/* * Block driver for RAW files * * Copyright (c) 2006 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" #include "block_int.h" #include <assert.h> #ifndef _WIN32 #include <aio.h> #ifndef QEMU_TOOL #include "exec-all.h" #endif #ifdef CONFIG_COCOA #include <paths.h> #include <sys/param.h> #include <IOKit/IOKitLib.h> #include <IOKit/IOBSD.h> #include <IOKit/storage/IOMediaBSDClient.h> #include <IOKit/storage/IOMedia.h> #include <IOKit/storage/IOCDMedia.h> //#include <IOKit/storage/IOCDTypes.h> #include <CoreFoundation/CoreFoundation.h> #endif #ifdef __sun__ #define _POSIX_PTHREAD_SEMANTICS 1 #include <signal.h> #include <sys/dkio.h> #endif #ifdef __linux__ #include <sys/ioctl.h> #include <linux/cdrom.h> #include <linux/fd.h> #endif #ifdef __FreeBSD__ #include <sys/disk.h> #endif //#define DEBUG_FLOPPY #define FTYPE_FILE 0 #define FTYPE_CD 1 #define FTYPE_FD 2 /* if the FD is not accessed during that time (in ms), we try to reopen it to see if the disk has been changed */ #define FD_OPEN_TIMEOUT 1000 typedef struct BDRVRawState { int fd; int type; #if defined(__linux__) /* linux floppy specific */ int fd_open_flags; int64_t fd_open_time; int64_t fd_error_time; int fd_got_error; int fd_media_changed; #endif } BDRVRawState; static int fd_open(BlockDriverState *bs); static int raw_open(BlockDriverState *bs, const char *filename, int flags) { BDRVRawState *s = bs->opaque; int fd, open_flags, ret; open_flags = O_BINARY; if ((flags & BDRV_O_ACCESS) == O_RDWR) { open_flags |= O_RDWR; } else { open_flags |= O_RDONLY; bs->read_only = 1; } if (flags & BDRV_O_CREAT) open_flags |= O_CREAT | O_TRUNC; s->type = FTYPE_FILE; fd = open(filename, open_flags, 0644); if (fd < 0) { ret = -errno; if (ret == -EROFS) ret = -EACCES; return ret; } s->fd = fd; return 0; } /* XXX: use host sector size if necessary with: #ifdef DIOCGSECTORSIZE { unsigned int sectorsize = 512; if (!ioctl(fd, DIOCGSECTORSIZE, §orsize) && sectorsize > bufsize) bufsize = sectorsize; } #endif #ifdef CONFIG_COCOA u_int32_t blockSize = 512; if ( !ioctl( fd, DKIOCGETBLOCKSIZE, &blockSize ) && blockSize > bufsize) { bufsize = blockSize; } #endif */ static int raw_pread(BlockDriverState *bs, int64_t offset, uint8_t *buf, int count) { BDRVRawState *s = bs->opaque; int ret; ret = fd_open(bs); if (ret < 0) return ret; lseek(s->fd, offset, SEEK_SET); ret = read(s->fd, buf, count); return ret; } static int raw_pwrite(BlockDriverState *bs, int64_t offset, const uint8_t *buf, int count) { BDRVRawState *s = bs->opaque; int ret; ret = fd_open(bs); if (ret < 0) return ret; lseek(s->fd, offset, SEEK_SET); ret = write(s->fd, buf, count); return ret; } /***********************************************************/ /* Unix AIO using POSIX AIO */ typedef struct RawAIOCB { BlockDriverAIOCB common; struct aiocb aiocb; struct RawAIOCB *next; } RawAIOCB; static int aio_sig_num = SIGUSR2; static RawAIOCB *first_aio; /* AIO issued */ static int aio_initialized = 0; static void aio_signal_handler(int signum) { #ifndef QEMU_TOOL CPUState *env = cpu_single_env; if (env) { /* stop the currently executing cpu because a timer occured */ cpu_interrupt(env, CPU_INTERRUPT_EXIT); #ifdef USE_KQEMU if (env->kqemu_enabled) { kqemu_cpu_interrupt(env); } #endif } #endif } void qemu_aio_init(void) { struct sigaction act; aio_initialized = 1; sigfillset(&act.sa_mask); act.sa_flags = 0; /* do not restart syscalls to interrupt select() */ act.sa_handler = aio_signal_handler; sigaction(aio_sig_num, &act, NULL); #if defined(__GLIBC__) && defined(__linux__) { /* XXX: aio thread exit seems to hang on RedHat 9 and this init seems to fix the problem. */ struct aioinit ai; memset(&ai, 0, sizeof(ai)); ai.aio_threads = 1; ai.aio_num = 1; ai.aio_idle_time = 365 * 100000; aio_init(&ai); } #endif } void qemu_aio_poll(void) { RawAIOCB *acb, **pacb; int ret; for(;;) { pacb = &first_aio; for(;;) { acb = *pacb; if (!acb) goto the_end; ret = aio_error(&acb->aiocb); if (ret == ECANCELED) { /* remove the request */ *pacb = acb->next; qemu_aio_release(acb); } else if (ret != EINPROGRESS) { /* end of aio */ if (ret == 0) { ret = aio_return(&acb->aiocb); if (ret == acb->aiocb.aio_nbytes) ret = 0; else ret = -EINVAL; } else { ret = -ret; } /* remove the request */ *pacb = acb->next; /* call the callback */ acb->common.cb(acb->common.opaque, ret); qemu_aio_release(acb); break; } else { pacb = &acb->next; } } } the_end: ; } /* Wait for all IO requests to complete. */ void qemu_aio_flush(void) { qemu_aio_wait_start(); qemu_aio_poll(); while (first_aio) { qemu_aio_wait(); } qemu_aio_wait_end(); } /* wait until at least one AIO was handled */ static sigset_t wait_oset; void qemu_aio_wait_start(void) { sigset_t set; if (!aio_initialized) qemu_aio_init(); sigemptyset(&set); sigaddset(&set, aio_sig_num); sigprocmask(SIG_BLOCK, &set, &wait_oset); } void qemu_aio_wait(void) { sigset_t set; int nb_sigs; #ifndef QEMU_TOOL if (qemu_bh_poll()) return; #endif sigemptyset(&set); sigaddset(&set, aio_sig_num); sigwait(&set, &nb_sigs); qemu_aio_poll(); } void qemu_aio_wait_end(void) { sigprocmask(SIG_SETMASK, &wait_oset, NULL); } static RawAIOCB *raw_aio_setup(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, int nb_sectors, BlockDriverCompletionFunc *cb, void *opaque) { BDRVRawState *s = bs->opaque; RawAIOCB *acb; if (fd_open(bs) < 0) return NULL; acb = qemu_aio_get(bs, cb, opaque); if (!acb) return NULL; acb->aiocb.aio_fildes = s->fd; acb->aiocb.aio_sigevent.sigev_signo = aio_sig_num; acb->aiocb.aio_sigevent.sigev_notify = SIGEV_SIGNAL; acb->aiocb.aio_buf = buf; acb->aiocb.aio_nbytes = nb_sectors * 512; acb->aiocb.aio_offset = sector_num * 512; acb->next = first_aio; first_aio = acb; return acb; } static BlockDriverAIOCB *raw_aio_read(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, int nb_sectors, BlockDriverCompletionFunc *cb, void *opaque) { RawAIOCB *acb; acb = raw_aio_setup(bs, sector_num, buf, nb_sectors, cb, opaque); if (!acb) return NULL; if (aio_read(&acb->aiocb) < 0) { qemu_aio_release(acb); return NULL; } return &acb->common; } static BlockDriverAIOCB *raw_aio_write(BlockDriverState *bs, int64_t sector_num, const uint8_t *buf, int nb_sectors, BlockDriverCompletionFunc *cb, void *opaque) { RawAIOCB *acb; acb = raw_aio_setup(bs, sector_num, (uint8_t*)buf, nb_sectors, cb, opaque); if (!acb) return NULL; if (aio_write(&acb->aiocb) < 0) { qemu_aio_release(acb); return NULL; } return &acb->common; } static void raw_aio_cancel(BlockDriverAIOCB *blockacb) { int ret; RawAIOCB *acb = (RawAIOCB *)blockacb; RawAIOCB **pacb; ret = aio_cancel(acb->aiocb.aio_fildes, &acb->aiocb); if (ret == AIO_NOTCANCELED) { /* fail safe: if the aio could not be canceled, we wait for it */ while (aio_error(&acb->aiocb) == EINPROGRESS); } /* remove the callback from the queue */ pacb = &first_aio; for(;;) { if (*pacb == NULL) { break; } else if (*pacb == acb) { *pacb = acb->next; qemu_aio_release(acb); break; } pacb = &acb->next; } } static void raw_close(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; if (s->fd >= 0) { close(s->fd); s->fd = -1; } } static int raw_truncate(BlockDriverState *bs, int64_t offset) { BDRVRawState *s = bs->opaque; if (s->type != FTYPE_FILE) return -ENOTSUP; if (ftruncate(s->fd, offset) < 0) return -errno; return 0; } static int64_t raw_getlength(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; int fd = s->fd; int64_t size; #ifdef _BSD struct stat sb; #endif #ifdef __sun__ struct dk_minfo minfo; int rv; #endif int ret; ret = fd_open(bs); if (ret < 0) return ret; #ifdef _BSD if (!fstat(fd, &sb) && (S_IFCHR & sb.st_mode)) { #ifdef DIOCGMEDIASIZE if (ioctl(fd, DIOCGMEDIASIZE, (off_t *)&size)) #endif #ifdef CONFIG_COCOA size = LONG_LONG_MAX; #else size = lseek(fd, 0LL, SEEK_END); #endif } else #endif #ifdef __sun__ /* * use the DKIOCGMEDIAINFO ioctl to read the size. */ rv = ioctl ( fd, DKIOCGMEDIAINFO, &minfo ); if ( rv != -1 ) { size = minfo.dki_lbsize * minfo.dki_capacity; } else /* there are reports that lseek on some devices fails, but irc discussion said that contingency on contingency was overkill */ #endif { size = lseek(fd, 0, SEEK_END); } return size; } static int raw_create(const char *filename, int64_t total_size, const char *backing_file, int flags) { int fd; if (flags || backing_file) return -ENOTSUP; fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, 0644); if (fd < 0) return -EIO; ftruncate(fd, total_size * 512); close(fd); return 0; } static void raw_flush(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; fsync(s->fd); } BlockDriver bdrv_raw = { "raw", sizeof(BDRVRawState), NULL, /* no probe for protocols */ raw_open, NULL, NULL, raw_close, raw_create, raw_flush, .bdrv_aio_read = raw_aio_read, .bdrv_aio_write = raw_aio_write, .bdrv_aio_cancel = raw_aio_cancel, .aiocb_size = sizeof(RawAIOCB), .protocol_name = "file", .bdrv_pread = raw_pread, .bdrv_pwrite = raw_pwrite, .bdrv_truncate = raw_truncate, .bdrv_getlength = raw_getlength, }; /***********************************************/ /* host device */ #ifdef CONFIG_COCOA static kern_return_t FindEjectableCDMedia( io_iterator_t *mediaIterator ); static kern_return_t GetBSDPath( io_iterator_t mediaIterator, char *bsdPath, CFIndex maxPathSize ); kern_return_t FindEjectableCDMedia( io_iterator_t *mediaIterator ) { kern_return_t kernResult; mach_port_t masterPort; CFMutableDictionaryRef classesToMatch; kernResult = IOMasterPort( MACH_PORT_NULL, &masterPort ); if ( KERN_SUCCESS != kernResult ) { printf( "IOMasterPort returned %d\n", kernResult ); } classesToMatch = IOServiceMatching( kIOCDMediaClass ); if ( classesToMatch == NULL ) { printf( "IOServiceMatching returned a NULL dictionary.\n" ); } else { CFDictionarySetValue( classesToMatch, CFSTR( kIOMediaEjectableKey ), kCFBooleanTrue ); } kernResult = IOServiceGetMatchingServices( masterPort, classesToMatch, mediaIterator ); if ( KERN_SUCCESS != kernResult ) { printf( "IOServiceGetMatchingServices returned %d\n", kernResult ); } return kernResult; } kern_return_t GetBSDPath( io_iterator_t mediaIterator, char *bsdPath, CFIndex maxPathSize ) { io_object_t nextMedia; kern_return_t kernResult = KERN_FAILURE; *bsdPath = '\0'; nextMedia = IOIteratorNext( mediaIterator ); if ( nextMedia ) { CFTypeRef bsdPathAsCFString; bsdPathAsCFString = IORegistryEntryCreateCFProperty( nextMedia, CFSTR( kIOBSDNameKey ), kCFAllocatorDefault, 0 ); if ( bsdPathAsCFString ) { size_t devPathLength; strcpy( bsdPath, _PATH_DEV ); strcat( bsdPath, "r" ); devPathLength = strlen( bsdPath ); if ( CFStringGetCString( bsdPathAsCFString, bsdPath + devPathLength, maxPathSize - devPathLength, kCFStringEncodingASCII ) ) { kernResult = KERN_SUCCESS; } CFRelease( bsdPathAsCFString ); } IOObjectRelease( nextMedia ); } return kernResult; } #endif static int hdev_open(BlockDriverState *bs, const char *filename, int flags) { BDRVRawState *s = bs->opaque; int fd, open_flags, ret; #ifdef CONFIG_COCOA if (strstart(filename, "/dev/cdrom", NULL)) { kern_return_t kernResult; io_iterator_t mediaIterator; char bsdPath[ MAXPATHLEN ]; int fd; kernResult = FindEjectableCDMedia( &mediaIterator ); kernResult = GetBSDPath( mediaIterator, bsdPath, sizeof( bsdPath ) ); if ( bsdPath[ 0 ] != '\0' ) { strcat(bsdPath,"s0"); /* some CDs don't have a partition 0 */ fd = open(bsdPath, O_RDONLY | O_BINARY | O_LARGEFILE); if (fd < 0) { bsdPath[strlen(bsdPath)-1] = '1'; } else { close(fd); } filename = bsdPath; } if ( mediaIterator ) IOObjectRelease( mediaIterator ); } #endif open_flags = O_BINARY; if ((flags & BDRV_O_ACCESS) == O_RDWR) { open_flags |= O_RDWR; } else { open_flags |= O_RDONLY; bs->read_only = 1; } s->type = FTYPE_FILE; #if defined(__linux__) if (strstart(filename, "/dev/cd", NULL)) { /* open will not fail even if no CD is inserted */ open_flags |= O_NONBLOCK; s->type = FTYPE_CD; } else if (strstart(filename, "/dev/fd", NULL)) { s->type = FTYPE_FD; s->fd_open_flags = open_flags; /* open will not fail even if no floppy is inserted */ open_flags |= O_NONBLOCK; } #endif fd = open(filename, open_flags, 0644); if (fd < 0) { ret = -errno; if (ret == -EROFS) ret = -EACCES; return ret; } s->fd = fd; #if defined(__linux__) /* close fd so that we can reopen it as needed */ if (s->type == FTYPE_FD) { close(s->fd); s->fd = -1; s->fd_media_changed = 1; } #endif return 0; } #if defined(__linux__) && !defined(QEMU_TOOL) /* Note: we do not have a reliable method to detect if the floppy is present. The current method is to try to open the floppy at every I/O and to keep it opened during a few hundreds of ms. */ static int fd_open(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; int last_media_present; if (s->type != FTYPE_FD) return 0; last_media_present = (s->fd >= 0); if (s->fd >= 0 && (qemu_get_clock(rt_clock) - s->fd_open_time) >= FD_OPEN_TIMEOUT) { close(s->fd); s->fd = -1; #ifdef DEBUG_FLOPPY printf("Floppy closed\n"); #endif } if (s->fd < 0) { if (s->fd_got_error && (qemu_get_clock(rt_clock) - s->fd_error_time) < FD_OPEN_TIMEOUT) { #ifdef DEBUG_FLOPPY printf("No floppy (open delayed)\n"); #endif return -EIO; } s->fd = open(bs->filename, s->fd_open_flags); if (s->fd < 0) { s->fd_error_time = qemu_get_clock(rt_clock); s->fd_got_error = 1; if (last_media_present) s->fd_media_changed = 1; #ifdef DEBUG_FLOPPY printf("No floppy\n"); #endif return -EIO; } #ifdef DEBUG_FLOPPY printf("Floppy opened\n"); #endif } if (!last_media_present) s->fd_media_changed = 1; s->fd_open_time = qemu_get_clock(rt_clock); s->fd_got_error = 0; return 0; } #else static int fd_open(BlockDriverState *bs) { return 0; } #endif #if defined(__linux__) static int raw_is_inserted(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; int ret; switch(s->type) { case FTYPE_CD: ret = ioctl(s->fd, CDROM_DRIVE_STATUS, CDSL_CURRENT); if (ret == CDS_DISC_OK) return 1; else return 0; break; case FTYPE_FD: ret = fd_open(bs); return (ret >= 0); default: return 1; } } /* currently only used by fdc.c, but a CD version would be good too */ static int raw_media_changed(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; switch(s->type) { case FTYPE_FD: { int ret; /* XXX: we do not have a true media changed indication. It does not work if the floppy is changed without trying to read it */ fd_open(bs); ret = s->fd_media_changed; s->fd_media_changed = 0; #ifdef DEBUG_FLOPPY printf("Floppy changed=%d\n", ret); #endif return ret; } default: return -ENOTSUP; } } static int raw_eject(BlockDriverState *bs, int eject_flag) { BDRVRawState *s = bs->opaque; switch(s->type) { case FTYPE_CD: if (eject_flag) { if (ioctl (s->fd, CDROMEJECT, NULL) < 0) perror("CDROMEJECT"); } else { if (ioctl (s->fd, CDROMCLOSETRAY, NULL) < 0) perror("CDROMEJECT"); } break; case FTYPE_FD: { int fd; if (s->fd >= 0) { close(s->fd); s->fd = -1; } fd = open(bs->filename, s->fd_open_flags | O_NONBLOCK); if (fd >= 0) { if (ioctl(fd, FDEJECT, 0) < 0) perror("FDEJECT"); close(fd); } } break; default: return -ENOTSUP; } return 0; } static int raw_set_locked(BlockDriverState *bs, int locked) { BDRVRawState *s = bs->opaque; switch(s->type) { case FTYPE_CD: if (ioctl (s->fd, CDROM_LOCKDOOR, locked) < 0) { /* Note: an error can happen if the distribution automatically mounts the CD-ROM */ // perror("CDROM_LOCKDOOR"); } break; default: return -ENOTSUP; } return 0; } #else static int raw_is_inserted(BlockDriverState *bs) { return 1; } static int raw_media_changed(BlockDriverState *bs) { return -ENOTSUP; } static int raw_eject(BlockDriverState *bs, int eject_flag) { return -ENOTSUP; } static int raw_set_locked(BlockDriverState *bs, int locked) { return -ENOTSUP; } #endif /* !linux */ BlockDriver bdrv_host_device = { "host_device", sizeof(BDRVRawState), NULL, /* no probe for protocols */ hdev_open, NULL, NULL, raw_close, NULL, raw_flush, .bdrv_aio_read = raw_aio_read, .bdrv_aio_write = raw_aio_write, .bdrv_aio_cancel = raw_aio_cancel, .aiocb_size = sizeof(RawAIOCB), .bdrv_pread = raw_pread, .bdrv_pwrite = raw_pwrite, .bdrv_getlength = raw_getlength, /* removable device support */ .bdrv_is_inserted = raw_is_inserted, .bdrv_media_changed = raw_media_changed, .bdrv_eject = raw_eject, .bdrv_set_locked = raw_set_locked, }; #else /* _WIN32 */ /* XXX: use another file ? */ #include <winioctl.h> #define FTYPE_FILE 0 #define FTYPE_CD 1 #define FTYPE_HARDDISK 2 typedef struct BDRVRawState { HANDLE hfile; int type; char drive_path[16]; /* format: "d:\" */ } BDRVRawState; typedef struct RawAIOCB { BlockDriverAIOCB common; HANDLE hEvent; OVERLAPPED ov; int count; } RawAIOCB; int qemu_ftruncate64(int fd, int64_t length) { LARGE_INTEGER li; LONG high; HANDLE h; BOOL res; if ((GetVersion() & 0x80000000UL) && (length >> 32) != 0) return -1; h = (HANDLE)_get_osfhandle(fd); /* get current position, ftruncate do not change position */ li.HighPart = 0; li.LowPart = SetFilePointer (h, 0, &li.HighPart, FILE_CURRENT); if (li.LowPart == 0xffffffffUL && GetLastError() != NO_ERROR) return -1; high = length >> 32; if (!SetFilePointer(h, (DWORD) length, &high, FILE_BEGIN)) return -1; res = SetEndOfFile(h); /* back to old position */ SetFilePointer(h, li.LowPart, &li.HighPart, FILE_BEGIN); return res ? 0 : -1; } static int set_sparse(int fd) { DWORD returned; return (int) DeviceIoControl((HANDLE)_get_osfhandle(fd), FSCTL_SET_SPARSE, NULL, 0, NULL, 0, &returned, NULL); } static int raw_open(BlockDriverState *bs, const char *filename, int flags) { BDRVRawState *s = bs->opaque; int access_flags, create_flags; DWORD overlapped; s->type = FTYPE_FILE; if ((flags & BDRV_O_ACCESS) == O_RDWR) { access_flags = GENERIC_READ | GENERIC_WRITE; } else { access_flags = GENERIC_READ; } if (flags & BDRV_O_CREAT) { create_flags = CREATE_ALWAYS; } else { create_flags = OPEN_EXISTING; } #ifdef QEMU_TOOL overlapped = FILE_ATTRIBUTE_NORMAL; #else overlapped = FILE_FLAG_OVERLAPPED; #endif s->hfile = CreateFile(filename, access_flags, FILE_SHARE_READ, NULL, create_flags, overlapped, NULL); if (s->hfile == INVALID_HANDLE_VALUE) { int err = GetLastError(); if (err == ERROR_ACCESS_DENIED) return -EACCES; return -1; } return 0; } static int raw_pread(BlockDriverState *bs, int64_t offset, uint8_t *buf, int count) { BDRVRawState *s = bs->opaque; OVERLAPPED ov; DWORD ret_count; int ret; memset(&ov, 0, sizeof(ov)); ov.Offset = offset; ov.OffsetHigh = offset >> 32; ret = ReadFile(s->hfile, buf, count, &ret_count, &ov); if (!ret) { ret = GetOverlappedResult(s->hfile, &ov, &ret_count, TRUE); if (!ret) return -EIO; else return ret_count; } return ret_count; } static int raw_pwrite(BlockDriverState *bs, int64_t offset, const uint8_t *buf, int count) { BDRVRawState *s = bs->opaque; OVERLAPPED ov; DWORD ret_count; int ret; memset(&ov, 0, sizeof(ov)); ov.Offset = offset; ov.OffsetHigh = offset >> 32; ret = WriteFile(s->hfile, buf, count, &ret_count, &ov); if (!ret) { ret = GetOverlappedResult(s->hfile, &ov, &ret_count, TRUE); if (!ret) return -EIO; else return ret_count; } return ret_count; } #if 0 #ifndef QEMU_TOOL static void raw_aio_cb(void *opaque) { RawAIOCB *acb = opaque; BlockDriverState *bs = acb->common.bs; BDRVRawState *s = bs->opaque; DWORD ret_count; int ret; ret = GetOverlappedResult(s->hfile, &acb->ov, &ret_count, TRUE); if (!ret || ret_count != acb->count) { acb->common.cb(acb->common.opaque, -EIO); } else { acb->common.cb(acb->common.opaque, 0); } } #endif static RawAIOCB *raw_aio_setup(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, int nb_sectors, BlockDriverCompletionFunc *cb, void *opaque) { RawAIOCB *acb; int64_t offset; acb = qemu_aio_get(bs, cb, opaque); if (acb->hEvent) { acb->hEvent = CreateEvent(NULL, TRUE, FALSE, NULL); if (!acb->hEvent) { qemu_aio_release(acb); return NULL; } } memset(&acb->ov, 0, sizeof(acb->ov)); offset = sector_num * 512; acb->ov.Offset = offset; acb->ov.OffsetHigh = offset >> 32; acb->ov.hEvent = acb->hEvent; acb->count = nb_sectors * 512; #ifndef QEMU_TOOL qemu_add_wait_object(acb->ov.hEvent, raw_aio_cb, acb); #endif return acb; } static BlockDriverAIOCB *raw_aio_read(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, int nb_sectors, BlockDriverCompletionFunc *cb, void *opaque) { BDRVRawState *s = bs->opaque; RawAIOCB *acb; int ret; acb = raw_aio_setup(bs, sector_num, buf, nb_sectors, cb, opaque); if (!acb) return NULL; ret = ReadFile(s->hfile, buf, acb->count, NULL, &acb->ov); if (!ret) { qemu_aio_release(acb); return NULL; } #ifdef QEMU_TOOL qemu_aio_release(acb); #endif return (BlockDriverAIOCB *)acb; } static BlockDriverAIOCB *raw_aio_write(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, int nb_sectors, BlockDriverCompletionFunc *cb, void *opaque) { BDRVRawState *s = bs->opaque; RawAIOCB *acb; int ret; acb = raw_aio_setup(bs, sector_num, buf, nb_sectors, cb, opaque); if (!acb) return NULL; ret = WriteFile(s->hfile, buf, acb->count, NULL, &acb->ov); if (!ret) { qemu_aio_release(acb); return NULL; } #ifdef QEMU_TOOL qemu_aio_release(acb); #endif return (BlockDriverAIOCB *)acb; } static void raw_aio_cancel(BlockDriverAIOCB *blockacb) { #ifndef QEMU_TOOL RawAIOCB *acb = (RawAIOCB *)blockacb; BlockDriverState *bs = acb->common.bs; BDRVRawState *s = bs->opaque; qemu_del_wait_object(acb->ov.hEvent, raw_aio_cb, acb); /* XXX: if more than one async I/O it is not correct */ CancelIo(s->hfile); qemu_aio_release(acb); #endif } #endif /* #if 0 */ static void raw_flush(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; FlushFileBuffers(s->hfile); } static void raw_close(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; CloseHandle(s->hfile); } static int raw_truncate(BlockDriverState *bs, int64_t offset) { BDRVRawState *s = bs->opaque; DWORD low, high; low = offset; high = offset >> 32; if (!SetFilePointer(s->hfile, low, &high, FILE_BEGIN)) return -EIO; if (!SetEndOfFile(s->hfile)) return -EIO; return 0; } static int64_t raw_getlength(BlockDriverState *bs) { BDRVRawState *s = bs->opaque; LARGE_INTEGER l; ULARGE_INTEGER available, total, total_free; DISK_GEOMETRY dg; DWORD count; BOOL status; switch(s->type) { case FTYPE_FILE: l.LowPart = GetFileSize(s->hfile, &l.HighPart); if (l.LowPart == 0xffffffffUL && GetLastError() != NO_ERROR) return -EIO; break; case FTYPE_CD: if (!GetDiskFreeSpaceEx(s->drive_path, &available, &total, &total_free)) return -EIO; l.QuadPart = total.QuadPart; break; case FTYPE_HARDDISK: status = DeviceIoControl(s->hfile, IOCTL_DISK_GET_DRIVE_GEOMETRY, NULL, 0, &dg, sizeof(dg), &count, NULL); if (status != FALSE) { l.QuadPart = dg.Cylinders.QuadPart * dg.TracksPerCylinder * dg.SectorsPerTrack * dg.BytesPerSector; } break; default: return -EIO; } return l.QuadPart; } static int raw_create(const char *filename, int64_t total_size, const char *backing_file, int flags) { int fd; if (flags || backing_file) return -ENOTSUP; fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, 0644); if (fd < 0) return -EIO; set_sparse(fd); ftruncate(fd, total_size * 512); close(fd); return 0; } void qemu_aio_init(void) { } void qemu_aio_poll(void) { } void qemu_aio_flush(void) { } void qemu_aio_wait_start(void) { } void qemu_aio_wait(void) { #ifndef QEMU_TOOL qemu_bh_poll(); #endif } void qemu_aio_wait_end(void) { } BlockDriver bdrv_raw = { "raw", sizeof(BDRVRawState), NULL, /* no probe for protocols */ raw_open, NULL, NULL, raw_close, raw_create, raw_flush, #if 0 .bdrv_aio_read = raw_aio_read, .bdrv_aio_write = raw_aio_write, .bdrv_aio_cancel = raw_aio_cancel, .aiocb_size = sizeof(RawAIOCB); #endif .protocol_name = "file", .bdrv_pread = raw_pread, .bdrv_pwrite = raw_pwrite, .bdrv_truncate = raw_truncate, .bdrv_getlength = raw_getlength, }; /***********************************************/ /* host device */ static int find_cdrom(char *cdrom_name, int cdrom_name_size) { char drives[256], *pdrv = drives; UINT type; memset(drives, 0, sizeof(drives)); GetLogicalDriveStrings(sizeof(drives), drives); while(pdrv[0] != '\0') { type = GetDriveType(pdrv); switch(type) { case DRIVE_CDROM: snprintf(cdrom_name, cdrom_name_size, "\\\\.\\%c:", pdrv[0]); return 0; break; } pdrv += lstrlen(pdrv) + 1; } return -1; } static int find_device_type(BlockDriverState *bs, const char *filename) { BDRVRawState *s = bs->opaque; UINT type; const char *p; if (strstart(filename, "\\\\.\\", &p) || strstart(filename, "//./", &p)) { if (stristart(p, "PhysicalDrive", NULL)) return FTYPE_HARDDISK; snprintf(s->drive_path, sizeof(s->drive_path), "%c:\\", p[0]); type = GetDriveType(s->drive_path); if (type == DRIVE_CDROM) return FTYPE_CD; else return FTYPE_FILE; } else { return FTYPE_FILE; } } static int hdev_open(BlockDriverState *bs, const char *filename, int flags) { BDRVRawState *s = bs->opaque; int access_flags, create_flags; DWORD overlapped; char device_name[64]; if (strstart(filename, "/dev/cdrom", NULL)) { if (find_cdrom(device_name, sizeof(device_name)) < 0) return -ENOENT; filename = device_name; } else { /* transform drive letters into device name */ if (((filename[0] >= 'a' && filename[0] <= 'z') || (filename[0] >= 'A' && filename[0] <= 'Z')) && filename[1] == ':' && filename[2] == '\0') { snprintf(device_name, sizeof(device_name), "\\\\.\\%c:", filename[0]); filename = device_name; } } s->type = find_device_type(bs, filename); if ((flags & BDRV_O_ACCESS) == O_RDWR) { access_flags = GENERIC_READ | GENERIC_WRITE; } else { access_flags = GENERIC_READ; } create_flags = OPEN_EXISTING; #ifdef QEMU_TOOL overlapped = FILE_ATTRIBUTE_NORMAL; #else overlapped = FILE_FLAG_OVERLAPPED; #endif s->hfile = CreateFile(filename, access_flags, FILE_SHARE_READ, NULL, create_flags, overlapped, NULL); if (s->hfile == INVALID_HANDLE_VALUE) { int err = GetLastError(); if (err == ERROR_ACCESS_DENIED) return -EACCES; return -1; } return 0; } #if 0 /***********************************************/ /* removable device additional commands */ static int raw_is_inserted(BlockDriverState *bs) { return 1; } static int raw_media_changed(BlockDriverState *bs) { return -ENOTSUP; } static int raw_eject(BlockDriverState *bs, int eject_flag) { DWORD ret_count; if (s->type == FTYPE_FILE) return -ENOTSUP; if (eject_flag) { DeviceIoControl(s->hfile, IOCTL_STORAGE_EJECT_MEDIA, NULL, 0, NULL, 0, &lpBytesReturned, NULL); } else { DeviceIoControl(s->hfile, IOCTL_STORAGE_LOAD_MEDIA, NULL, 0, NULL, 0, &lpBytesReturned, NULL); } } static int raw_set_locked(BlockDriverState *bs, int locked) { return -ENOTSUP; } #endif BlockDriver bdrv_host_device = { "host_device", sizeof(BDRVRawState), NULL, /* no probe for protocols */ hdev_open, NULL, NULL, raw_close, NULL, raw_flush, #if 0 .bdrv_aio_read = raw_aio_read, .bdrv_aio_write = raw_aio_write, .bdrv_aio_cancel = raw_aio_cancel, .aiocb_size = sizeof(RawAIOCB); #endif .bdrv_pread = raw_pread, .bdrv_pwrite = raw_pwrite, .bdrv_getlength = raw_getlength, }; #endif /* _WIN32 */