. * D4. offs < 0, errno != ENXIO: we learned nothing */ offs = lseek(s->fd, start, SEEK_DATA); if (offs < 0) { return -errno; /* D3 or D4 */ } if (offs < start) { /* This is not a valid return by lseek(). We are safe to just return * -EIO in this case, and we'll treat it like D4. */ return -EIO; } if (offs > start) { /* D2: in hole, next data at offs */ *hole = start; *data = offs; return 0; } /* D1: in data, end not yet known */ /* * SEEK_HOLE cases: * H1. offs == start: start is in a hole * If this happens here, a hole has been dug behind our back * since the previous lseek(). * H2. offs > start: either start is in data, next hole at offs, * or start is in trailing hole, EOF at offs * Linux treats trailing holes like any other hole: offs == * start. Solaris seeks to EOF instead: offs > start (blech). * If that happens here, a hole has been dug behind our back * since the previous lseek(). * H3. offs < 0, errno = ENXIO: start is beyond EOF * If this happens, the file has been truncated behind our * back since we opened it. Treat it like a trailing hole. * H4. offs < 0, errno != ENXIO: we learned nothing * Pretend we know nothing at all, i.e. "forget" about D1. */ offs = lseek(s->fd, start, SEEK_HOLE); if (offs < 0) { return -errno; /* D1 and (H3 or H4) */ } if (offs < start) { /* This is not a valid return by lseek(). We are safe to just return * -EIO in this case, and we'll treat it like H4. */ return -EIO; } if (offs > start) { /* * D1 and H2: either in data, next hole at offs, or it was in * data but is now in a trailing hole. In the latter case, * all bets are off. Treating it as if it there was data all * the way to EOF is safe, so simply do that. */ *data = start; *hole = offs; return 0; } /* D1 and H1 */ return -EBUSY; #else return -ENOTSUP; #endif } /* * Returns the allocation status of the specified offset. * * The block layer guarantees 'offset' and 'bytes' are within bounds. * * 'pnum' is set to the number of bytes (including and immediately following * the specified offset) that are known to be in the same * allocated/unallocated state. * * 'bytes' is a soft cap for 'pnum'. If the information is free, 'pnum' may * well exceed it. */ static int coroutine_fn raw_co_block_status(BlockDriverState *bs, bool want_zero, int64_t offset, int64_t bytes, int64_t *pnum, int64_t *map, BlockDriverState **file) { off_t data = 0, hole = 0; int ret; assert(QEMU_IS_ALIGNED(offset | bytes, bs->bl.request_alignment)); ret = fd_open(bs); if (ret < 0) { return ret; } if (!want_zero) { *pnum = bytes; *map = offset; *file = bs; return BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; } ret = find_allocation(bs, offset, &data, &hole); if (ret == -ENXIO) { /* Trailing hole */ *pnum = bytes; ret = BDRV_BLOCK_ZERO; } else if (ret < 0) { /* No info available, so pretend there are no holes */ *pnum = bytes; ret = BDRV_BLOCK_DATA; } else if (data == offset) { /* On a data extent, compute bytes to the end of the extent, * possibly including a partial sector at EOF. */ *pnum = hole - offset; /* * We are not allowed to return partial sectors, though, so * round up if necessary. */ if (!QEMU_IS_ALIGNED(*pnum, bs->bl.request_alignment)) { int64_t file_length = raw_getlength(bs); if (file_length > 0) { /* Ignore errors, this is just a safeguard */ assert(hole == file_length); } *pnum = ROUND_UP(*pnum, bs->bl.request_alignment); } ret = BDRV_BLOCK_DATA; } else { /* On a hole, compute bytes to the beginning of the next extent. */ assert(hole == offset); *pnum = data - offset; ret = BDRV_BLOCK_ZERO; } *map = offset; *file = bs; return ret | BDRV_BLOCK_OFFSET_VALID; } #if defined(__linux__) /* Verify that the file is not in the page cache */ static void check_cache_dropped(BlockDriverState *bs, Error **errp) { const size_t window_size = 128 * 1024 * 1024; BDRVRawState *s = bs->opaque; void *window = NULL; size_t length = 0; unsigned char *vec; size_t page_size; off_t offset; off_t end; /* mincore(2) page status information requires 1 byte per page */ page_size = sysconf(_SC_PAGESIZE); vec = g_malloc(DIV_ROUND_UP(window_size, page_size)); end = raw_getlength(bs); for (offset = 0; offset < end; offset += window_size) { void *new_window; size_t new_length; size_t vec_end; size_t i; int ret; /* Unmap previous window if size has changed */ new_length = MIN(end - offset, window_size); if (new_length != length) { munmap(window, length); window = NULL; length = 0; } new_window = mmap(window, new_length, PROT_NONE, MAP_PRIVATE, s->fd, offset); if (new_window == MAP_FAILED) { error_setg_errno(errp, errno, "mmap failed"); break; } window = new_window; length = new_length; ret = mincore(window, length, vec); if (ret < 0) { error_setg_errno(errp, errno, "mincore failed"); break; } vec_end = DIV_ROUND_UP(length, page_size); for (i = 0; i < vec_end; i++) { if (vec[i] & 0x1) { break; } } if (i < vec_end) { error_setg(errp, "page cache still in use!"); break; } } if (window) { munmap(window, length); } g_free(vec); } #endif /* __linux__ */ static void coroutine_fn GRAPH_RDLOCK raw_co_invalidate_cache(BlockDriverState *bs, Error **errp) { BDRVRawState *s = bs->opaque; int ret; ret = fd_open(bs); if (ret < 0) { error_setg_errno(errp, -ret, "The file descriptor is not open"); return; } if (!s->drop_cache) { return; } if (s->open_flags & O_DIRECT) { return; /* No host kernel page cache */ } #if defined(__linux__) /* This sets the scene for the next syscall... */ ret = bdrv_co_flush(bs); if (ret < 0) { error_setg_errno(errp, -ret, "flush failed"); return; } /* Linux does not invalidate pages that are dirty, locked, or mmapped by a * process. These limitations are okay because we just fsynced the file, * we don't use mmap, and the file should not be in use by other processes. */ ret = posix_fadvise(s->fd, 0, 0, POSIX_FADV_DONTNEED); if (ret != 0) { /* the return value is a positive errno */ error_setg_errno(errp, ret, "fadvise failed"); return; } if (s->check_cache_dropped) { check_cache_dropped(bs, errp); } #else /* __linux__ */ /* Do nothing. Live migration to a remote host with cache.direct=off is * unsupported on other host operating systems. Cache consistency issues * may occur but no error is reported here, partly because that's the * historical behavior and partly because it's hard to differentiate valid * configurations that should not cause errors. */ #endif /* !__linux__ */ } static void raw_account_discard(BDRVRawState *s, uint64_t nbytes, int ret) { if (ret) { s->stats.discard_nb_failed++; } else { s->stats.discard_nb_ok++; s->stats.discard_bytes_ok += nbytes; } } /* * zone report - Get a zone block device's information in the form * of an array of zone descriptors. * zones is an array of zone descriptors to hold zone information on reply; * offset can be any byte within the entire size of the device; * nr_zones is the maximum number of sectors the command should operate on. */ #if defined(CONFIG_BLKZONED) static int coroutine_fn raw_co_zone_report(BlockDriverState *bs, int64_t offset, unsigned int *nr_zones, BlockZoneDescriptor *zones) { BDRVRawState *s = bs->opaque; RawPosixAIOData acb = (RawPosixAIOData) { .bs = bs, .aio_fildes = s->fd, .aio_type = QEMU_AIO_ZONE_REPORT, .aio_offset = offset, .zone_report = { .nr_zones = nr_zones, .zones = zones, }, }; trace_zbd_zone_report(bs, *nr_zones, offset >> BDRV_SECTOR_BITS); return raw_thread_pool_submit(handle_aiocb_zone_report, &acb); } #endif /* * zone management operations - Execute an operation on a zone */ #if defined(CONFIG_BLKZONED) static int coroutine_fn raw_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op, int64_t offset, int64_t len) { BDRVRawState *s = bs->opaque; RawPosixAIOData acb; int64_t zone_size, zone_size_mask; const char *op_name; unsigned long zo; int ret; BlockZoneWps *wps = bs->wps; int64_t capacity = bs->total_sectors << BDRV_SECTOR_BITS; zone_size = bs->bl.zone_size; zone_size_mask = zone_size - 1; if (offset & zone_size_mask) { error_report("sector offset %" PRId64 " is not aligned to zone size " "%" PRId64 "", offset / 512, zone_size / 512); return -EINVAL; } if (((offset + len) < capacity && len & zone_size_mask) || offset + len > capacity) { error_report("number of sectors %" PRId64 " is not aligned to zone size" " %" PRId64 "", len / 512, zone_size / 512); return -EINVAL; } uint32_t i = offset / bs->bl.zone_size; uint32_t nrz = len / bs->bl.zone_size; uint64_t *wp = &wps->wp[i]; if (BDRV_ZT_IS_CONV(*wp) && len != capacity) { error_report("zone mgmt operations are not allowed for conventional zones"); return -EIO; } switch (op) { case BLK_ZO_OPEN: op_name = "BLKOPENZONE"; zo = BLKOPENZONE; break; case BLK_ZO_CLOSE: op_name = "BLKCLOSEZONE"; zo = BLKCLOSEZONE; break; case BLK_ZO_FINISH: op_name = "BLKFINISHZONE"; zo = BLKFINISHZONE; break; case BLK_ZO_RESET: op_name = "BLKRESETZONE"; zo = BLKRESETZONE; break; default: error_report("Unsupported zone op: 0x%x", op); return -ENOTSUP; } acb = (RawPosixAIOData) { .bs = bs, .aio_fildes = s->fd, .aio_type = QEMU_AIO_ZONE_MGMT, .aio_offset = offset, .aio_nbytes = len, .zone_mgmt = { .op = zo, }, }; trace_zbd_zone_mgmt(bs, op_name, offset >> BDRV_SECTOR_BITS, len >> BDRV_SECTOR_BITS); ret = raw_thread_pool_submit(handle_aiocb_zone_mgmt, &acb); if (ret != 0) { update_zones_wp(bs, s->fd, offset, nrz); error_report("ioctl %s failed %d", op_name, ret); return ret; } if (zo == BLKRESETZONE && len == capacity) { ret = get_zones_wp(bs, s->fd, 0, bs->bl.nr_zones, 1); if (ret < 0) { error_report("reporting single wp failed"); return ret; } } else if (zo == BLKRESETZONE) { for (unsigned int j = 0; j < nrz; ++j) { wp[j] = offset + j * zone_size; } } else if (zo == BLKFINISHZONE) { for (unsigned int j = 0; j < nrz; ++j) { /* The zoned device allows the last zone smaller that the * zone size. */ wp[j] = MIN(offset + (j + 1) * zone_size, offset + len); } } return ret; } #endif #if defined(CONFIG_BLKZONED) static int coroutine_fn raw_co_zone_append(BlockDriverState *bs, int64_t *offset, QEMUIOVector *qiov, BdrvRequestFlags flags) { assert(flags == 0); int64_t zone_size_mask = bs->bl.zone_size - 1; int64_t iov_len = 0; int64_t len = 0; if (*offset & zone_size_mask) { error_report("sector offset %" PRId64 " is not aligned to zone size " "%" PRId32 "", *offset / 512, bs->bl.zone_size / 512); return -EINVAL; } int64_t wg = bs->bl.write_granularity; int64_t wg_mask = wg - 1; for (int i = 0; i < qiov->niov; i++) { iov_len = qiov->iov[i].iov_len; if (iov_len & wg_mask) { error_report("len of IOVector[%d] %" PRId64 " is not aligned to " "block size %" PRId64 "", i, iov_len, wg); return -EINVAL; } len += iov_len; } trace_zbd_zone_append(bs, *offset >> BDRV_SECTOR_BITS); return raw_co_prw(bs, offset, len, qiov, QEMU_AIO_ZONE_APPEND); } #endif static coroutine_fn int raw_do_pdiscard(BlockDriverState *bs, int64_t offset, int64_t bytes, bool blkdev) { BDRVRawState *s = bs->opaque; RawPosixAIOData acb; int ret; acb = (RawPosixAIOData) { .bs = bs, .aio_fildes = s->fd, .aio_type = QEMU_AIO_DISCARD, .aio_offset = offset, .aio_nbytes = bytes, }; if (blkdev) { acb.aio_type |= QEMU_AIO_BLKDEV; } ret = raw_thread_pool_submit(handle_aiocb_discard, &acb); raw_account_discard(s, bytes, ret); return ret; } static coroutine_fn int raw_co_pdiscard(BlockDriverState *bs, int64_t offset, int64_t bytes) { return raw_do_pdiscard(bs, offset, bytes, false); } static int coroutine_fn raw_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes, BdrvRequestFlags flags, bool blkdev) { BDRVRawState *s = bs->opaque; RawPosixAIOData acb; ThreadPoolFunc *handler; #ifdef CONFIG_FALLOCATE if (offset + bytes > bs->total_sectors * BDRV_SECTOR_SIZE) { BdrvTrackedRequest *req; /* * This is a workaround for a bug in the Linux XFS driver, * where writes submitted through the AIO interface will be * discarded if they happen beyond a concurrently running * fallocate() that increases the file length (i.e., both the * write and the fallocate() happen beyond the EOF). * * To work around it, we extend the tracked request for this * zero write until INT64_MAX (effectively infinity), and mark * it as serializing. * * We have to enable this workaround for all filesystems and * AIO modes (not just XFS with aio=native), because for * remote filesystems we do not know the host configuration. */ req = bdrv_co_get_self_request(bs); assert(req); assert(req->type == BDRV_TRACKED_WRITE); assert(req->offset <= offset); assert(req->offset + req->bytes >= offset + bytes); req->bytes = BDRV_MAX_LENGTH - req->offset; bdrv_check_request(req->offset, req->bytes, &error_abort); bdrv_make_request_serialising(req, bs->bl.request_alignment); } #endif acb = (RawPosixAIOData) { .bs = bs, .aio_fildes = s->fd, .aio_type = QEMU_AIO_WRITE_ZEROES, .aio_offset = offset, .aio_nbytes = bytes, }; if (blkdev) { acb.aio_type |= QEMU_AIO_BLKDEV; } if (flags & BDRV_REQ_NO_FALLBACK) { acb.aio_type |= QEMU_AIO_NO_FALLBACK; } if (flags & BDRV_REQ_MAY_UNMAP) { acb.aio_type |= QEMU_AIO_DISCARD; handler = handle_aiocb_write_zeroes_unmap; } else { handler = handle_aiocb_write_zeroes; } return raw_thread_pool_submit(handler, &acb); } static int coroutine_fn raw_co_pwrite_zeroes( BlockDriverState *bs, int64_t offset, int64_t bytes, BdrvRequestFlags flags) { return raw_do_pwrite_zeroes(bs, offset, bytes, flags, false); } static int coroutine_fn raw_co_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) { return 0; } static ImageInfoSpecific *raw_get_specific_info(BlockDriverState *bs, Error **errp) { ImageInfoSpecificFile *file_info = g_new0(ImageInfoSpecificFile, 1); ImageInfoSpecific *spec_info = g_new(ImageInfoSpecific, 1); *spec_info = (ImageInfoSpecific){ .type = IMAGE_INFO_SPECIFIC_KIND_FILE, .u.file.data = file_info, }; #ifdef FS_IOC_FSGETXATTR { BDRVRawState *s = bs->opaque; struct fsxattr attr; int ret; ret = ioctl(s->fd, FS_IOC_FSGETXATTR, &attr); if (!ret && attr.fsx_extsize != 0) { file_info->has_extent_size_hint = true; file_info->extent_size_hint = attr.fsx_extsize; } } #endif return spec_info; } static BlockStatsSpecificFile get_blockstats_specific_file(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; return (BlockStatsSpecificFile) { .discard_nb_ok = s->stats.discard_nb_ok, .discard_nb_failed = s->stats.discard_nb_failed, .discard_bytes_ok = s->stats.discard_bytes_ok, }; } static BlockStatsSpecific *raw_get_specific_stats(BlockDriverState *bs) { BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1); stats->driver = BLOCKDEV_DRIVER_FILE; stats->u.file = get_blockstats_specific_file(bs); return stats; } #if defined(HAVE_HOST_BLOCK_DEVICE) static BlockStatsSpecific *hdev_get_specific_stats(BlockDriverState *bs) { BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1); stats->driver = BLOCKDEV_DRIVER_HOST_DEVICE; stats->u.host_device = get_blockstats_specific_file(bs); return stats; } #endif /* HAVE_HOST_BLOCK_DEVICE */ static QemuOptsList raw_create_opts = { .name = "raw-create-opts", .head = QTAILQ_HEAD_INITIALIZER(raw_create_opts.head), .desc = { { .name = BLOCK_OPT_SIZE, .type = QEMU_OPT_SIZE, .help = "Virtual disk size" }, { .name = BLOCK_OPT_NOCOW, .type = QEMU_OPT_BOOL, .help = "Turn off copy-on-write (valid only on btrfs)" }, { .name = BLOCK_OPT_PREALLOC, .type = QEMU_OPT_STRING, .help = "Preallocation mode (allowed values: off" #ifdef CONFIG_POSIX_FALLOCATE ", falloc" #endif ", full)" }, { .name = BLOCK_OPT_EXTENT_SIZE_HINT, .type = QEMU_OPT_SIZE, .help = "Extent size hint for the image file, 0 to disable" }, { /* end of list */ } } }; static int raw_check_perm(BlockDriverState *bs, uint64_t perm, uint64_t shared, Error **errp) { BDRVRawState *s = bs->opaque; int input_flags = s->reopen_state ? s->reopen_state->flags : bs->open_flags; int open_flags; int ret; /* We may need a new fd if auto-read-only switches the mode */ ret = raw_reconfigure_getfd(bs, input_flags, &open_flags, perm, errp); if (ret < 0) { return ret; } else if (ret != s->fd) { Error *local_err = NULL; /* * Fail already check_perm() if we can't get a working O_DIRECT * alignment with the new fd. */ raw_probe_alignment(bs, ret, &local_err); if (local_err) { error_propagate(errp, local_err); return -EINVAL; } s->perm_change_fd = ret; s->perm_change_flags = open_flags; } /* Prepare permissions on old fd to avoid conflicts between old and new, * but keep everything locked that new will need. */ ret = raw_handle_perm_lock(bs, RAW_PL_PREPARE, perm, shared, errp); if (ret < 0) { goto fail; } /* Copy locks to the new fd */ if (s->perm_change_fd && s->use_lock) { ret = raw_apply_lock_bytes(NULL, s->perm_change_fd, perm, ~shared, false, errp); if (ret < 0) { raw_handle_perm_lock(bs, RAW_PL_ABORT, 0, 0, NULL); goto fail; } } return 0; fail: if (s->perm_change_fd) { qemu_close(s->perm_change_fd); } s->perm_change_fd = 0; return ret; } static void raw_set_perm(BlockDriverState *bs, uint64_t perm, uint64_t shared) { BDRVRawState *s = bs->opaque; /* For reopen, we have already switched to the new fd (.bdrv_set_perm is * called after .bdrv_reopen_commit) */ if (s->perm_change_fd && s->fd != s->perm_change_fd) { qemu_close(s->fd); s->fd = s->perm_change_fd; s->open_flags = s->perm_change_flags; } s->perm_change_fd = 0; raw_handle_perm_lock(bs, RAW_PL_COMMIT, perm, shared, NULL); s->perm = perm; s->shared_perm = shared; } static void raw_abort_perm_update(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; /* For reopen, .bdrv_reopen_abort is called afterwards and will close * the file descriptor. */ if (s->perm_change_fd) { qemu_close(s->perm_change_fd); } s->perm_change_fd = 0; raw_handle_perm_lock(bs, RAW_PL_ABORT, 0, 0, NULL); } static int coroutine_fn GRAPH_RDLOCK raw_co_copy_range_from( BlockDriverState *bs, BdrvChild *src, int64_t src_offset, BdrvChild *dst, int64_t dst_offset, int64_t bytes, BdrvRequestFlags read_flags, BdrvRequestFlags write_flags) { return bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, read_flags, write_flags); } static int coroutine_fn GRAPH_RDLOCK raw_co_copy_range_to(BlockDriverState *bs, BdrvChild *src, int64_t src_offset, BdrvChild *dst, int64_t dst_offset, int64_t bytes, BdrvRequestFlags read_flags, BdrvRequestFlags write_flags) { RawPosixAIOData acb; BDRVRawState *s = bs->opaque; BDRVRawState *src_s; assert(dst->bs == bs); if (src->bs->drv->bdrv_co_copy_range_to != raw_co_copy_range_to) { return -ENOTSUP; } src_s = src->bs->opaque; if (fd_open(src->bs) < 0 || fd_open(dst->bs) < 0) { return -EIO; } acb = (RawPosixAIOData) { .bs = bs, .aio_type = QEMU_AIO_COPY_RANGE, .aio_fildes = src_s->fd, .aio_offset = src_offset, .aio_nbytes = bytes, .copy_range = { .aio_fd2 = s->fd, .aio_offset2 = dst_offset, }, }; return raw_thread_pool_submit(handle_aiocb_copy_range, &acb); } BlockDriver bdrv_file = { .format_name = "file", .protocol_name = "file", .instance_size = sizeof(BDRVRawState), .bdrv_needs_filename = true, .bdrv_probe = NULL, /* no probe for protocols */ .bdrv_parse_filename = raw_parse_filename, .bdrv_open = raw_open, .bdrv_reopen_prepare = raw_reopen_prepare, .bdrv_reopen_commit = raw_reopen_commit, .bdrv_reopen_abort = raw_reopen_abort, .bdrv_close = raw_close, .bdrv_co_create = raw_co_create, .bdrv_co_create_opts = raw_co_create_opts, .bdrv_has_zero_init = bdrv_has_zero_init_1, .bdrv_co_block_status = raw_co_block_status, .bdrv_co_invalidate_cache = raw_co_invalidate_cache, .bdrv_co_pwrite_zeroes = raw_co_pwrite_zeroes, .bdrv_co_delete_file = raw_co_delete_file, .bdrv_co_preadv = raw_co_preadv, .bdrv_co_pwritev = raw_co_pwritev, .bdrv_co_flush_to_disk = raw_co_flush_to_disk, .bdrv_co_pdiscard = raw_co_pdiscard, .bdrv_co_copy_range_from = raw_co_copy_range_from, .bdrv_co_copy_range_to = raw_co_copy_range_to, .bdrv_refresh_limits = raw_refresh_limits, .bdrv_co_truncate = raw_co_truncate, .bdrv_co_getlength = raw_co_getlength, .bdrv_co_get_info = raw_co_get_info, .bdrv_get_specific_info = raw_get_specific_info, .bdrv_co_get_allocated_file_size = raw_co_get_allocated_file_size, .bdrv_get_specific_stats = raw_get_specific_stats, .bdrv_check_perm = raw_check_perm, .bdrv_set_perm = raw_set_perm, .bdrv_abort_perm_update = raw_abort_perm_update, .create_opts = &raw_create_opts, .mutable_opts = mutable_opts, }; /***********************************************/ /* host device */ #if defined(HAVE_HOST_BLOCK_DEVICE) #if defined(__APPLE__) && defined(__MACH__) static kern_return_t GetBSDPath(io_iterator_t mediaIterator, char *bsdPath, CFIndex maxPathSize, int flags); static char *FindEjectableOpticalMedia(io_iterator_t *mediaIterator) { kern_return_t kernResult = KERN_FAILURE; mach_port_t mainPort; CFMutableDictionaryRef classesToMatch; const char *matching_array[] = {kIODVDMediaClass, kIOCDMediaClass}; char *mediaType = NULL; kernResult = IOMainPort(MACH_PORT_NULL, &mainPort); if ( KERN_SUCCESS != kernResult ) { printf("IOMainPort returned %d\n", kernResult); } int index; for (index = 0; index < ARRAY_SIZE(matching_array); index++) { classesToMatch = IOServiceMatching(matching_array[index]); if (classesToMatch == NULL) { error_report("IOServiceMatching returned NULL for %s", matching_array[index]); continue; } CFDictionarySetValue(classesToMatch, CFSTR(kIOMediaEjectableKey), kCFBooleanTrue); kernResult = IOServiceGetMatchingServices(mainPort, classesToMatch, mediaIterator); if (kernResult != KERN_SUCCESS) { error_report("Note: IOServiceGetMatchingServices returned %d", kernResult); continue; } /* If a match was found, leave the loop */ if (*mediaIterator != 0) { trace_file_FindEjectableOpticalMedia(matching_array[index]); mediaType = g_strdup(matching_array[index]); break; } } return mediaType; } kern_return_t GetBSDPath(io_iterator_t mediaIterator, char *bsdPath, CFIndex maxPathSize, int flags) { io_object_t nextMedia; kern_return_t kernResult = KERN_FAILURE; *bsdPath = '\0'; nextMedia = IOIteratorNext( mediaIterator ); if ( nextMedia ) { CFTypeRef bsdPathAsCFString; bsdPathAsCFString = IORegistryEntryCreateCFProperty( nextMedia, CFSTR( kIOBSDNameKey ), kCFAllocatorDefault, 0 ); if ( bsdPathAsCFString ) { size_t devPathLength; strcpy( bsdPath, _PATH_DEV ); if (flags & BDRV_O_NOCACHE) { strcat(bsdPath, "r"); } devPathLength = strlen( bsdPath ); if ( CFStringGetCString( bsdPathAsCFString, bsdPath + devPathLength, maxPathSize - devPathLength, kCFStringEncodingASCII ) ) { kernResult = KERN_SUCCESS; } CFRelease( bsdPathAsCFString ); } IOObjectRelease( nextMedia ); } return kernResult; } /* Sets up a real cdrom for use in QEMU */ static bool setup_cdrom(char *bsd_path, Error **errp) { int index, num_of_test_partitions = 2, fd; char test_partition[MAXPATHLEN]; bool partition_found = false; /* look for a working partition */ for (index = 0; index < num_of_test_partitions; index++) { snprintf(test_partition, sizeof(test_partition), "%ss%d", bsd_path, index); fd = qemu_open(test_partition, O_RDONLY | O_BINARY | O_LARGEFILE, NULL); if (fd >= 0) { partition_found = true; qemu_close(fd); break; } } /* if a working partition on the device was not found */ if (partition_found == false) { error_setg(errp, "Failed to find a working partition on disc"); } else { trace_file_setup_cdrom(test_partition); pstrcpy(bsd_path, MAXPATHLEN, test_partition); } return partition_found; } /* Prints directions on mounting and unmounting a device */ static void print_unmounting_directions(const char *file_name) { error_report("If device %s is mounted on the desktop, unmount" " it first before using it in QEMU", file_name); error_report("Command to unmount device: diskutil unmountDisk %s", file_name); error_report("Command to mount device: diskutil mountDisk %s", file_name); } #endif /* defined(__APPLE__) && defined(__MACH__) */ static int hdev_probe_device(const char *filename) { struct stat st; /* allow a dedicated CD-ROM driver to match with a higher priority */ if (strstart(filename, "/dev/cdrom", NULL)) return 50; if (stat(filename, &st) >= 0 && (S_ISCHR(st.st_mode) || S_ISBLK(st.st_mode))) { return 100; } return 0; } static void hdev_parse_filename(const char *filename, QDict *options, Error **errp) { bdrv_parse_filename_strip_prefix(filename, "host_device:", options); } static bool hdev_is_sg(BlockDriverState *bs) { #if defined(__linux__) BDRVRawState *s = bs->opaque; struct stat st; struct sg_scsi_id scsiid; int sg_version; int ret; if (stat(bs->filename, &st) < 0 || !S_ISCHR(st.st_mode)) { return false; } ret = ioctl(s->fd, SG_GET_VERSION_NUM, &sg_version); if (ret < 0) { return false; } ret = ioctl(s->fd, SG_GET_SCSI_ID, &scsiid); if (ret >= 0) { trace_file_hdev_is_sg(scsiid.scsi_type, sg_version); return true; } #endif return false; } static int hdev_open(BlockDriverState *bs, QDict *options, int flags, Error **errp) { BDRVRawState *s = bs->opaque; int ret; #if defined(__APPLE__) && defined(__MACH__) /* * Caution: while qdict_get_str() is fine, getting non-string types * would require more care. When @options come from -blockdev or * blockdev_add, its members are typed according to the QAPI * schema, but when they come from -drive, they're all QString. */ const char *filename = qdict_get_str(options, "filename"); char bsd_path[MAXPATHLEN] = ""; bool error_occurred = false; /* If using a real cdrom */ if (strcmp(filename, "/dev/cdrom") == 0) { char *mediaType = NULL; kern_return_t ret_val; io_iterator_t mediaIterator = 0; mediaType = FindEjectableOpticalMedia(&mediaIterator); if (mediaType == NULL) { error_setg(errp, "Please make sure your CD/DVD is in the optical" " drive"); error_occurred = true; goto hdev_open_Mac_error; } ret_val = GetBSDPath(mediaIterator, bsd_path, sizeof(bsd_path), flags); if (ret_val != KERN_SUCCESS) { error_setg(errp, "Could not get BSD path for optical drive"); error_occurred = true; goto hdev_open_Mac_error; } /* If a real optical drive was not found */ if (bsd_path[0] == '\0') { error_setg(errp, "Failed to obtain bsd path for optical drive"); error_occurred = true; goto hdev_open_Mac_error; } /* If using a cdrom disc and finding a partition on the disc failed */ if (strncmp(mediaType, kIOCDMediaClass, 9) == 0 && setup_cdrom(bsd_path, errp) == false) { print_unmounting_directions(bsd_path); error_occurred = true; goto hdev_open_Mac_error; } qdict_put_str(options, "filename", bsd_path); hdev_open_Mac_error: g_free(mediaType); if (mediaIterator) { IOObjectRelease(mediaIterator); } if (error_occurred) { return -ENOENT; } } #endif /* defined(__APPLE__) && defined(__MACH__) */ s->type = FTYPE_FILE; ret = raw_open_common(bs, options, flags, 0, true, errp); if (ret < 0) { #if defined(__APPLE__) && defined(__MACH__) if (*bsd_path) { filename = bsd_path; } /* if a physical device experienced an error while being opened */ if (strncmp(filename, "/dev/", 5) == 0) { print_unmounting_directions(filename); } #endif /* defined(__APPLE__) && defined(__MACH__) */ return ret; } /* Since this does ioctl the device must be already opened */ bs->sg = hdev_is_sg(bs); return ret; } #if defined(__linux__) static int coroutine_fn hdev_co_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) { BDRVRawState *s = bs->opaque; RawPosixAIOData acb; int ret; ret = fd_open(bs); if (ret < 0) { return ret; } if (req == SG_IO && s->pr_mgr) { struct sg_io_hdr *io_hdr = buf; if (io_hdr->cmdp[0] == PERSISTENT_RESERVE_OUT || io_hdr->cmdp[0] == PERSISTENT_RESERVE_IN) { return pr_manager_execute(s->pr_mgr, qemu_get_current_aio_context(), s->fd, io_hdr); } } acb = (RawPosixAIOData) { .bs = bs, .aio_type = QEMU_AIO_IOCTL, .aio_fildes = s->fd, .aio_offset = 0, .ioctl = { .buf = buf, .cmd = req, }, }; return raw_thread_pool_submit(handle_aiocb_ioctl, &acb); } #endif /* linux */ static coroutine_fn int hdev_co_pdiscard(BlockDriverState *bs, int64_t offset, int64_t bytes) { BDRVRawState *s = bs->opaque; int ret; ret = fd_open(bs); if (ret < 0) { raw_account_discard(s, bytes, ret); return ret; } return raw_do_pdiscard(bs, offset, bytes, true); } static coroutine_fn int hdev_co_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes, BdrvRequestFlags flags) { int rc; rc = fd_open(bs); if (rc < 0) { return rc; } return raw_do_pwrite_zeroes(bs, offset, bytes, flags, true); } static BlockDriver bdrv_host_device = { .format_name = "host_device", .protocol_name = "host_device", .instance_size = sizeof(BDRVRawState), .bdrv_needs_filename = true, .bdrv_probe_device = hdev_probe_device, .bdrv_parse_filename = hdev_parse_filename, .bdrv_open = hdev_open, .bdrv_close = raw_close, .bdrv_reopen_prepare = raw_reopen_prepare, .bdrv_reopen_commit = raw_reopen_commit, .bdrv_reopen_abort = raw_reopen_abort, .bdrv_co_create_opts = bdrv_co_create_opts_simple, .create_opts = &bdrv_create_opts_simple, .mutable_opts = mutable_opts, .bdrv_co_invalidate_cache = raw_co_invalidate_cache, .bdrv_co_pwrite_zeroes = hdev_co_pwrite_zeroes, .bdrv_co_preadv = raw_co_preadv, .bdrv_co_pwritev = raw_co_pwritev, .bdrv_co_flush_to_disk = raw_co_flush_to_disk, .bdrv_co_pdiscard = hdev_co_pdiscard, .bdrv_co_copy_range_from = raw_co_copy_range_from, .bdrv_co_copy_range_to = raw_co_copy_range_to, .bdrv_refresh_limits = raw_refresh_limits, .bdrv_co_truncate = raw_co_truncate, .bdrv_co_getlength = raw_co_getlength, .bdrv_co_get_info = raw_co_get_info, .bdrv_get_specific_info = raw_get_specific_info, .bdrv_co_get_allocated_file_size = raw_co_get_allocated_file_size, .bdrv_get_specific_stats = hdev_get_specific_stats, .bdrv_check_perm = raw_check_perm, .bdrv_set_perm = raw_set_perm, .bdrv_abort_perm_update = raw_abort_perm_update, .bdrv_probe_blocksizes = hdev_probe_blocksizes, .bdrv_probe_geometry = hdev_probe_geometry, /* generic scsi device */ #ifdef __linux__ .bdrv_co_ioctl = hdev_co_ioctl, #endif /* zoned device */ #if defined(CONFIG_BLKZONED) /* zone management operations */ .bdrv_co_zone_report = raw_co_zone_report, .bdrv_co_zone_mgmt = raw_co_zone_mgmt, .bdrv_co_zone_append = raw_co_zone_append, #endif }; #if defined(__linux__) || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) static void cdrom_parse_filename(const char *filename, QDict *options, Error **errp) { bdrv_parse_filename_strip_prefix(filename, "host_cdrom:", options); } static void cdrom_refresh_limits(BlockDriverState *bs, Error **errp) { bs->bl.has_variable_length = true; raw_refresh_limits(bs, errp); } #endif #ifdef __linux__ static int cdrom_open(BlockDriverState *bs, QDict *options, int flags, Error **errp) { BDRVRawState *s = bs->opaque; s->type = FTYPE_CD; /* open will not fail even if no CD is inserted, so add O_NONBLOCK */ return raw_open_common(bs, options, flags, O_NONBLOCK, true, errp); } static int cdrom_probe_device(const char *filename) { int fd, ret; int prio = 0; struct stat st; fd = qemu_open(filename, O_RDONLY | O_NONBLOCK, NULL); if (fd < 0) { goto out; } ret = fstat(fd, &st); if (ret == -1 || !S_ISBLK(st.st_mode)) { goto outc; } /* Attempt to detect via a CDROM specific ioctl */ ret = ioctl(fd, CDROM_DRIVE_STATUS, CDSL_CURRENT); if (ret >= 0) prio = 100; outc: qemu_close(fd); out: return prio; } static bool coroutine_fn cdrom_co_is_inserted(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; int ret; ret = ioctl(s->fd, CDROM_DRIVE_STATUS, CDSL_CURRENT); return ret == CDS_DISC_OK; } static void coroutine_fn cdrom_co_eject(BlockDriverState *bs, bool eject_flag) { BDRVRawState *s = bs->opaque; if (eject_flag) { if (ioctl(s->fd, CDROMEJECT, NULL) < 0) perror("CDROMEJECT"); } else { if (ioctl(s->fd, CDROMCLOSETRAY, NULL) < 0) perror("CDROMEJECT"); } } static void coroutine_fn cdrom_co_lock_medium(BlockDriverState *bs, bool locked) { BDRVRawState *s = bs->opaque; if (ioctl(s->fd, CDROM_LOCKDOOR, locked) < 0) { /* * Note: an error can happen if the distribution automatically * mounts the CD-ROM */ /* perror("CDROM_LOCKDOOR"); */ } } static BlockDriver bdrv_host_cdrom = { .format_name = "host_cdrom", .protocol_name = "host_cdrom", .instance_size = sizeof(BDRVRawState), .bdrv_needs_filename = true, .bdrv_probe_device = cdrom_probe_device, .bdrv_parse_filename = cdrom_parse_filename, .bdrv_open = cdrom_open, .bdrv_close = raw_close, .bdrv_reopen_prepare = raw_reopen_prepare, .bdrv_reopen_commit = raw_reopen_commit, .bdrv_reopen_abort = raw_reopen_abort, .bdrv_co_create_opts = bdrv_co_create_opts_simple, .create_opts = &bdrv_create_opts_simple, .mutable_opts = mutable_opts, .bdrv_co_invalidate_cache = raw_co_invalidate_cache, .bdrv_co_preadv = raw_co_preadv, .bdrv_co_pwritev = raw_co_pwritev, .bdrv_co_flush_to_disk = raw_co_flush_to_disk, .bdrv_refresh_limits = cdrom_refresh_limits, .bdrv_co_truncate = raw_co_truncate, .bdrv_co_getlength = raw_co_getlength, .bdrv_co_get_allocated_file_size = raw_co_get_allocated_file_size, /* removable device support */ .bdrv_co_is_inserted = cdrom_co_is_inserted, .bdrv_co_eject = cdrom_co_eject, .bdrv_co_lock_medium = cdrom_co_lock_medium, /* generic scsi device */ .bdrv_co_ioctl = hdev_co_ioctl, }; #endif /* __linux__ */ #if defined (__FreeBSD__) || defined(__FreeBSD_kernel__) static int cdrom_open(BlockDriverState *bs, QDict *options, int flags, Error **errp) { BDRVRawState *s = bs->opaque; int ret; s->type = FTYPE_CD; ret = raw_open_common(bs, options, flags, 0, true, errp); if (ret) { return ret; } /* make sure the door isn't locked at this time */ ioctl(s->fd, CDIOCALLOW); return 0; } static int cdrom_probe_device(const char *filename) { if (strstart(filename, "/dev/cd", NULL) || strstart(filename, "/dev/acd", NULL)) return 100; return 0; } static int cdrom_reopen(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; int fd; /* * Force reread of possibly changed/newly loaded disc, * FreeBSD seems to not notice sometimes... */ if (s->fd >= 0) qemu_close(s->fd); fd = qemu_open(bs->filename, s->open_flags, NULL); if (fd < 0) { s->fd = -1; return -EIO; } s->fd = fd; /* make sure the door isn't locked at this time */ ioctl(s->fd, CDIOCALLOW); return 0; } static bool coroutine_fn cdrom_co_is_inserted(BlockDriverState *bs) { return raw_getlength(bs) > 0; } static void coroutine_fn cdrom_co_eject(BlockDriverState *bs, bool eject_flag) { BDRVRawState *s = bs->opaque; if (s->fd < 0) return; (void) ioctl(s->fd, CDIOCALLOW); if (eject_flag) { if (ioctl(s->fd, CDIOCEJECT) < 0) perror("CDIOCEJECT"); } else { if (ioctl(s->fd, CDIOCCLOSE) < 0) perror("CDIOCCLOSE"); } cdrom_reopen(bs); } static void coroutine_fn cdrom_co_lock_medium(BlockDriverState *bs, bool locked) { BDRVRawState *s = bs->opaque; if (s->fd < 0) return; if (ioctl(s->fd, (locked ? CDIOCPREVENT : CDIOCALLOW)) < 0) { /* * Note: an error can happen if the distribution automatically * mounts the CD-ROM */ /* perror("CDROM_LOCKDOOR"); */ } } static BlockDriver bdrv_host_cdrom = { .format_name = "host_cdrom", .protocol_name = "host_cdrom", .instance_size = sizeof(BDRVRawState), .bdrv_needs_filename = true, .bdrv_probe_device = cdrom_probe_device, .bdrv_parse_filename = cdrom_parse_filename, .bdrv_open = cdrom_open, .bdrv_close = raw_close, .bdrv_reopen_prepare = raw_reopen_prepare, .bdrv_reopen_commit = raw_reopen_commit, .bdrv_reopen_abort = raw_reopen_abort, .bdrv_co_create_opts = bdrv_co_create_opts_simple, .create_opts = &bdrv_create_opts_simple, .mutable_opts = mutable_opts, .bdrv_co_preadv = raw_co_preadv, .bdrv_co_pwritev = raw_co_pwritev, .bdrv_co_flush_to_disk = raw_co_flush_to_disk, .bdrv_refresh_limits = cdrom_refresh_limits, .bdrv_co_truncate = raw_co_truncate, .bdrv_co_getlength = raw_co_getlength, .bdrv_co_get_allocated_file_size = raw_co_get_allocated_file_size, /* removable device support */ .bdrv_co_is_inserted = cdrom_co_is_inserted, .bdrv_co_eject = cdrom_co_eject, .bdrv_co_lock_medium = cdrom_co_lock_medium, }; #endif /* __FreeBSD__ */ #endif /* HAVE_HOST_BLOCK_DEVICE */ static void bdrv_file_init(void) { /* * Register all the drivers. Note that order is important, the driver * registered last will get probed first. */ bdrv_register(&bdrv_file); #if defined(HAVE_HOST_BLOCK_DEVICE) bdrv_register(&bdrv_host_device); #ifdef __linux__ bdrv_register(&bdrv_host_cdrom); #endif #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) bdrv_register(&bdrv_host_cdrom); #endif #endif /* HAVE_HOST_BLOCK_DEVICE */ } block_init(bdrv_file_init);