/* * Block driver for the QCOW version 2 format * * Copyright (c) 2004-2006 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu-common.h" #include "block_int.h" #include #include "aes.h" /* Differences with QCOW: - Support for multiple incremental snapshots. - Memory management by reference counts. - Clusters which have a reference count of one have the bit QCOW_OFLAG_COPIED to optimize write performance. - Size of compressed clusters is stored in sectors to reduce bit usage in the cluster offsets. - Support for storing additional data (such as the VM state) in the snapshots. - If a backing store is used, the cluster size is not constrained (could be backported to QCOW). - L2 tables have always a size of one cluster. */ //#define DEBUG_ALLOC //#define DEBUG_ALLOC2 //#define DEBUG_EXT #define QCOW_MAGIC (('Q' << 24) | ('F' << 16) | ('I' << 8) | 0xfb) #define QCOW_VERSION 2 #define QCOW_CRYPT_NONE 0 #define QCOW_CRYPT_AES 1 #define QCOW_MAX_CRYPT_CLUSTERS 32 /* indicate that the refcount of the referenced cluster is exactly one. */ #define QCOW_OFLAG_COPIED (1LL << 63) /* indicate that the cluster is compressed (they never have the copied flag) */ #define QCOW_OFLAG_COMPRESSED (1LL << 62) #define REFCOUNT_SHIFT 1 /* refcount size is 2 bytes */ typedef struct QCowHeader { uint32_t magic; uint32_t version; uint64_t backing_file_offset; uint32_t backing_file_size; uint32_t cluster_bits; uint64_t size; /* in bytes */ uint32_t crypt_method; uint32_t l1_size; /* XXX: save number of clusters instead ? */ uint64_t l1_table_offset; uint64_t refcount_table_offset; uint32_t refcount_table_clusters; uint32_t nb_snapshots; uint64_t snapshots_offset; } QCowHeader; typedef struct { uint32_t magic; uint32_t len; } QCowExtension; #define QCOW_EXT_MAGIC_END 0 #define QCOW_EXT_MAGIC_BACKING_FORMAT 0xE2792ACA typedef struct __attribute__((packed)) QCowSnapshotHeader { /* header is 8 byte aligned */ uint64_t l1_table_offset; uint32_t l1_size; uint16_t id_str_size; uint16_t name_size; uint32_t date_sec; uint32_t date_nsec; uint64_t vm_clock_nsec; uint32_t vm_state_size; uint32_t extra_data_size; /* for extension */ /* extra data follows */ /* id_str follows */ /* name follows */ } QCowSnapshotHeader; #define L2_CACHE_SIZE 16 typedef struct QCowSnapshot { uint64_t l1_table_offset; uint32_t l1_size; char *id_str; char *name; uint32_t vm_state_size; uint32_t date_sec; uint32_t date_nsec; uint64_t vm_clock_nsec; } QCowSnapshot; typedef struct BDRVQcowState { BlockDriverState *hd; int cluster_bits; int cluster_size; int cluster_sectors; int l2_bits; int l2_size; int l1_size; int l1_vm_state_index; int csize_shift; int csize_mask; uint64_t cluster_offset_mask; uint64_t l1_table_offset; uint64_t *l1_table; uint64_t *l2_cache; uint64_t l2_cache_offsets[L2_CACHE_SIZE]; uint32_t l2_cache_counts[L2_CACHE_SIZE]; uint8_t *cluster_cache; uint8_t *cluster_data; uint64_t cluster_cache_offset; uint64_t *refcount_table; uint64_t refcount_table_offset; uint32_t refcount_table_size; uint64_t refcount_block_cache_offset; uint16_t *refcount_block_cache; int64_t free_cluster_index; int64_t free_byte_offset; uint32_t crypt_method; /* current crypt method, 0 if no key yet */ uint32_t crypt_method_header; AES_KEY aes_encrypt_key; AES_KEY aes_decrypt_key; uint64_t snapshots_offset; int snapshots_size; int nb_snapshots; QCowSnapshot *snapshots; } BDRVQcowState; static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset); static int qcow_read(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, int nb_sectors); static int qcow_read_snapshots(BlockDriverState *bs); static void qcow_free_snapshots(BlockDriverState *bs); static int refcount_init(BlockDriverState *bs); static void refcount_close(BlockDriverState *bs); static int get_refcount(BlockDriverState *bs, int64_t cluster_index); static int update_cluster_refcount(BlockDriverState *bs, int64_t cluster_index, int addend); static void update_refcount(BlockDriverState *bs, int64_t offset, int64_t length, int addend); static int64_t alloc_clusters(BlockDriverState *bs, int64_t size); static int64_t alloc_bytes(BlockDriverState *bs, int size); static void free_clusters(BlockDriverState *bs, int64_t offset, int64_t size); static int check_refcounts(BlockDriverState *bs); static int qcow_probe(const uint8_t *buf, int buf_size, const char *filename) { const QCowHeader *cow_header = (const void *)buf; if (buf_size >= sizeof(QCowHeader) && be32_to_cpu(cow_header->magic) == QCOW_MAGIC && be32_to_cpu(cow_header->version) == QCOW_VERSION) return 100; else return 0; } /* * read qcow2 extension and fill bs * start reading from start_offset * finish reading upon magic of value 0 or when end_offset reached * unknown magic is skipped (future extension this version knows nothing about) * return 0 upon success, non-0 otherwise */ static int qcow_read_extensions(BlockDriverState *bs, uint64_t start_offset, uint64_t end_offset) { BDRVQcowState *s = bs->opaque; QCowExtension ext; uint64_t offset; #ifdef DEBUG_EXT printf("qcow_read_extensions: start=%ld end=%ld\n", start_offset, end_offset); #endif offset = start_offset; while (offset < end_offset) { #ifdef DEBUG_EXT /* Sanity check */ if (offset > s->cluster_size) printf("qcow_handle_extension: suspicious offset %lu\n", offset); printf("attemting to read extended header in offset %lu\n", offset); #endif if (bdrv_pread(s->hd, offset, &ext, sizeof(ext)) != sizeof(ext)) { fprintf(stderr, "qcow_handle_extension: ERROR: pread fail from offset %llu\n", (unsigned long long)offset); return 1; } be32_to_cpus(&ext.magic); be32_to_cpus(&ext.len); offset += sizeof(ext); #ifdef DEBUG_EXT printf("ext.magic = 0x%x\n", ext.magic); #endif switch (ext.magic) { case QCOW_EXT_MAGIC_END: return 0; case QCOW_EXT_MAGIC_BACKING_FORMAT: if (ext.len >= sizeof(bs->backing_format)) { fprintf(stderr, "ERROR: ext_backing_format: len=%u too large" " (>=%zu)\n", ext.len, sizeof(bs->backing_format)); return 2; } if (bdrv_pread(s->hd, offset , bs->backing_format, ext.len) != ext.len) return 3; bs->backing_format[ext.len] = '\0'; #ifdef DEBUG_EXT printf("Qcow2: Got format extension %s\n", bs->backing_format); #endif offset += ((ext.len + 7) & ~7); break; default: /* unknown magic -- just skip it */ offset += ((ext.len + 7) & ~7); break; } } return 0; } static int qcow_open(BlockDriverState *bs, const char *filename, int flags) { BDRVQcowState *s = bs->opaque; int len, i, shift, ret; QCowHeader header; uint64_t ext_end; /* Performance is terrible right now with cache=writethrough due mainly * to reference count updates. If the user does not explicitly specify * a caching type, force to writeback caching. */ if ((flags & BDRV_O_CACHE_DEF)) { flags |= BDRV_O_CACHE_WB; flags &= ~BDRV_O_CACHE_DEF; } ret = bdrv_file_open(&s->hd, filename, flags); if (ret < 0) return ret; if (bdrv_pread(s->hd, 0, &header, sizeof(header)) != sizeof(header)) goto fail; be32_to_cpus(&header.magic); be32_to_cpus(&header.version); be64_to_cpus(&header.backing_file_offset); be32_to_cpus(&header.backing_file_size); be64_to_cpus(&header.size); be32_to_cpus(&header.cluster_bits); be32_to_cpus(&header.crypt_method); be64_to_cpus(&header.l1_table_offset); be32_to_cpus(&header.l1_size); be64_to_cpus(&header.refcount_table_offset); be32_to_cpus(&header.refcount_table_clusters); be64_to_cpus(&header.snapshots_offset); be32_to_cpus(&header.nb_snapshots); if (header.magic != QCOW_MAGIC || header.version != QCOW_VERSION) goto fail; if (header.size <= 1 || header.cluster_bits < 9 || header.cluster_bits > 16) goto fail; if (header.crypt_method > QCOW_CRYPT_AES) goto fail; s->crypt_method_header = header.crypt_method; if (s->crypt_method_header) bs->encrypted = 1; s->cluster_bits = header.cluster_bits; s->cluster_size = 1 << s->cluster_bits; s->cluster_sectors = 1 << (s->cluster_bits - 9); s->l2_bits = s->cluster_bits - 3; /* L2 is always one cluster */ s->l2_size = 1 << s->l2_bits; bs->total_sectors = header.size / 512; s->csize_shift = (62 - (s->cluster_bits - 8)); s->csize_mask = (1 << (s->cluster_bits - 8)) - 1; s->cluster_offset_mask = (1LL << s->csize_shift) - 1; s->refcount_table_offset = header.refcount_table_offset; s->refcount_table_size = header.refcount_table_clusters << (s->cluster_bits - 3); s->snapshots_offset = header.snapshots_offset; s->nb_snapshots = header.nb_snapshots; /* read the level 1 table */ s->l1_size = header.l1_size; shift = s->cluster_bits + s->l2_bits; s->l1_vm_state_index = (header.size + (1LL << shift) - 1) >> shift; /* the L1 table must contain at least enough entries to put header.size bytes */ if (s->l1_size < s->l1_vm_state_index) goto fail; s->l1_table_offset = header.l1_table_offset; s->l1_table = qemu_malloc(s->l1_size * sizeof(uint64_t)); if (bdrv_pread(s->hd, s->l1_table_offset, s->l1_table, s->l1_size * sizeof(uint64_t)) != s->l1_size * sizeof(uint64_t)) goto fail; for(i = 0;i < s->l1_size; i++) { be64_to_cpus(&s->l1_table[i]); } /* alloc L2 cache */ s->l2_cache = qemu_malloc(s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t)); s->cluster_cache = qemu_malloc(s->cluster_size); /* one more sector for decompressed data alignment */ s->cluster_data = qemu_malloc(QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size + 512); s->cluster_cache_offset = -1; if (refcount_init(bs) < 0) goto fail; /* read qcow2 extensions */ if (header.backing_file_offset) ext_end = header.backing_file_offset; else ext_end = s->cluster_size; if (qcow_read_extensions(bs, sizeof(header), ext_end)) goto fail; /* read the backing file name */ if (header.backing_file_offset != 0) { len = header.backing_file_size; if (len > 1023) len = 1023; if (bdrv_pread(s->hd, header.backing_file_offset, bs->backing_file, len) != len) goto fail; bs->backing_file[len] = '\0'; } if (qcow_read_snapshots(bs) < 0) goto fail; #ifdef DEBUG_ALLOC check_refcounts(bs); #endif return 0; fail: qcow_free_snapshots(bs); refcount_close(bs); qemu_free(s->l1_table); qemu_free(s->l2_cache); qemu_free(s->cluster_cache); qemu_free(s->cluster_data); bdrv_delete(s->hd); return -1; } static int qcow_set_key(BlockDriverState *bs, const char *key) { BDRVQcowState *s = bs->opaque; uint8_t keybuf[16]; int len, i; memset(keybuf, 0, 16); len = strlen(key); if (len > 16) len = 16; /* XXX: we could compress the chars to 7 bits to increase entropy */ for(i = 0;i < len;i++) { keybuf[i] = key[i]; } s->crypt_method = s->crypt_method_header; if (AES_set_encrypt_key(keybuf, 128, &s->aes_encrypt_key) != 0) return -1; if (AES_set_decrypt_key(keybuf, 128, &s->aes_decrypt_key) != 0) return -1; #if 0 /* test */ { uint8_t in[16]; uint8_t out[16]; uint8_t tmp[16]; for(i=0;i<16;i++) in[i] = i; AES_encrypt(in, tmp, &s->aes_encrypt_key); AES_decrypt(tmp, out, &s->aes_decrypt_key); for(i = 0; i < 16; i++) printf(" %02x", tmp[i]); printf("\n"); for(i = 0; i < 16; i++) printf(" %02x", out[i]); printf("\n"); } #endif return 0; } /* The crypt function is compatible with the linux cryptoloop algorithm for < 4 GB images. NOTE: out_buf == in_buf is supported */ static void encrypt_sectors(BDRVQcowState *s, int64_t sector_num, uint8_t *out_buf, const uint8_t *in_buf, int nb_sectors, int enc, const AES_KEY *key) { union { uint64_t ll[2]; uint8_t b[16]; } ivec; int i; for(i = 0; i < nb_sectors; i++) { ivec.ll[0] = cpu_to_le64(sector_num); ivec.ll[1] = 0; AES_cbc_encrypt(in_buf, out_buf, 512, key, ivec.b, enc); sector_num++; in_buf += 512; out_buf += 512; } } static int copy_sectors(BlockDriverState *bs, uint64_t start_sect, uint64_t cluster_offset, int n_start, int n_end) { BDRVQcowState *s = bs->opaque; int n, ret; n = n_end - n_start; if (n <= 0) return 0; ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n); if (ret < 0) return ret; if (s->crypt_method) { encrypt_sectors(s, start_sect + n_start, s->cluster_data, s->cluster_data, n, 1, &s->aes_encrypt_key); } ret = bdrv_write(s->hd, (cluster_offset >> 9) + n_start, s->cluster_data, n); if (ret < 0) return ret; return 0; } static void l2_cache_reset(BlockDriverState *bs) { BDRVQcowState *s = bs->opaque; memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t)); memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t)); memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t)); } static inline int l2_cache_new_entry(BlockDriverState *bs) { BDRVQcowState *s = bs->opaque; uint32_t min_count; int min_index, i; /* find a new entry in the least used one */ min_index = 0; min_count = 0xffffffff; for(i = 0; i < L2_CACHE_SIZE; i++) { if (s->l2_cache_counts[i] < min_count) { min_count = s->l2_cache_counts[i]; min_index = i; } } return min_index; } static int64_t align_offset(int64_t offset, int n) { offset = (offset + n - 1) & ~(n - 1); return offset; } static int grow_l1_table(BlockDriverState *bs, int min_size) { BDRVQcowState *s = bs->opaque; int new_l1_size, new_l1_size2, ret, i; uint64_t *new_l1_table; uint64_t new_l1_table_offset; uint8_t data[12]; new_l1_size = s->l1_size; if (min_size <= new_l1_size) return 0; while (min_size > new_l1_size) { new_l1_size = (new_l1_size * 3 + 1) / 2; } #ifdef DEBUG_ALLOC2 printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size); #endif new_l1_size2 = sizeof(uint64_t) * new_l1_size; new_l1_table = qemu_mallocz(new_l1_size2); memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); /* write new table (align to cluster) */ new_l1_table_offset = alloc_clusters(bs, new_l1_size2); for(i = 0; i < s->l1_size; i++) new_l1_table[i] = cpu_to_be64(new_l1_table[i]); ret = bdrv_pwrite(s->hd, new_l1_table_offset, new_l1_table, new_l1_size2); if (ret != new_l1_size2) goto fail; for(i = 0; i < s->l1_size; i++) new_l1_table[i] = be64_to_cpu(new_l1_table[i]); /* set new table */ cpu_to_be32w((uint32_t*)data, new_l1_size); cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset); if (bdrv_pwrite(s->hd, offsetof(QCowHeader, l1_size), data, sizeof(data)) != sizeof(data)) goto fail; qemu_free(s->l1_table); free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t)); s->l1_table_offset = new_l1_table_offset; s->l1_table = new_l1_table; s->l1_size = new_l1_size; return 0; fail: qemu_free(s->l1_table); return -EIO; } /* * seek_l2_table * * seek l2_offset in the l2_cache table * if not found, return NULL, * if found, * increments the l2 cache hit count of the entry, * if counter overflow, divide by two all counters * return the pointer to the l2 cache entry * */ static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset) { int i, j; for(i = 0; i < L2_CACHE_SIZE; i++) { if (l2_offset == s->l2_cache_offsets[i]) { /* increment the hit count */ if (++s->l2_cache_counts[i] == 0xffffffff) { for(j = 0; j < L2_CACHE_SIZE; j++) { s->l2_cache_counts[j] >>= 1; } } return s->l2_cache + (i << s->l2_bits); } } return NULL; } /* * l2_load * * Loads a L2 table into memory. If the table is in the cache, the cache * is used; otherwise the L2 table is loaded from the image file. * * Returns a pointer to the L2 table on success, or NULL if the read from * the image file failed. */ static uint64_t *l2_load(BlockDriverState *bs, uint64_t l2_offset) { BDRVQcowState *s = bs->opaque; int min_index; uint64_t *l2_table; /* seek if the table for the given offset is in the cache */ l2_table = seek_l2_table(s, l2_offset); if (l2_table != NULL) return l2_table; /* not found: load a new entry in the least used one */ min_index = l2_cache_new_entry(bs); l2_table = s->l2_cache + (min_index << s->l2_bits); if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) != s->l2_size * sizeof(uint64_t)) return NULL; s->l2_cache_offsets[min_index] = l2_offset; s->l2_cache_counts[min_index] = 1; return l2_table; } /* * l2_allocate * * Allocate a new l2 entry in the file. If l1_index points to an already * used entry in the L2 table (i.e. we are doing a copy on write for the L2 * table) copy the contents of the old L2 table into the newly allocated one. * Otherwise the new table is initialized with zeros. * */ static uint64_t *l2_allocate(BlockDriverState *bs, int l1_index) { BDRVQcowState *s = bs->opaque; int min_index; uint64_t old_l2_offset, tmp; uint64_t *l2_table, l2_offset; old_l2_offset = s->l1_table[l1_index]; /* allocate a new l2 entry */ l2_offset = alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); /* update the L1 entry */ s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; tmp = cpu_to_be64(l2_offset | QCOW_OFLAG_COPIED); if (bdrv_pwrite(s->hd, s->l1_table_offset + l1_index * sizeof(tmp), &tmp, sizeof(tmp)) != sizeof(tmp)) return NULL; /* allocate a new entry in the l2 cache */ min_index = l2_cache_new_entry(bs); l2_table = s->l2_cache + (min_index << s->l2_bits); if (old_l2_offset == 0) { /* if there was no old l2 table, clear the new table */ memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); } else { /* if there was an old l2 table, read it from the disk */ if (bdrv_pread(s->hd, old_l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) != s->l2_size * sizeof(uint64_t)) return NULL; } /* write the l2 table to the file */ if (bdrv_pwrite(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) != s->l2_size * sizeof(uint64_t)) return NULL; /* update the l2 cache entry */ s->l2_cache_offsets[min_index] = l2_offset; s->l2_cache_counts[min_index] = 1; return l2_table; } static int size_to_clusters(BDRVQcowState *s, int64_t size) { return (size + (s->cluster_size - 1)) >> s->cluster_bits; } static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size, uint64_t *l2_table, uint64_t start, uint64_t mask) { int i; uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask; if (!offset) return 0; for (i = start; i < start + nb_clusters; i++) if (offset + i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask)) break; return (i - start); } static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table) { int i = 0; while(nb_clusters-- && l2_table[i] == 0) i++; return i; } /* * get_cluster_offset * * For a given offset of the disk image, return cluster offset in * qcow2 file. * * on entry, *num is the number of contiguous clusters we'd like to * access following offset. * * on exit, *num is the number of contiguous clusters we can read. * * Return 1, if the offset is found * Return 0, otherwise. * */ static uint64_t get_cluster_offset(BlockDriverState *bs, uint64_t offset, int *num) { BDRVQcowState *s = bs->opaque; int l1_index, l2_index; uint64_t l2_offset, *l2_table, cluster_offset; int l1_bits, c; int index_in_cluster, nb_available, nb_needed, nb_clusters; index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); nb_needed = *num + index_in_cluster; l1_bits = s->l2_bits + s->cluster_bits; /* compute how many bytes there are between the offset and * the end of the l1 entry */ nb_available = (1 << l1_bits) - (offset & ((1 << l1_bits) - 1)); /* compute the number of available sectors */ nb_available = (nb_available >> 9) + index_in_cluster; if (nb_needed > nb_available) { nb_needed = nb_available; } cluster_offset = 0; /* seek the the l2 offset in the l1 table */ l1_index = offset >> l1_bits; if (l1_index >= s->l1_size) goto out; l2_offset = s->l1_table[l1_index]; /* seek the l2 table of the given l2 offset */ if (!l2_offset) goto out; /* load the l2 table in memory */ l2_offset &= ~QCOW_OFLAG_COPIED; l2_table = l2_load(bs, l2_offset); if (l2_table == NULL) return 0; /* find the cluster offset for the given disk offset */ l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); cluster_offset = be64_to_cpu(l2_table[l2_index]); nb_clusters = size_to_clusters(s, nb_needed << 9); if (!cluster_offset) { /* how many empty clusters ? */ c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]); } else { /* how many allocated clusters ? */ c = count_contiguous_clusters(nb_clusters, s->cluster_size, &l2_table[l2_index], 0, QCOW_OFLAG_COPIED); } nb_available = (c * s->cluster_sectors); out: if (nb_available > nb_needed) nb_available = nb_needed; *num = nb_available - index_in_cluster; return cluster_offset & ~QCOW_OFLAG_COPIED; } /* * free_any_clusters * * free clusters according to its type: compressed or not * */ static void free_any_clusters(BlockDriverState *bs, uint64_t cluster_offset, int nb_clusters) { BDRVQcowState *s = bs->opaque; /* free the cluster */ if (cluster_offset & QCOW_OFLAG_COMPRESSED) { int nb_csectors; nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; free_clusters(bs, (cluster_offset & s->cluster_offset_mask) & ~511, nb_csectors * 512); return; } free_clusters(bs, cluster_offset, nb_clusters << s->cluster_bits); return; } /* * get_cluster_table * * for a given disk offset, load (and allocate if needed) * the l2 table. * * the l2 table offset in the qcow2 file and the cluster index * in the l2 table are given to the caller. * */ static int get_cluster_table(BlockDriverState *bs, uint64_t offset, uint64_t **new_l2_table, uint64_t *new_l2_offset, int *new_l2_index) { BDRVQcowState *s = bs->opaque; int l1_index, l2_index, ret; uint64_t l2_offset, *l2_table; /* seek the the l2 offset in the l1 table */ l1_index = offset >> (s->l2_bits + s->cluster_bits); if (l1_index >= s->l1_size) { ret = grow_l1_table(bs, l1_index + 1); if (ret < 0) return 0; } l2_offset = s->l1_table[l1_index]; /* seek the l2 table of the given l2 offset */ if (l2_offset & QCOW_OFLAG_COPIED) { /* load the l2 table in memory */ l2_offset &= ~QCOW_OFLAG_COPIED; l2_table = l2_load(bs, l2_offset); if (l2_table == NULL) return 0; } else { if (l2_offset) free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t)); l2_table = l2_allocate(bs, l1_index); if (l2_table == NULL) return 0; l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED; } /* find the cluster offset for the given disk offset */ l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); *new_l2_table = l2_table; *new_l2_offset = l2_offset; *new_l2_index = l2_index; return 1; } /* * alloc_compressed_cluster_offset * * For a given offset of the disk image, return cluster offset in * qcow2 file. * * If the offset is not found, allocate a new compressed cluster. * * Return the cluster offset if successful, * Return 0, otherwise. * */ static uint64_t alloc_compressed_cluster_offset(BlockDriverState *bs, uint64_t offset, int compressed_size) { BDRVQcowState *s = bs->opaque; int l2_index, ret; uint64_t l2_offset, *l2_table, cluster_offset; int nb_csectors; ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index); if (ret == 0) return 0; cluster_offset = be64_to_cpu(l2_table[l2_index]); if (cluster_offset & QCOW_OFLAG_COPIED) return cluster_offset & ~QCOW_OFLAG_COPIED; if (cluster_offset) free_any_clusters(bs, cluster_offset, 1); cluster_offset = alloc_bytes(bs, compressed_size); nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - (cluster_offset >> 9); cluster_offset |= QCOW_OFLAG_COMPRESSED | ((uint64_t)nb_csectors << s->csize_shift); /* update L2 table */ /* compressed clusters never have the copied flag */ l2_table[l2_index] = cpu_to_be64(cluster_offset); if (bdrv_pwrite(s->hd, l2_offset + l2_index * sizeof(uint64_t), l2_table + l2_index, sizeof(uint64_t)) != sizeof(uint64_t)) return 0; return cluster_offset; } typedef struct QCowL2Meta { uint64_t offset; int n_start; int nb_available; int nb_clusters; } QCowL2Meta; static int alloc_cluster_link_l2(BlockDriverState *bs, uint64_t cluster_offset, QCowL2Meta *m) { BDRVQcowState *s = bs->opaque; int i, j = 0, l2_index, ret; uint64_t *old_cluster, start_sect, l2_offset, *l2_table; if (m->nb_clusters == 0) return 0; old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t)); /* copy content of unmodified sectors */ start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9; if (m->n_start) { ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start); if (ret < 0) goto err; } if (m->nb_available & (s->cluster_sectors - 1)) { uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1); ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9), m->nb_available - end, s->cluster_sectors); if (ret < 0) goto err; } ret = -EIO; /* update L2 table */ if (!get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index)) goto err; for (i = 0; i < m->nb_clusters; i++) { /* if two concurrent writes happen to the same unallocated cluster * each write allocates separate cluster and writes data concurrently. * The first one to complete updates l2 table with pointer to its * cluster the second one has to do RMW (which is done above by * copy_sectors()), update l2 table with its cluster pointer and free * old cluster. This is what this loop does */ if(l2_table[l2_index + i] != 0) old_cluster[j++] = l2_table[l2_index + i]; l2_table[l2_index + i] = cpu_to_be64((cluster_offset + (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); } if (bdrv_pwrite(s->hd, l2_offset + l2_index * sizeof(uint64_t), l2_table + l2_index, m->nb_clusters * sizeof(uint64_t)) != m->nb_clusters * sizeof(uint64_t)) goto err; for (i = 0; i < j; i++) free_any_clusters(bs, be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1); ret = 0; err: qemu_free(old_cluster); return ret; } /* * alloc_cluster_offset * * For a given offset of the disk image, return cluster offset in * qcow2 file. * * If the offset is not found, allocate a new cluster. * * Return the cluster offset if successful, * Return 0, otherwise. * */ static uint64_t alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, int n_start, int n_end, int *num, QCowL2Meta *m) { BDRVQcowState *s = bs->opaque; int l2_index, ret; uint64_t l2_offset, *l2_table, cluster_offset; int nb_clusters, i = 0; ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index); if (ret == 0) return 0; nb_clusters = size_to_clusters(s, n_end << 9); nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); cluster_offset = be64_to_cpu(l2_table[l2_index]); /* We keep all QCOW_OFLAG_COPIED clusters */ if (cluster_offset & QCOW_OFLAG_COPIED) { nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size, &l2_table[l2_index], 0, 0); cluster_offset &= ~QCOW_OFLAG_COPIED; m->nb_clusters = 0; goto out; } /* for the moment, multiple compressed clusters are not managed */ if (cluster_offset & QCOW_OFLAG_COMPRESSED) nb_clusters = 1; /* how many available clusters ? */ while (i < nb_clusters) { i += count_contiguous_clusters(nb_clusters - i, s->cluster_size, &l2_table[l2_index], i, 0); if(be64_to_cpu(l2_table[l2_index + i])) break; i += count_contiguous_free_clusters(nb_clusters - i, &l2_table[l2_index + i]); cluster_offset = be64_to_cpu(l2_table[l2_index + i]); if ((cluster_offset & QCOW_OFLAG_COPIED) || (cluster_offset & QCOW_OFLAG_COMPRESSED)) break; } nb_clusters = i; /* allocate a new cluster */ cluster_offset = alloc_clusters(bs, nb_clusters * s->cluster_size); /* save info needed for meta data update */ m->offset = offset; m->n_start = n_start; m->nb_clusters = nb_clusters; out: m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end); *num = m->nb_available - n_start; return cluster_offset; } static int qcow_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, int *pnum) { uint64_t cluster_offset; *pnum = nb_sectors; cluster_offset = get_cluster_offset(bs, sector_num << 9, pnum); return (cluster_offset != 0); } static int decompress_buffer(uint8_t *out_buf, int out_buf_size, const uint8_t *buf, int buf_size) { z_stream strm1, *strm = &strm1; int ret, out_len; memset(strm, 0, sizeof(*strm)); strm->next_in = (uint8_t *)buf; strm->avail_in = buf_size; strm->next_out = out_buf; strm->avail_out = out_buf_size; ret = inflateInit2(strm, -12); if (ret != Z_OK) return -1; ret = inflate(strm, Z_FINISH); out_len = strm->next_out - out_buf; if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || out_len != out_buf_size) { inflateEnd(strm); return -1; } inflateEnd(strm); return 0; } static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset) { int ret, csize, nb_csectors, sector_offset; uint64_t coffset; coffset = cluster_offset & s->cluster_offset_mask; if (s->cluster_cache_offset != coffset) { nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; sector_offset = coffset & 511; csize = nb_csectors * 512 - sector_offset; ret = bdrv_read(s->hd, coffset >> 9, s->cluster_data, nb_csectors); if (ret < 0) { return -1; } if (decompress_buffer(s->cluster_cache, s->cluster_size, s->cluster_data + sector_offset, csize) < 0) { return -1; } s->cluster_cache_offset = coffset; } return 0; } /* handle reading after the end of the backing file */ static int backing_read1(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, int nb_sectors) { int n1; if ((sector_num + nb_sectors) <= bs->total_sectors) return nb_sectors; if (sector_num >= bs->total_sectors) n1 = 0; else n1 = bs->total_sectors - sector_num; memset(buf + n1 * 512, 0, 512 * (nb_sectors - n1)); return n1; } static int qcow_read(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, int nb_sectors) { BDRVQcowState *s = bs->opaque; int ret, index_in_cluster, n, n1; uint64_t cluster_offset; while (nb_sectors > 0) { n = nb_sectors; cluster_offset = get_cluster_offset(bs, sector_num << 9, &n); index_in_cluster = sector_num & (s->cluster_sectors - 1); if (!cluster_offset) { if (bs->backing_hd) { /* read from the base image */ n1 = backing_read1(bs->backing_hd, sector_num, buf, n); if (n1 > 0) { ret = bdrv_read(bs->backing_hd, sector_num, buf, n1); if (ret < 0) return -1; } } else { memset(buf, 0, 512 * n); } } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) { if (decompress_cluster(s, cluster_offset) < 0) return -1; memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n); } else { ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512); if (ret != n * 512) return -1; if (s->crypt_method) { encrypt_sectors(s, sector_num, buf, buf, n, 0, &s->aes_decrypt_key); } } nb_sectors -= n; sector_num += n; buf += n * 512; } return 0; } static int qcow_write(BlockDriverState *bs, int64_t sector_num, const uint8_t *buf, int nb_sectors) { BDRVQcowState *s = bs->opaque; int ret, index_in_cluster, n; uint64_t cluster_offset; int n_end; QCowL2Meta l2meta; while (nb_sectors > 0) { index_in_cluster = sector_num & (s->cluster_sectors - 1); n_end = index_in_cluster + nb_sectors; if (s->crypt_method && n_end > QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors) n_end = QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors; cluster_offset = alloc_cluster_offset(bs, sector_num << 9, index_in_cluster, n_end, &n, &l2meta); if (!cluster_offset) return -1; if (s->crypt_method) { encrypt_sectors(s, sector_num, s->cluster_data, buf, n, 1, &s->aes_encrypt_key); ret = bdrv_pwrite(s->hd, cluster_offset + index_in_cluster * 512, s->cluster_data, n * 512); } else { ret = bdrv_pwrite(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512); } if (ret != n * 512 || alloc_cluster_link_l2(bs, cluster_offset, &l2meta) < 0) { free_any_clusters(bs, cluster_offset, l2meta.nb_clusters); return -1; } nb_sectors -= n; sector_num += n; buf += n * 512; } s->cluster_cache_offset = -1; /* disable compressed cache */ return 0; } typedef struct QCowAIOCB { BlockDriverAIOCB common; int64_t sector_num; QEMUIOVector *qiov; uint8_t *buf; void *orig_buf; int nb_sectors; int n; uint64_t cluster_offset; uint8_t *cluster_data; BlockDriverAIOCB *hd_aiocb; struct iovec hd_iov; QEMUIOVector hd_qiov; QEMUBH *bh; QCowL2Meta l2meta; } QCowAIOCB; static void qcow_aio_read_cb(void *opaque, int ret); static void qcow_aio_read_bh(void *opaque) { QCowAIOCB *acb = opaque; qemu_bh_delete(acb->bh); acb->bh = NULL; qcow_aio_read_cb(opaque, 0); } static int qcow_schedule_bh(QEMUBHFunc *cb, QCowAIOCB *acb) { if (acb->bh) return -EIO; acb->bh = qemu_bh_new(cb, acb); if (!acb->bh) return -EIO; qemu_bh_schedule(acb->bh); return 0; } static void qcow_aio_read_cb(void *opaque, int ret) { QCowAIOCB *acb = opaque; BlockDriverState *bs = acb->common.bs; BDRVQcowState *s = bs->opaque; int index_in_cluster, n1; acb->hd_aiocb = NULL; if (ret < 0) goto done; /* post process the read buffer */ if (!acb->cluster_offset) { /* nothing to do */ } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) { /* nothing to do */ } else { if (s->crypt_method) { encrypt_sectors(s, acb->sector_num, acb->buf, acb->buf, acb->n, 0, &s->aes_decrypt_key); } } acb->nb_sectors -= acb->n; acb->sector_num += acb->n; acb->buf += acb->n * 512; if (acb->nb_sectors == 0) { /* request completed */ ret = 0; goto done; } /* prepare next AIO request */ acb->n = acb->nb_sectors; acb->cluster_offset = get_cluster_offset(bs, acb->sector_num << 9, &acb->n); index_in_cluster = acb->sector_num & (s->cluster_sectors - 1); if (!acb->cluster_offset) { if (bs->backing_hd) { /* read from the base image */ n1 = backing_read1(bs->backing_hd, acb->sector_num, acb->buf, acb->n); if (n1 > 0) { acb->hd_iov.iov_base = (void *)acb->buf; acb->hd_iov.iov_len = acb->n * 512; qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1); acb->hd_aiocb = bdrv_aio_readv(bs->backing_hd, acb->sector_num, &acb->hd_qiov, acb->n, qcow_aio_read_cb, acb); if (acb->hd_aiocb == NULL) goto done; } else { ret = qcow_schedule_bh(qcow_aio_read_bh, acb); if (ret < 0) goto done; } } else { /* Note: in this case, no need to wait */ memset(acb->buf, 0, 512 * acb->n); ret = qcow_schedule_bh(qcow_aio_read_bh, acb); if (ret < 0) goto done; } } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) { /* add AIO support for compressed blocks ? */ if (decompress_cluster(s, acb->cluster_offset) < 0) goto done; memcpy(acb->buf, s->cluster_cache + index_in_cluster * 512, 512 * acb->n); ret = qcow_schedule_bh(qcow_aio_read_bh, acb); if (ret < 0) goto done; } else { if ((acb->cluster_offset & 511) != 0) { ret = -EIO; goto done; } acb->hd_iov.iov_base = (void *)acb->buf; acb->hd_iov.iov_len = acb->n * 512; qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1); acb->hd_aiocb = bdrv_aio_readv(s->hd, (acb->cluster_offset >> 9) + index_in_cluster, &acb->hd_qiov, acb->n, qcow_aio_read_cb, acb); if (acb->hd_aiocb == NULL) goto done; } return; done: if (acb->qiov->niov > 1) { qemu_iovec_from_buffer(acb->qiov, acb->orig_buf, acb->qiov->size); qemu_vfree(acb->orig_buf); } acb->common.cb(acb->common.opaque, ret); qemu_aio_release(acb); } static QCowAIOCB *qcow_aio_setup(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, BlockDriverCompletionFunc *cb, void *opaque, int is_write) { QCowAIOCB *acb; acb = qemu_aio_get(bs, cb, opaque); if (!acb) return NULL; acb->hd_aiocb = NULL; acb->sector_num = sector_num; acb->qiov = qiov; if (qiov->niov > 1) { acb->buf = acb->orig_buf = qemu_blockalign(bs, qiov->size); if (is_write) qemu_iovec_to_buffer(qiov, acb->buf); } else { acb->buf = (uint8_t *)qiov->iov->iov_base; } acb->nb_sectors = nb_sectors; acb->n = 0; acb->cluster_offset = 0; acb->l2meta.nb_clusters = 0; return acb; } static BlockDriverAIOCB *qcow_aio_readv(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, BlockDriverCompletionFunc *cb, void *opaque) { QCowAIOCB *acb; acb = qcow_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); if (!acb) return NULL; qcow_aio_read_cb(acb, 0); return &acb->common; } static void qcow_aio_write_cb(void *opaque, int ret) { QCowAIOCB *acb = opaque; BlockDriverState *bs = acb->common.bs; BDRVQcowState *s = bs->opaque; int index_in_cluster; const uint8_t *src_buf; int n_end; acb->hd_aiocb = NULL; if (ret < 0) goto done; if (alloc_cluster_link_l2(bs, acb->cluster_offset, &acb->l2meta) < 0) { free_any_clusters(bs, acb->cluster_offset, acb->l2meta.nb_clusters); goto done; } acb->nb_sectors -= acb->n; acb->sector_num += acb->n; acb->buf += acb->n * 512; if (acb->nb_sectors == 0) { /* request completed */ ret = 0; goto done; } index_in_cluster = acb->sector_num & (s->cluster_sectors - 1); n_end = index_in_cluster + acb->nb_sectors; if (s->crypt_method && n_end > QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors) n_end = QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors; acb->cluster_offset = alloc_cluster_offset(bs, acb->sector_num << 9, index_in_cluster, n_end, &acb->n, &acb->l2meta); if (!acb->cluster_offset || (acb->cluster_offset & 511) != 0) { ret = -EIO; goto done; } if (s->crypt_method) { if (!acb->cluster_data) { acb->cluster_data = qemu_mallocz(QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size); } encrypt_sectors(s, acb->sector_num, acb->cluster_data, acb->buf, acb->n, 1, &s->aes_encrypt_key); src_buf = acb->cluster_data; } else { src_buf = acb->buf; } acb->hd_iov.iov_base = (void *)src_buf; acb->hd_iov.iov_len = acb->n * 512; qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1); acb->hd_aiocb = bdrv_aio_writev(s->hd, (acb->cluster_offset >> 9) + index_in_cluster, &acb->hd_qiov, acb->n, qcow_aio_write_cb, acb); if (acb->hd_aiocb == NULL) goto done; return; done: if (acb->qiov->niov > 1) qemu_vfree(acb->orig_buf); acb->common.cb(acb->common.opaque, ret); qemu_aio_release(acb); } static BlockDriverAIOCB *qcow_aio_writev(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, BlockDriverCompletionFunc *cb, void *opaque) { BDRVQcowState *s = bs->opaque; QCowAIOCB *acb; s->cluster_cache_offset = -1; /* disable compressed cache */ acb = qcow_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); if (!acb) return NULL; qcow_aio_write_cb(acb, 0); return &acb->common; } static void qcow_aio_cancel(BlockDriverAIOCB *blockacb) { QCowAIOCB *acb = (QCowAIOCB *)blockacb; if (acb->hd_aiocb) bdrv_aio_cancel(acb->hd_aiocb); qemu_aio_release(acb); } static void qcow_close(BlockDriverState *bs) { BDRVQcowState *s = bs->opaque; qemu_free(s->l1_table); qemu_free(s->l2_cache); qemu_free(s->cluster_cache); qemu_free(s->cluster_data); refcount_close(bs); bdrv_delete(s->hd); } /* XXX: use std qcow open function ? */ typedef struct QCowCreateState { int cluster_size; int cluster_bits; uint16_t *refcount_block; uint64_t *refcount_table; int64_t l1_table_offset; int64_t refcount_table_offset; int64_t refcount_block_offset; } QCowCreateState; static void create_refcount_update(QCowCreateState *s, int64_t offset, int64_t size) { int refcount; int64_t start, last, cluster_offset; uint16_t *p; start = offset & ~(s->cluster_size - 1); last = (offset + size - 1) & ~(s->cluster_size - 1); for(cluster_offset = start; cluster_offset <= last; cluster_offset += s->cluster_size) { p = &s->refcount_block[cluster_offset >> s->cluster_bits]; refcount = be16_to_cpu(*p); refcount++; *p = cpu_to_be16(refcount); } } static int qcow_create2(const char *filename, int64_t total_size, const char *backing_file, const char *backing_format, int flags) { int fd, header_size, backing_filename_len, l1_size, i, shift, l2_bits; int ref_clusters, backing_format_len = 0; QCowHeader header; uint64_t tmp, offset; QCowCreateState s1, *s = &s1; QCowExtension ext_bf = {0, 0}; memset(s, 0, sizeof(*s)); fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, 0644); if (fd < 0) return -1; memset(&header, 0, sizeof(header)); header.magic = cpu_to_be32(QCOW_MAGIC); header.version = cpu_to_be32(QCOW_VERSION); header.size = cpu_to_be64(total_size * 512); header_size = sizeof(header); backing_filename_len = 0; if (backing_file) { if (backing_format) { ext_bf.magic = QCOW_EXT_MAGIC_BACKING_FORMAT; backing_format_len = strlen(backing_format); ext_bf.len = (backing_format_len + 7) & ~7; header_size += ((sizeof(ext_bf) + ext_bf.len + 7) & ~7); } header.backing_file_offset = cpu_to_be64(header_size); backing_filename_len = strlen(backing_file); header.backing_file_size = cpu_to_be32(backing_filename_len); header_size += backing_filename_len; } s->cluster_bits = 12; /* 4 KB clusters */ s->cluster_size = 1 << s->cluster_bits; header.cluster_bits = cpu_to_be32(s->cluster_bits); header_size = (header_size + 7) & ~7; if (flags & BLOCK_FLAG_ENCRYPT) { header.crypt_method = cpu_to_be32(QCOW_CRYPT_AES); } else { header.crypt_method = cpu_to_be32(QCOW_CRYPT_NONE); } l2_bits = s->cluster_bits - 3; shift = s->cluster_bits + l2_bits; l1_size = (((total_size * 512) + (1LL << shift) - 1) >> shift); offset = align_offset(header_size, s->cluster_size); s->l1_table_offset = offset; header.l1_table_offset = cpu_to_be64(s->l1_table_offset); header.l1_size = cpu_to_be32(l1_size); offset += align_offset(l1_size * sizeof(uint64_t), s->cluster_size); s->refcount_table = qemu_mallocz(s->cluster_size); s->refcount_table_offset = offset; header.refcount_table_offset = cpu_to_be64(offset); header.refcount_table_clusters = cpu_to_be32(1); offset += s->cluster_size; s->refcount_block_offset = offset; /* count how many refcount blocks needed */ tmp = offset >> s->cluster_bits; ref_clusters = (tmp >> (s->cluster_bits - REFCOUNT_SHIFT)) + 1; for (i=0; i < ref_clusters; i++) { s->refcount_table[i] = cpu_to_be64(offset); offset += s->cluster_size; } s->refcount_block = qemu_mallocz(ref_clusters * s->cluster_size); /* update refcounts */ create_refcount_update(s, 0, header_size); create_refcount_update(s, s->l1_table_offset, l1_size * sizeof(uint64_t)); create_refcount_update(s, s->refcount_table_offset, s->cluster_size); create_refcount_update(s, s->refcount_block_offset, ref_clusters * s->cluster_size); /* write all the data */ write(fd, &header, sizeof(header)); if (backing_file) { if (backing_format_len) { char zero[16]; int d = ext_bf.len - backing_format_len; memset(zero, 0, sizeof(zero)); cpu_to_be32s(&ext_bf.magic); cpu_to_be32s(&ext_bf.len); write(fd, &ext_bf, sizeof(ext_bf)); write(fd, backing_format, backing_format_len); if (d>0) { write(fd, zero, d); } } write(fd, backing_file, backing_filename_len); } lseek(fd, s->l1_table_offset, SEEK_SET); tmp = 0; for(i = 0;i < l1_size; i++) { write(fd, &tmp, sizeof(tmp)); } lseek(fd, s->refcount_table_offset, SEEK_SET); write(fd, s->refcount_table, s->cluster_size); lseek(fd, s->refcount_block_offset, SEEK_SET); write(fd, s->refcount_block, ref_clusters * s->cluster_size); qemu_free(s->refcount_table); qemu_free(s->refcount_block); close(fd); return 0; } static int qcow_create(const char *filename, int64_t total_size, const char *backing_file, int flags) { return qcow_create2(filename, total_size, backing_file, NULL, flags); } static int qcow_make_empty(BlockDriverState *bs) { #if 0 /* XXX: not correct */ BDRVQcowState *s = bs->opaque; uint32_t l1_length = s->l1_size * sizeof(uint64_t); int ret; memset(s->l1_table, 0, l1_length); if (bdrv_pwrite(s->hd, s->l1_table_offset, s->l1_table, l1_length) < 0) return -1; ret = bdrv_truncate(s->hd, s->l1_table_offset + l1_length); if (ret < 0) return ret; l2_cache_reset(bs); #endif return 0; } /* XXX: put compressed sectors first, then all the cluster aligned tables to avoid losing bytes in alignment */ static int qcow_write_compressed(BlockDriverState *bs, int64_t sector_num, const uint8_t *buf, int nb_sectors) { BDRVQcowState *s = bs->opaque; z_stream strm; int ret, out_len; uint8_t *out_buf; uint64_t cluster_offset; if (nb_sectors == 0) { /* align end of file to a sector boundary to ease reading with sector based I/Os */ cluster_offset = bdrv_getlength(s->hd); cluster_offset = (cluster_offset + 511) & ~511; bdrv_truncate(s->hd, cluster_offset); return 0; } if (nb_sectors != s->cluster_sectors) return -EINVAL; out_buf = qemu_malloc(s->cluster_size + (s->cluster_size / 1000) + 128); /* best compression, small window, no zlib header */ memset(&strm, 0, sizeof(strm)); ret = deflateInit2(&strm, Z_DEFAULT_COMPRESSION, Z_DEFLATED, -12, 9, Z_DEFAULT_STRATEGY); if (ret != 0) { qemu_free(out_buf); return -1; } strm.avail_in = s->cluster_size; strm.next_in = (uint8_t *)buf; strm.avail_out = s->cluster_size; strm.next_out = out_buf; ret = deflate(&strm, Z_FINISH); if (ret != Z_STREAM_END && ret != Z_OK) { qemu_free(out_buf); deflateEnd(&strm); return -1; } out_len = strm.next_out - out_buf; deflateEnd(&strm); if (ret != Z_STREAM_END || out_len >= s->cluster_size) { /* could not compress: write normal cluster */ qcow_write(bs, sector_num, buf, s->cluster_sectors); } else { cluster_offset = alloc_compressed_cluster_offset(bs, sector_num << 9, out_len); if (!cluster_offset) return -1; cluster_offset &= s->cluster_offset_mask; if (bdrv_pwrite(s->hd, cluster_offset, out_buf, out_len) != out_len) { qemu_free(out_buf); return -1; } } qemu_free(out_buf); return 0; } static void qcow_flush(BlockDriverState *bs) { BDRVQcowState *s = bs->opaque; bdrv_flush(s->hd); } static int qcow_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) { BDRVQcowState *s = bs->opaque; bdi->cluster_size = s->cluster_size; bdi->vm_state_offset = (int64_t)s->l1_vm_state_index << (s->cluster_bits + s->l2_bits); return 0; } /*********************************************************/ /* snapshot support */ /* update the refcounts of snapshots and the copied flag */ static int update_snapshot_refcount(BlockDriverState *bs, int64_t l1_table_offset, int l1_size, int addend) { BDRVQcowState *s = bs->opaque; uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, l1_allocated; int64_t old_offset, old_l2_offset; int l2_size, i, j, l1_modified, l2_modified, nb_csectors, refcount; l2_cache_reset(bs); l2_table = NULL; l1_table = NULL; l1_size2 = l1_size * sizeof(uint64_t); l1_allocated = 0; if (l1_table_offset != s->l1_table_offset) { l1_table = qemu_malloc(l1_size2); l1_allocated = 1; if (bdrv_pread(s->hd, l1_table_offset, l1_table, l1_size2) != l1_size2) goto fail; for(i = 0;i < l1_size; i++) be64_to_cpus(&l1_table[i]); } else { assert(l1_size == s->l1_size); l1_table = s->l1_table; l1_allocated = 0; } l2_size = s->l2_size * sizeof(uint64_t); l2_table = qemu_malloc(l2_size); l1_modified = 0; for(i = 0; i < l1_size; i++) { l2_offset = l1_table[i]; if (l2_offset) { old_l2_offset = l2_offset; l2_offset &= ~QCOW_OFLAG_COPIED; l2_modified = 0; if (bdrv_pread(s->hd, l2_offset, l2_table, l2_size) != l2_size) goto fail; for(j = 0; j < s->l2_size; j++) { offset = be64_to_cpu(l2_table[j]); if (offset != 0) { old_offset = offset; offset &= ~QCOW_OFLAG_COPIED; if (offset & QCOW_OFLAG_COMPRESSED) { nb_csectors = ((offset >> s->csize_shift) & s->csize_mask) + 1; if (addend != 0) update_refcount(bs, (offset & s->cluster_offset_mask) & ~511, nb_csectors * 512, addend); /* compressed clusters are never modified */ refcount = 2; } else { if (addend != 0) { refcount = update_cluster_refcount(bs, offset >> s->cluster_bits, addend); } else { refcount = get_refcount(bs, offset >> s->cluster_bits); } } if (refcount == 1) { offset |= QCOW_OFLAG_COPIED; } if (offset != old_offset) { l2_table[j] = cpu_to_be64(offset); l2_modified = 1; } } } if (l2_modified) { if (bdrv_pwrite(s->hd, l2_offset, l2_table, l2_size) != l2_size) goto fail; } if (addend != 0) { refcount = update_cluster_refcount(bs, l2_offset >> s->cluster_bits, addend); } else { refcount = get_refcount(bs, l2_offset >> s->cluster_bits); } if (refcount == 1) { l2_offset |= QCOW_OFLAG_COPIED; } if (l2_offset != old_l2_offset) { l1_table[i] = l2_offset; l1_modified = 1; } } } if (l1_modified) { for(i = 0; i < l1_size; i++) cpu_to_be64s(&l1_table[i]); if (bdrv_pwrite(s->hd, l1_table_offset, l1_table, l1_size2) != l1_size2) goto fail; for(i = 0; i < l1_size; i++) be64_to_cpus(&l1_table[i]); } if (l1_allocated) qemu_free(l1_table); qemu_free(l2_table); return 0; fail: if (l1_allocated) qemu_free(l1_table); qemu_free(l2_table); return -EIO; } static void qcow_free_snapshots(BlockDriverState *bs) { BDRVQcowState *s = bs->opaque; int i; for(i = 0; i < s->nb_snapshots; i++) { qemu_free(s->snapshots[i].name); qemu_free(s->snapshots[i].id_str); } qemu_free(s->snapshots); s->snapshots = NULL; s->nb_snapshots = 0; } static int qcow_read_snapshots(BlockDriverState *bs) { BDRVQcowState *s = bs->opaque; QCowSnapshotHeader h; QCowSnapshot *sn; int i, id_str_size, name_size; int64_t offset; uint32_t extra_data_size; if (!s->nb_snapshots) { s->snapshots = NULL; s->snapshots_size = 0; return 0; } offset = s->snapshots_offset; s->snapshots = qemu_mallocz(s->nb_snapshots * sizeof(QCowSnapshot)); for(i = 0; i < s->nb_snapshots; i++) { offset = align_offset(offset, 8); if (bdrv_pread(s->hd, offset, &h, sizeof(h)) != sizeof(h)) goto fail; offset += sizeof(h); sn = s->snapshots + i; sn->l1_table_offset = be64_to_cpu(h.l1_table_offset); sn->l1_size = be32_to_cpu(h.l1_size); sn->vm_state_size = be32_to_cpu(h.vm_state_size); sn->date_sec = be32_to_cpu(h.date_sec); sn->date_nsec = be32_to_cpu(h.date_nsec); sn->vm_clock_nsec = be64_to_cpu(h.vm_clock_nsec); extra_data_size = be32_to_cpu(h.extra_data_size); id_str_size = be16_to_cpu(h.id_str_size); name_size = be16_to_cpu(h.name_size); offset += extra_data_size; sn->id_str = qemu_malloc(id_str_size + 1); if (bdrv_pread(s->hd, offset, sn->id_str, id_str_size) != id_str_size) goto fail; offset += id_str_size; sn->id_str[id_str_size] = '\0'; sn->name = qemu_malloc(name_size + 1); if (bdrv_pread(s->hd, offset, sn->name, name_size) != name_size) goto fail; offset += name_size; sn->name[name_size] = '\0'; } s->snapshots_size = offset - s->snapshots_offset; return 0; fail: qcow_free_snapshots(bs); return -1; } /* add at the end of the file a new list of snapshots */ static int qcow_write_snapshots(BlockDriverState *bs) { BDRVQcowState *s = bs->opaque; QCowSnapshot *sn; QCowSnapshotHeader h; int i, name_size, id_str_size, snapshots_size; uint64_t data64; uint32_t data32; int64_t offset, snapshots_offset; /* compute the size of the snapshots */ offset = 0; for(i = 0; i < s->nb_snapshots; i++) { sn = s->snapshots + i; offset = align_offset(offset, 8); offset += sizeof(h); offset += strlen(sn->id_str); offset += strlen(sn->name); } snapshots_size = offset; snapshots_offset = alloc_clusters(bs, snapshots_size); offset = snapshots_offset; for(i = 0; i < s->nb_snapshots; i++) { sn = s->snapshots + i; memset(&h, 0, sizeof(h)); h.l1_table_offset = cpu_to_be64(sn->l1_table_offset); h.l1_size = cpu_to_be32(sn->l1_size); h.vm_state_size = cpu_to_be32(sn->vm_state_size); h.date_sec = cpu_to_be32(sn->date_sec); h.date_nsec = cpu_to_be32(sn->date_nsec); h.vm_clock_nsec = cpu_to_be64(sn->vm_clock_nsec); id_str_size = strlen(sn->id_str); name_size = strlen(sn->name); h.id_str_size = cpu_to_be16(id_str_size); h.name_size = cpu_to_be16(name_size); offset = align_offset(offset, 8); if (bdrv_pwrite(s->hd, offset, &h, sizeof(h)) != sizeof(h)) goto fail; offset += sizeof(h); if (bdrv_pwrite(s->hd, offset, sn->id_str, id_str_size) != id_str_size) goto fail; offset += id_str_size; if (bdrv_pwrite(s->hd, offset, sn->name, name_size) != name_size) goto fail; offset += name_size; } /* update the various header fields */ data64 = cpu_to_be64(snapshots_offset); if (bdrv_pwrite(s->hd, offsetof(QCowHeader, snapshots_offset), &data64, sizeof(data64)) != sizeof(data64)) goto fail; data32 = cpu_to_be32(s->nb_snapshots); if (bdrv_pwrite(s->hd, offsetof(QCowHeader, nb_snapshots), &data32, sizeof(data32)) != sizeof(data32)) goto fail; /* free the old snapshot table */ free_clusters(bs, s->snapshots_offset, s->snapshots_size); s->snapshots_offset = snapshots_offset; s->snapshots_size = snapshots_size; return 0; fail: return -1; } static void find_new_snapshot_id(BlockDriverState *bs, char *id_str, int id_str_size) { BDRVQcowState *s = bs->opaque; QCowSnapshot *sn; int i, id, id_max = 0; for(i = 0; i < s->nb_snapshots; i++) { sn = s->snapshots + i; id = strtoul(sn->id_str, NULL, 10); if (id > id_max) id_max = id; } snprintf(id_str, id_str_size, "%d", id_max + 1); } static int find_snapshot_by_id(BlockDriverState *bs, const char *id_str) { BDRVQcowState *s = bs->opaque; int i; for(i = 0; i < s->nb_snapshots; i++) { if (!strcmp(s->snapshots[i].id_str, id_str)) return i; } return -1; } static int find_snapshot_by_id_or_name(BlockDriverState *bs, const char *name) { BDRVQcowState *s = bs->opaque; int i, ret; ret = find_snapshot_by_id(bs, name); if (ret >= 0) return ret; for(i = 0; i < s->nb_snapshots; i++) { if (!strcmp(s->snapshots[i].name, name)) return i; } return -1; } /* if no id is provided, a new one is constructed */ static int qcow_snapshot_create(BlockDriverState *bs, QEMUSnapshotInfo *sn_info) { BDRVQcowState *s = bs->opaque; QCowSnapshot *snapshots1, sn1, *sn = &sn1; int i, ret; uint64_t *l1_table = NULL; memset(sn, 0, sizeof(*sn)); if (sn_info->id_str[0] == '\0') { /* compute a new id */ find_new_snapshot_id(bs, sn_info->id_str, sizeof(sn_info->id_str)); } /* check that the ID is unique */ if (find_snapshot_by_id(bs, sn_info->id_str) >= 0) return -ENOENT; sn->id_str = qemu_strdup(sn_info->id_str); if (!sn->id_str) goto fail; sn->name = qemu_strdup(sn_info->name); if (!sn->name) goto fail; sn->vm_state_size = sn_info->vm_state_size; sn->date_sec = sn_info->date_sec; sn->date_nsec = sn_info->date_nsec; sn->vm_clock_nsec = sn_info->vm_clock_nsec; ret = update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, 1); if (ret < 0) goto fail; /* create the L1 table of the snapshot */ sn->l1_table_offset = alloc_clusters(bs, s->l1_size * sizeof(uint64_t)); sn->l1_size = s->l1_size; l1_table = qemu_malloc(s->l1_size * sizeof(uint64_t)); for(i = 0; i < s->l1_size; i++) { l1_table[i] = cpu_to_be64(s->l1_table[i]); } if (bdrv_pwrite(s->hd, sn->l1_table_offset, l1_table, s->l1_size * sizeof(uint64_t)) != (s->l1_size * sizeof(uint64_t))) goto fail; qemu_free(l1_table); l1_table = NULL; snapshots1 = qemu_malloc((s->nb_snapshots + 1) * sizeof(QCowSnapshot)); if (s->snapshots) { memcpy(snapshots1, s->snapshots, s->nb_snapshots * sizeof(QCowSnapshot)); qemu_free(s->snapshots); } s->snapshots = snapshots1; s->snapshots[s->nb_snapshots++] = *sn; if (qcow_write_snapshots(bs) < 0) goto fail; #ifdef DEBUG_ALLOC check_refcounts(bs); #endif return 0; fail: qemu_free(sn->name); qemu_free(l1_table); return -1; } /* copy the snapshot 'snapshot_name' into the current disk image */ static int qcow_snapshot_goto(BlockDriverState *bs, const char *snapshot_id) { BDRVQcowState *s = bs->opaque; QCowSnapshot *sn; int i, snapshot_index, l1_size2; snapshot_index = find_snapshot_by_id_or_name(bs, snapshot_id); if (snapshot_index < 0) return -ENOENT; sn = &s->snapshots[snapshot_index]; if (update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, -1) < 0) goto fail; if (grow_l1_table(bs, sn->l1_size) < 0) goto fail; s->l1_size = sn->l1_size; l1_size2 = s->l1_size * sizeof(uint64_t); /* copy the snapshot l1 table to the current l1 table */ if (bdrv_pread(s->hd, sn->l1_table_offset, s->l1_table, l1_size2) != l1_size2) goto fail; if (bdrv_pwrite(s->hd, s->l1_table_offset, s->l1_table, l1_size2) != l1_size2) goto fail; for(i = 0;i < s->l1_size; i++) { be64_to_cpus(&s->l1_table[i]); } if (update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, 1) < 0) goto fail; #ifdef DEBUG_ALLOC check_refcounts(bs); #endif return 0; fail: return -EIO; } static int qcow_snapshot_delete(BlockDriverState *bs, const char *snapshot_id) { BDRVQcowState *s = bs->opaque; QCowSnapshot *sn; int snapshot_index, ret; snapshot_index = find_snapshot_by_id_or_name(bs, snapshot_id); if (snapshot_index < 0) return -ENOENT; sn = &s->snapshots[snapshot_index]; ret = update_snapshot_refcount(bs, sn->l1_table_offset, sn->l1_size, -1); if (ret < 0) return ret; /* must update the copied flag on the current cluster offsets */ ret = update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, 0); if (ret < 0) return ret; free_clusters(bs, sn->l1_table_offset, sn->l1_size * sizeof(uint64_t)); qemu_free(sn->id_str); qemu_free(sn->name); memmove(sn, sn + 1, (s->nb_snapshots - snapshot_index - 1) * sizeof(*sn)); s->nb_snapshots--; ret = qcow_write_snapshots(bs); if (ret < 0) { /* XXX: restore snapshot if error ? */ return ret; } #ifdef DEBUG_ALLOC check_refcounts(bs); #endif return 0; } static int qcow_snapshot_list(BlockDriverState *bs, QEMUSnapshotInfo **psn_tab) { BDRVQcowState *s = bs->opaque; QEMUSnapshotInfo *sn_tab, *sn_info; QCowSnapshot *sn; int i; sn_tab = qemu_mallocz(s->nb_snapshots * sizeof(QEMUSnapshotInfo)); for(i = 0; i < s->nb_snapshots; i++) { sn_info = sn_tab + i; sn = s->snapshots + i; pstrcpy(sn_info->id_str, sizeof(sn_info->id_str), sn->id_str); pstrcpy(sn_info->name, sizeof(sn_info->name), sn->name); sn_info->vm_state_size = sn->vm_state_size; sn_info->date_sec = sn->date_sec; sn_info->date_nsec = sn->date_nsec; sn_info->vm_clock_nsec = sn->vm_clock_nsec; } *psn_tab = sn_tab; return s->nb_snapshots; } /*********************************************************/ /* refcount handling */ static int refcount_init(BlockDriverState *bs) { BDRVQcowState *s = bs->opaque; int ret, refcount_table_size2, i; s->refcount_block_cache = qemu_malloc(s->cluster_size); refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t); s->refcount_table = qemu_malloc(refcount_table_size2); if (s->refcount_table_size > 0) { ret = bdrv_pread(s->hd, s->refcount_table_offset, s->refcount_table, refcount_table_size2); if (ret != refcount_table_size2) goto fail; for(i = 0; i < s->refcount_table_size; i++) be64_to_cpus(&s->refcount_table[i]); } return 0; fail: return -ENOMEM; } static void refcount_close(BlockDriverState *bs) { BDRVQcowState *s = bs->opaque; qemu_free(s->refcount_block_cache); qemu_free(s->refcount_table); } static int load_refcount_block(BlockDriverState *bs, int64_t refcount_block_offset) { BDRVQcowState *s = bs->opaque; int ret; ret = bdrv_pread(s->hd, refcount_block_offset, s->refcount_block_cache, s->cluster_size); if (ret != s->cluster_size) return -EIO; s->refcount_block_cache_offset = refcount_block_offset; return 0; } static int get_refcount(BlockDriverState *bs, int64_t cluster_index) { BDRVQcowState *s = bs->opaque; int refcount_table_index, block_index; int64_t refcount_block_offset; refcount_table_index = cluster_index >> (s->cluster_bits - REFCOUNT_SHIFT); if (refcount_table_index >= s->refcount_table_size) return 0; refcount_block_offset = s->refcount_table[refcount_table_index]; if (!refcount_block_offset) return 0; if (refcount_block_offset != s->refcount_block_cache_offset) { /* better than nothing: return allocated if read error */ if (load_refcount_block(bs, refcount_block_offset) < 0) return 1; } block_index = cluster_index & ((1 << (s->cluster_bits - REFCOUNT_SHIFT)) - 1); return be16_to_cpu(s->refcount_block_cache[block_index]); } /* return < 0 if error */ static int64_t alloc_clusters_noref(BlockDriverState *bs, int64_t size) { BDRVQcowState *s = bs->opaque; int i, nb_clusters; nb_clusters = size_to_clusters(s, size); retry: for(i = 0; i < nb_clusters; i++) { int64_t i = s->free_cluster_index++; if (get_refcount(bs, i) != 0) goto retry; } #ifdef DEBUG_ALLOC2 printf("alloc_clusters: size=%lld -> %lld\n", size, (s->free_cluster_index - nb_clusters) << s->cluster_bits); #endif return (s->free_cluster_index - nb_clusters) << s->cluster_bits; } static int64_t alloc_clusters(BlockDriverState *bs, int64_t size) { int64_t offset; offset = alloc_clusters_noref(bs, size); update_refcount(bs, offset, size, 1); return offset; } /* only used to allocate compressed sectors. We try to allocate contiguous sectors. size must be <= cluster_size */ static int64_t alloc_bytes(BlockDriverState *bs, int size) { BDRVQcowState *s = bs->opaque; int64_t offset, cluster_offset; int free_in_cluster; assert(size > 0 && size <= s->cluster_size); if (s->free_byte_offset == 0) { s->free_byte_offset = alloc_clusters(bs, s->cluster_size); } redo: free_in_cluster = s->cluster_size - (s->free_byte_offset & (s->cluster_size - 1)); if (size <= free_in_cluster) { /* enough space in current cluster */ offset = s->free_byte_offset; s->free_byte_offset += size; free_in_cluster -= size; if (free_in_cluster == 0) s->free_byte_offset = 0; if ((offset & (s->cluster_size - 1)) != 0) update_cluster_refcount(bs, offset >> s->cluster_bits, 1); } else { offset = alloc_clusters(bs, s->cluster_size); cluster_offset = s->free_byte_offset & ~(s->cluster_size - 1); if ((cluster_offset + s->cluster_size) == offset) { /* we are lucky: contiguous data */ offset = s->free_byte_offset; update_cluster_refcount(bs, offset >> s->cluster_bits, 1); s->free_byte_offset += size; } else { s->free_byte_offset = offset; goto redo; } } return offset; } static void free_clusters(BlockDriverState *bs, int64_t offset, int64_t size) { update_refcount(bs, offset, size, -1); } static int grow_refcount_table(BlockDriverState *bs, int min_size) { BDRVQcowState *s = bs->opaque; int new_table_size, new_table_size2, refcount_table_clusters, i, ret; uint64_t *new_table; int64_t table_offset; uint8_t data[12]; int old_table_size; int64_t old_table_offset; if (min_size <= s->refcount_table_size) return 0; /* compute new table size */ refcount_table_clusters = s->refcount_table_size >> (s->cluster_bits - 3); for(;;) { if (refcount_table_clusters == 0) { refcount_table_clusters = 1; } else { refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2; } new_table_size = refcount_table_clusters << (s->cluster_bits - 3); if (min_size <= new_table_size) break; } #ifdef DEBUG_ALLOC2 printf("grow_refcount_table from %d to %d\n", s->refcount_table_size, new_table_size); #endif new_table_size2 = new_table_size * sizeof(uint64_t); new_table = qemu_mallocz(new_table_size2); memcpy(new_table, s->refcount_table, s->refcount_table_size * sizeof(uint64_t)); for(i = 0; i < s->refcount_table_size; i++) cpu_to_be64s(&new_table[i]); /* Note: we cannot update the refcount now to avoid recursion */ table_offset = alloc_clusters_noref(bs, new_table_size2); ret = bdrv_pwrite(s->hd, table_offset, new_table, new_table_size2); if (ret != new_table_size2) goto fail; for(i = 0; i < s->refcount_table_size; i++) be64_to_cpus(&new_table[i]); cpu_to_be64w((uint64_t*)data, table_offset); cpu_to_be32w((uint32_t*)(data + 8), refcount_table_clusters); if (bdrv_pwrite(s->hd, offsetof(QCowHeader, refcount_table_offset), data, sizeof(data)) != sizeof(data)) goto fail; qemu_free(s->refcount_table); old_table_offset = s->refcount_table_offset; old_table_size = s->refcount_table_size; s->refcount_table = new_table; s->refcount_table_size = new_table_size; s->refcount_table_offset = table_offset; update_refcount(bs, table_offset, new_table_size2, 1); free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t)); return 0; fail: free_clusters(bs, table_offset, new_table_size2); qemu_free(new_table); return -EIO; } /* addend must be 1 or -1 */ /* XXX: cache several refcount block clusters ? */ static int update_cluster_refcount(BlockDriverState *bs, int64_t cluster_index, int addend) { BDRVQcowState *s = bs->opaque; int64_t offset, refcount_block_offset; int ret, refcount_table_index, block_index, refcount; uint64_t data64; refcount_table_index = cluster_index >> (s->cluster_bits - REFCOUNT_SHIFT); if (refcount_table_index >= s->refcount_table_size) { if (addend < 0) return -EINVAL; ret = grow_refcount_table(bs, refcount_table_index + 1); if (ret < 0) return ret; } refcount_block_offset = s->refcount_table[refcount_table_index]; if (!refcount_block_offset) { if (addend < 0) return -EINVAL; /* create a new refcount block */ /* Note: we cannot update the refcount now to avoid recursion */ offset = alloc_clusters_noref(bs, s->cluster_size); memset(s->refcount_block_cache, 0, s->cluster_size); ret = bdrv_pwrite(s->hd, offset, s->refcount_block_cache, s->cluster_size); if (ret != s->cluster_size) return -EINVAL; s->refcount_table[refcount_table_index] = offset; data64 = cpu_to_be64(offset); ret = bdrv_pwrite(s->hd, s->refcount_table_offset + refcount_table_index * sizeof(uint64_t), &data64, sizeof(data64)); if (ret != sizeof(data64)) return -EINVAL; refcount_block_offset = offset; s->refcount_block_cache_offset = offset; update_refcount(bs, offset, s->cluster_size, 1); } else { if (refcount_block_offset != s->refcount_block_cache_offset) { if (load_refcount_block(bs, refcount_block_offset) < 0) return -EIO; } } /* we can update the count and save it */ block_index = cluster_index & ((1 << (s->cluster_bits - REFCOUNT_SHIFT)) - 1); refcount = be16_to_cpu(s->refcount_block_cache[block_index]); refcount += addend; if (refcount < 0 || refcount > 0xffff) return -EINVAL; if (refcount == 0 && cluster_index < s->free_cluster_index) { s->free_cluster_index = cluster_index; } s->refcount_block_cache[block_index] = cpu_to_be16(refcount); if (bdrv_pwrite(s->hd, refcount_block_offset + (block_index << REFCOUNT_SHIFT), &s->refcount_block_cache[block_index], 2) != 2) return -EIO; return refcount; } static void update_refcount(BlockDriverState *bs, int64_t offset, int64_t length, int addend) { BDRVQcowState *s = bs->opaque; int64_t start, last, cluster_offset; #ifdef DEBUG_ALLOC2 printf("update_refcount: offset=%lld size=%lld addend=%d\n", offset, length, addend); #endif if (length <= 0) return; start = offset & ~(s->cluster_size - 1); last = (offset + length - 1) & ~(s->cluster_size - 1); for(cluster_offset = start; cluster_offset <= last; cluster_offset += s->cluster_size) { update_cluster_refcount(bs, cluster_offset >> s->cluster_bits, addend); } } /* * Increases the refcount for a range of clusters in a given refcount table. * This is used to construct a temporary refcount table out of L1 and L2 tables * which can be compared the the refcount table saved in the image. * * Returns the number of errors in the image that were found */ static int inc_refcounts(BlockDriverState *bs, uint16_t *refcount_table, int refcount_table_size, int64_t offset, int64_t size) { BDRVQcowState *s = bs->opaque; int64_t start, last, cluster_offset; int k; int errors = 0; if (size <= 0) return 0; start = offset & ~(s->cluster_size - 1); last = (offset + size - 1) & ~(s->cluster_size - 1); for(cluster_offset = start; cluster_offset <= last; cluster_offset += s->cluster_size) { k = cluster_offset >> s->cluster_bits; if (k < 0 || k >= refcount_table_size) { fprintf(stderr, "ERROR: invalid cluster offset=0x%" PRIx64 "\n", cluster_offset); errors++; } else { if (++refcount_table[k] == 0) { fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64 "\n", cluster_offset); errors++; } } } return errors; } /* * Increases the refcount in the given refcount table for the all clusters * referenced in the L2 table. While doing so, performs some checks on L2 * entries. * * Returns the number of errors found by the checks or -errno if an internal * error occurred. */ static int check_refcounts_l2(BlockDriverState *bs, uint16_t *refcount_table, int refcount_table_size, int64_t l2_offset, int check_copied) { BDRVQcowState *s = bs->opaque; uint64_t *l2_table, offset; int i, l2_size, nb_csectors, refcount; int errors = 0; /* Read L2 table from disk */ l2_size = s->l2_size * sizeof(uint64_t); l2_table = qemu_malloc(l2_size); if (bdrv_pread(s->hd, l2_offset, l2_table, l2_size) != l2_size) goto fail; /* Do the actual checks */ for(i = 0; i < s->l2_size; i++) { offset = be64_to_cpu(l2_table[i]); if (offset != 0) { if (offset & QCOW_OFLAG_COMPRESSED) { /* Compressed clusters don't have QCOW_OFLAG_COPIED */ if (offset & QCOW_OFLAG_COPIED) { fprintf(stderr, "ERROR: cluster %" PRId64 ": " "copied flag must never be set for compressed " "clusters\n", offset >> s->cluster_bits); offset &= ~QCOW_OFLAG_COPIED; errors++; } /* Mark cluster as used */ nb_csectors = ((offset >> s->csize_shift) & s->csize_mask) + 1; offset &= s->cluster_offset_mask; errors += inc_refcounts(bs, refcount_table, refcount_table_size, offset & ~511, nb_csectors * 512); } else { /* QCOW_OFLAG_COPIED must be set iff refcount == 1 */ if (check_copied) { uint64_t entry = offset; offset &= ~QCOW_OFLAG_COPIED; refcount = get_refcount(bs, offset >> s->cluster_bits); if ((refcount == 1) != ((entry & QCOW_OFLAG_COPIED) != 0)) { fprintf(stderr, "ERROR OFLAG_COPIED: offset=%" PRIx64 " refcount=%d\n", entry, refcount); errors++; } } /* Mark cluster as used */ offset &= ~QCOW_OFLAG_COPIED; errors += inc_refcounts(bs, refcount_table, refcount_table_size, offset, s->cluster_size); /* Correct offsets are cluster aligned */ if (offset & (s->cluster_size - 1)) { fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not " "properly aligned; L2 entry corrupted.\n", offset); errors++; } } } } qemu_free(l2_table); return errors; fail: fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n"); qemu_free(l2_table); return -EIO; } /* * Increases the refcount for the L1 table, its L2 tables and all referenced * clusters in the given refcount table. While doing so, performs some checks * on L1 and L2 entries. * * Returns the number of errors found by the checks or -errno if an internal * error occurred. */ static int check_refcounts_l1(BlockDriverState *bs, uint16_t *refcount_table, int refcount_table_size, int64_t l1_table_offset, int l1_size, int check_copied) { BDRVQcowState *s = bs->opaque; uint64_t *l1_table, l2_offset, l1_size2; int i, refcount, ret; int errors = 0; l1_size2 = l1_size * sizeof(uint64_t); /* Mark L1 table as used */ errors += inc_refcounts(bs, refcount_table, refcount_table_size, l1_table_offset, l1_size2); /* Read L1 table entries from disk */ l1_table = qemu_malloc(l1_size2); if (bdrv_pread(s->hd, l1_table_offset, l1_table, l1_size2) != l1_size2) goto fail; for(i = 0;i < l1_size; i++) be64_to_cpus(&l1_table[i]); /* Do the actual checks */ for(i = 0; i < l1_size; i++) { l2_offset = l1_table[i]; if (l2_offset) { /* QCOW_OFLAG_COPIED must be set iff refcount == 1 */ if (check_copied) { refcount = get_refcount(bs, (l2_offset & ~QCOW_OFLAG_COPIED) >> s->cluster_bits); if ((refcount == 1) != ((l2_offset & QCOW_OFLAG_COPIED) != 0)) { fprintf(stderr, "ERROR OFLAG_COPIED: l2_offset=%" PRIx64 " refcount=%d\n", l2_offset, refcount); errors++; } } /* Mark L2 table as used */ l2_offset &= ~QCOW_OFLAG_COPIED; errors += inc_refcounts(bs, refcount_table, refcount_table_size, l2_offset, s->cluster_size); /* L2 tables are cluster aligned */ if (l2_offset & (s->cluster_size - 1)) { fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not " "cluster aligned; L1 entry corrupted\n", l2_offset); errors++; } /* Process and check L2 entries */ ret = check_refcounts_l2(bs, refcount_table, refcount_table_size, l2_offset, check_copied); if (ret < 0) { goto fail; } errors += ret; } } qemu_free(l1_table); return errors; fail: fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n"); qemu_free(l1_table); return -EIO; } /* * Checks an image for refcount consistency. * * Returns 0 if no errors are found, the number of errors in case the image is * detected as corrupted, and -errno when an internal error occured. */ static int check_refcounts(BlockDriverState *bs) { BDRVQcowState *s = bs->opaque; int64_t size; int nb_clusters, refcount1, refcount2, i; QCowSnapshot *sn; uint16_t *refcount_table; int ret, errors = 0; size = bdrv_getlength(s->hd); nb_clusters = size_to_clusters(s, size); refcount_table = qemu_mallocz(nb_clusters * sizeof(uint16_t)); /* header */ errors += inc_refcounts(bs, refcount_table, nb_clusters, 0, s->cluster_size); /* current L1 table */ ret = check_refcounts_l1(bs, refcount_table, nb_clusters, s->l1_table_offset, s->l1_size, 1); if (ret < 0) { return ret; } errors += ret; /* snapshots */ for(i = 0; i < s->nb_snapshots; i++) { sn = s->snapshots + i; check_refcounts_l1(bs, refcount_table, nb_clusters, sn->l1_table_offset, sn->l1_size, 0); } errors += inc_refcounts(bs, refcount_table, nb_clusters, s->snapshots_offset, s->snapshots_size); /* refcount data */ errors += inc_refcounts(bs, refcount_table, nb_clusters, s->refcount_table_offset, s->refcount_table_size * sizeof(uint64_t)); for(i = 0; i < s->refcount_table_size; i++) { int64_t offset; offset = s->refcount_table[i]; if (offset != 0) { errors += inc_refcounts(bs, refcount_table, nb_clusters, offset, s->cluster_size); } } /* compare ref counts */ for(i = 0; i < nb_clusters; i++) { refcount1 = get_refcount(bs, i); refcount2 = refcount_table[i]; if (refcount1 != refcount2) { fprintf(stderr, "ERROR cluster %d refcount=%d reference=%d\n", i, refcount1, refcount2); errors++; } } qemu_free(refcount_table); return errors; } static int qcow_check(BlockDriverState *bs) { return check_refcounts(bs); } #if 0 static void dump_refcounts(BlockDriverState *bs) { BDRVQcowState *s = bs->opaque; int64_t nb_clusters, k, k1, size; int refcount; size = bdrv_getlength(s->hd); nb_clusters = size_to_clusters(s, size); for(k = 0; k < nb_clusters;) { k1 = k; refcount = get_refcount(bs, k); k++; while (k < nb_clusters && get_refcount(bs, k) == refcount) k++; printf("%lld: refcount=%d nb=%lld\n", k, refcount, k - k1); } } #endif static int qcow_put_buffer(BlockDriverState *bs, const uint8_t *buf, int64_t pos, int size) { int growable = bs->growable; bs->growable = 1; bdrv_pwrite(bs, pos, buf, size); bs->growable = growable; return size; } static int qcow_get_buffer(BlockDriverState *bs, uint8_t *buf, int64_t pos, int size) { int growable = bs->growable; int ret; bs->growable = 1; ret = bdrv_pread(bs, pos, buf, size); bs->growable = growable; return ret; } BlockDriver bdrv_qcow2 = { .format_name = "qcow2", .instance_size = sizeof(BDRVQcowState), .bdrv_probe = qcow_probe, .bdrv_open = qcow_open, .bdrv_close = qcow_close, .bdrv_create = qcow_create, .bdrv_flush = qcow_flush, .bdrv_is_allocated = qcow_is_allocated, .bdrv_set_key = qcow_set_key, .bdrv_make_empty = qcow_make_empty, .bdrv_aio_readv = qcow_aio_readv, .bdrv_aio_writev = qcow_aio_writev, .bdrv_aio_cancel = qcow_aio_cancel, .aiocb_size = sizeof(QCowAIOCB), .bdrv_write_compressed = qcow_write_compressed, .bdrv_snapshot_create = qcow_snapshot_create, .bdrv_snapshot_goto = qcow_snapshot_goto, .bdrv_snapshot_delete = qcow_snapshot_delete, .bdrv_snapshot_list = qcow_snapshot_list, .bdrv_get_info = qcow_get_info, .bdrv_put_buffer = qcow_put_buffer, .bdrv_get_buffer = qcow_get_buffer, .bdrv_create2 = qcow_create2, .bdrv_check = qcow_check, };