/* * QEMU Audio subsystem * * Copyright (c) 2003-2005 Vassili Karpov (malc) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw/hw.h" #include "audio.h" #include "monitor.h" #include "qemu-timer.h" #include "sysemu.h" #define AUDIO_CAP "audio" #include "audio_int.h" /* #define DEBUG_PLIVE */ /* #define DEBUG_LIVE */ /* #define DEBUG_OUT */ /* #define DEBUG_CAPTURE */ /* #define DEBUG_POLL */ #define SW_NAME(sw) (sw)->name ? (sw)->name : "unknown" /* Order of CONFIG_AUDIO_DRIVERS is import. The 1st one is the one used by default, that is the reason that we generate the list. */ static struct audio_driver *drvtab[] = { CONFIG_AUDIO_DRIVERS &no_audio_driver, &wav_audio_driver }; struct fixed_settings { int enabled; int nb_voices; int greedy; struct audsettings settings; }; static struct { struct fixed_settings fixed_out; struct fixed_settings fixed_in; union { int hertz; int64_t ticks; } period; int plive; int log_to_monitor; int try_poll_in; int try_poll_out; } conf = { .fixed_out = { /* DAC fixed settings */ .enabled = 1, .nb_voices = 1, .greedy = 1, .settings = { .freq = 44100, .nchannels = 2, .fmt = AUD_FMT_S16, .endianness = AUDIO_HOST_ENDIANNESS, } }, .fixed_in = { /* ADC fixed settings */ .enabled = 1, .nb_voices = 1, .greedy = 1, .settings = { .freq = 44100, .nchannels = 2, .fmt = AUD_FMT_S16, .endianness = AUDIO_HOST_ENDIANNESS, } }, .period = { .hertz = 250 }, .plive = 0, .log_to_monitor = 0, .try_poll_in = 1, .try_poll_out = 1, }; static AudioState glob_audio_state; struct mixeng_volume nominal_volume = { .mute = 0, #ifdef FLOAT_MIXENG .r = 1.0, .l = 1.0, #else .r = 1ULL << 32, .l = 1ULL << 32, #endif }; #ifdef AUDIO_IS_FLAWLESS_AND_NO_CHECKS_ARE_REQURIED #error No its not #else int audio_bug (const char *funcname, int cond) { if (cond) { static int shown; AUD_log (NULL, "A bug was just triggered in %s\n", funcname); if (!shown) { shown = 1; AUD_log (NULL, "Save all your work and restart without audio\n"); AUD_log (NULL, "Please send bug report to malc@pulsesoft.com\n"); AUD_log (NULL, "I am sorry\n"); } AUD_log (NULL, "Context:\n"); #if defined AUDIO_BREAKPOINT_ON_BUG # if defined HOST_I386 # if defined __GNUC__ __asm__ ("int3"); # elif defined _MSC_VER _asm _emit 0xcc; # else abort (); # endif # else abort (); # endif #endif } return cond; } #endif static inline int audio_bits_to_index (int bits) { switch (bits) { case 8: return 0; case 16: return 1; case 32: return 2; default: audio_bug ("bits_to_index", 1); AUD_log (NULL, "invalid bits %d\n", bits); return 0; } } void *audio_calloc (const char *funcname, int nmemb, size_t size) { int cond; size_t len; len = nmemb * size; cond = !nmemb || !size; cond |= nmemb < 0; cond |= len < size; if (audio_bug ("audio_calloc", cond)) { AUD_log (NULL, "%s passed invalid arguments to audio_calloc\n", funcname); AUD_log (NULL, "nmemb=%d size=%zu (len=%zu)\n", nmemb, size, len); return NULL; } return qemu_mallocz (len); } static char *audio_alloc_prefix (const char *s) { const char qemu_prefix[] = "QEMU_"; size_t len, i; char *r, *u; if (!s) { return NULL; } len = strlen (s); r = qemu_malloc (len + sizeof (qemu_prefix)); u = r + sizeof (qemu_prefix) - 1; pstrcpy (r, len + sizeof (qemu_prefix), qemu_prefix); pstrcat (r, len + sizeof (qemu_prefix), s); for (i = 0; i < len; ++i) { u[i] = qemu_toupper(u[i]); } return r; } static const char *audio_audfmt_to_string (audfmt_e fmt) { switch (fmt) { case AUD_FMT_U8: return "U8"; case AUD_FMT_U16: return "U16"; case AUD_FMT_S8: return "S8"; case AUD_FMT_S16: return "S16"; case AUD_FMT_U32: return "U32"; case AUD_FMT_S32: return "S32"; } dolog ("Bogus audfmt %d returning S16\n", fmt); return "S16"; } static audfmt_e audio_string_to_audfmt (const char *s, audfmt_e defval, int *defaultp) { if (!strcasecmp (s, "u8")) { *defaultp = 0; return AUD_FMT_U8; } else if (!strcasecmp (s, "u16")) { *defaultp = 0; return AUD_FMT_U16; } else if (!strcasecmp (s, "u32")) { *defaultp = 0; return AUD_FMT_U32; } else if (!strcasecmp (s, "s8")) { *defaultp = 0; return AUD_FMT_S8; } else if (!strcasecmp (s, "s16")) { *defaultp = 0; return AUD_FMT_S16; } else if (!strcasecmp (s, "s32")) { *defaultp = 0; return AUD_FMT_S32; } else { dolog ("Bogus audio format `%s' using %s\n", s, audio_audfmt_to_string (defval)); *defaultp = 1; return defval; } } static audfmt_e audio_get_conf_fmt (const char *envname, audfmt_e defval, int *defaultp) { const char *var = getenv (envname); if (!var) { *defaultp = 1; return defval; } return audio_string_to_audfmt (var, defval, defaultp); } static int audio_get_conf_int (const char *key, int defval, int *defaultp) { int val; char *strval; strval = getenv (key); if (strval) { *defaultp = 0; val = atoi (strval); return val; } else { *defaultp = 1; return defval; } } static const char *audio_get_conf_str (const char *key, const char *defval, int *defaultp) { const char *val = getenv (key); if (!val) { *defaultp = 1; return defval; } else { *defaultp = 0; return val; } } void AUD_vlog (const char *cap, const char *fmt, va_list ap) { if (conf.log_to_monitor) { if (cap) { monitor_printf(cur_mon, "%s: ", cap); } monitor_vprintf(cur_mon, fmt, ap); } else { if (cap) { fprintf (stderr, "%s: ", cap); } vfprintf (stderr, fmt, ap); } } void AUD_log (const char *cap, const char *fmt, ...) { va_list ap; va_start (ap, fmt); AUD_vlog (cap, fmt, ap); va_end (ap); } static void audio_print_options (const char *prefix, struct audio_option *opt) { char *uprefix; if (!prefix) { dolog ("No prefix specified\n"); return; } if (!opt) { dolog ("No options\n"); return; } uprefix = audio_alloc_prefix (prefix); for (; opt->name; opt++) { const char *state = "default"; printf (" %s_%s: ", uprefix, opt->name); if (opt->overriddenp && *opt->overriddenp) { state = "current"; } switch (opt->tag) { case AUD_OPT_BOOL: { int *intp = opt->valp; printf ("boolean, %s = %d\n", state, *intp ? 1 : 0); } break; case AUD_OPT_INT: { int *intp = opt->valp; printf ("integer, %s = %d\n", state, *intp); } break; case AUD_OPT_FMT: { audfmt_e *fmtp = opt->valp; printf ( "format, %s = %s, (one of: U8 S8 U16 S16 U32 S32)\n", state, audio_audfmt_to_string (*fmtp) ); } break; case AUD_OPT_STR: { const char **strp = opt->valp; printf ("string, %s = %s\n", state, *strp ? *strp : "(not set)"); } break; default: printf ("???\n"); dolog ("Bad value tag for option %s_%s %d\n", uprefix, opt->name, opt->tag); break; } printf (" %s\n", opt->descr); } qemu_free (uprefix); } static void audio_process_options (const char *prefix, struct audio_option *opt) { char *optname; const char qemu_prefix[] = "QEMU_"; size_t preflen, optlen; if (audio_bug (AUDIO_FUNC, !prefix)) { dolog ("prefix = NULL\n"); return; } if (audio_bug (AUDIO_FUNC, !opt)) { dolog ("opt = NULL\n"); return; } preflen = strlen (prefix); for (; opt->name; opt++) { size_t len, i; int def; if (!opt->valp) { dolog ("Option value pointer for `%s' is not set\n", opt->name); continue; } len = strlen (opt->name); /* len of opt->name + len of prefix + size of qemu_prefix * (includes trailing zero) + zero + underscore (on behalf of * sizeof) */ optlen = len + preflen + sizeof (qemu_prefix) + 1; optname = qemu_malloc (optlen); pstrcpy (optname, optlen, qemu_prefix); /* copy while upper-casing, including trailing zero */ for (i = 0; i <= preflen; ++i) { optname[i + sizeof (qemu_prefix) - 1] = qemu_toupper(prefix[i]); } pstrcat (optname, optlen, "_"); pstrcat (optname, optlen, opt->name); def = 1; switch (opt->tag) { case AUD_OPT_BOOL: case AUD_OPT_INT: { int *intp = opt->valp; *intp = audio_get_conf_int (optname, *intp, &def); } break; case AUD_OPT_FMT: { audfmt_e *fmtp = opt->valp; *fmtp = audio_get_conf_fmt (optname, *fmtp, &def); } break; case AUD_OPT_STR: { const char **strp = opt->valp; *strp = audio_get_conf_str (optname, *strp, &def); } break; default: dolog ("Bad value tag for option `%s' - %d\n", optname, opt->tag); break; } if (!opt->overriddenp) { opt->overriddenp = &opt->overridden; } *opt->overriddenp = !def; qemu_free (optname); } } static void audio_print_settings (struct audsettings *as) { dolog ("frequency=%d nchannels=%d fmt=", as->freq, as->nchannels); switch (as->fmt) { case AUD_FMT_S8: AUD_log (NULL, "S8"); break; case AUD_FMT_U8: AUD_log (NULL, "U8"); break; case AUD_FMT_S16: AUD_log (NULL, "S16"); break; case AUD_FMT_U16: AUD_log (NULL, "U16"); break; case AUD_FMT_S32: AUD_log (NULL, "S32"); break; case AUD_FMT_U32: AUD_log (NULL, "U32"); break; default: AUD_log (NULL, "invalid(%d)", as->fmt); break; } AUD_log (NULL, " endianness="); switch (as->endianness) { case 0: AUD_log (NULL, "little"); break; case 1: AUD_log (NULL, "big"); break; default: AUD_log (NULL, "invalid"); break; } AUD_log (NULL, "\n"); } static int audio_validate_settings (struct audsettings *as) { int invalid; invalid = as->nchannels != 1 && as->nchannels != 2; invalid |= as->endianness != 0 && as->endianness != 1; switch (as->fmt) { case AUD_FMT_S8: case AUD_FMT_U8: case AUD_FMT_S16: case AUD_FMT_U16: case AUD_FMT_S32: case AUD_FMT_U32: break; default: invalid = 1; break; } invalid |= as->freq <= 0; return invalid ? -1 : 0; } static int audio_pcm_info_eq (struct audio_pcm_info *info, struct audsettings *as) { int bits = 8, sign = 0; switch (as->fmt) { case AUD_FMT_S8: sign = 1; case AUD_FMT_U8: break; case AUD_FMT_S16: sign = 1; case AUD_FMT_U16: bits = 16; break; case AUD_FMT_S32: sign = 1; case AUD_FMT_U32: bits = 32; break; } return info->freq == as->freq && info->nchannels == as->nchannels && info->sign == sign && info->bits == bits && info->swap_endianness == (as->endianness != AUDIO_HOST_ENDIANNESS); } void audio_pcm_init_info (struct audio_pcm_info *info, struct audsettings *as) { int bits = 8, sign = 0, shift = 0; switch (as->fmt) { case AUD_FMT_S8: sign = 1; case AUD_FMT_U8: break; case AUD_FMT_S16: sign = 1; case AUD_FMT_U16: bits = 16; shift = 1; break; case AUD_FMT_S32: sign = 1; case AUD_FMT_U32: bits = 32; shift = 2; break; } info->freq = as->freq; info->bits = bits; info->sign = sign; info->nchannels = as->nchannels; info->shift = (as->nchannels == 2) + shift; info->align = (1 << info->shift) - 1; info->bytes_per_second = info->freq << info->shift; info->swap_endianness = (as->endianness != AUDIO_HOST_ENDIANNESS); } void audio_pcm_info_clear_buf (struct audio_pcm_info *info, void *buf, int len) { if (!len) { return; } if (info->sign) { memset (buf, 0x00, len << info->shift); } else { switch (info->bits) { case 8: memset (buf, 0x80, len << info->shift); break; case 16: { int i; uint16_t *p = buf; int shift = info->nchannels - 1; short s = INT16_MAX; if (info->swap_endianness) { s = bswap16 (s); } for (i = 0; i < len << shift; i++) { p[i] = s; } } break; case 32: { int i; uint32_t *p = buf; int shift = info->nchannels - 1; int32_t s = INT32_MAX; if (info->swap_endianness) { s = bswap32 (s); } for (i = 0; i < len << shift; i++) { p[i] = s; } } break; default: AUD_log (NULL, "audio_pcm_info_clear_buf: invalid bits %d\n", info->bits); break; } } } /* * Capture */ static void noop_conv (struct st_sample *dst, const void *src, int samples, struct mixeng_volume *vol) { (void) src; (void) dst; (void) samples; (void) vol; } static CaptureVoiceOut *audio_pcm_capture_find_specific ( struct audsettings *as ) { CaptureVoiceOut *cap; AudioState *s = &glob_audio_state; for (cap = s->cap_head.lh_first; cap; cap = cap->entries.le_next) { if (audio_pcm_info_eq (&cap->hw.info, as)) { return cap; } } return NULL; } static void audio_notify_capture (CaptureVoiceOut *cap, audcnotification_e cmd) { struct capture_callback *cb; #ifdef DEBUG_CAPTURE dolog ("notification %d sent\n", cmd); #endif for (cb = cap->cb_head.lh_first; cb; cb = cb->entries.le_next) { cb->ops.notify (cb->opaque, cmd); } } static void audio_capture_maybe_changed (CaptureVoiceOut *cap, int enabled) { if (cap->hw.enabled != enabled) { audcnotification_e cmd; cap->hw.enabled = enabled; cmd = enabled ? AUD_CNOTIFY_ENABLE : AUD_CNOTIFY_DISABLE; audio_notify_capture (cap, cmd); } } static void audio_recalc_and_notify_capture (CaptureVoiceOut *cap) { HWVoiceOut *hw = &cap->hw; SWVoiceOut *sw; int enabled = 0; for (sw = hw->sw_head.lh_first; sw; sw = sw->entries.le_next) { if (sw->active) { enabled = 1; break; } } audio_capture_maybe_changed (cap, enabled); } static void audio_detach_capture (HWVoiceOut *hw) { SWVoiceCap *sc = hw->cap_head.lh_first; while (sc) { SWVoiceCap *sc1 = sc->entries.le_next; SWVoiceOut *sw = &sc->sw; CaptureVoiceOut *cap = sc->cap; int was_active = sw->active; if (sw->rate) { st_rate_stop (sw->rate); sw->rate = NULL; } QLIST_REMOVE (sw, entries); QLIST_REMOVE (sc, entries); qemu_free (sc); if (was_active) { /* We have removed soft voice from the capture: this might have changed the overall status of the capture since this might have been the only active voice */ audio_recalc_and_notify_capture (cap); } sc = sc1; } } static int audio_attach_capture (HWVoiceOut *hw) { AudioState *s = &glob_audio_state; CaptureVoiceOut *cap; audio_detach_capture (hw); for (cap = s->cap_head.lh_first; cap; cap = cap->entries.le_next) { SWVoiceCap *sc; SWVoiceOut *sw; HWVoiceOut *hw_cap = &cap->hw; sc = audio_calloc (AUDIO_FUNC, 1, sizeof (*sc)); if (!sc) { dolog ("Could not allocate soft capture voice (%zu bytes)\n", sizeof (*sc)); return -1; } sc->cap = cap; sw = &sc->sw; sw->hw = hw_cap; sw->info = hw->info; sw->empty = 1; sw->active = hw->enabled; sw->conv = noop_conv; sw->ratio = ((int64_t) hw_cap->info.freq << 32) / sw->info.freq; sw->rate = st_rate_start (sw->info.freq, hw_cap->info.freq); if (!sw->rate) { dolog ("Could not start rate conversion for `%s'\n", SW_NAME (sw)); qemu_free (sw); return -1; } QLIST_INSERT_HEAD (&hw_cap->sw_head, sw, entries); QLIST_INSERT_HEAD (&hw->cap_head, sc, entries); #ifdef DEBUG_CAPTURE asprintf (&sw->name, "for %p %d,%d,%d", hw, sw->info.freq, sw->info.bits, sw->info.nchannels); dolog ("Added %s active = %d\n", sw->name, sw->active); #endif if (sw->active) { audio_capture_maybe_changed (cap, 1); } } return 0; } /* * Hard voice (capture) */ static int audio_pcm_hw_find_min_in (HWVoiceIn *hw) { SWVoiceIn *sw; int m = hw->total_samples_captured; for (sw = hw->sw_head.lh_first; sw; sw = sw->entries.le_next) { if (sw->active) { m = audio_MIN (m, sw->total_hw_samples_acquired); } } return m; } int audio_pcm_hw_get_live_in (HWVoiceIn *hw) { int live = hw->total_samples_captured - audio_pcm_hw_find_min_in (hw); if (audio_bug (AUDIO_FUNC, live < 0 || live > hw->samples)) { dolog ("live=%d hw->samples=%d\n", live, hw->samples); return 0; } return live; } int audio_pcm_hw_clip_out (HWVoiceOut *hw, void *pcm_buf, int live, int pending) { int left = hw->samples - pending; int len = audio_MIN (left, live); int clipped = 0; while (len) { struct st_sample *src = hw->mix_buf + hw->rpos; uint8_t *dst = advance (pcm_buf, hw->rpos << hw->info.shift); int samples_till_end_of_buf = hw->samples - hw->rpos; int samples_to_clip = audio_MIN (len, samples_till_end_of_buf); hw->clip (dst, src, samples_to_clip); hw->rpos = (hw->rpos + samples_to_clip) % hw->samples; len -= samples_to_clip; clipped += samples_to_clip; } return clipped; } /* * Soft voice (capture) */ static int audio_pcm_sw_get_rpos_in (SWVoiceIn *sw) { HWVoiceIn *hw = sw->hw; int live = hw->total_samples_captured - sw->total_hw_samples_acquired; int rpos; if (audio_bug (AUDIO_FUNC, live < 0 || live > hw->samples)) { dolog ("live=%d hw->samples=%d\n", live, hw->samples); return 0; } rpos = hw->wpos - live; if (rpos >= 0) { return rpos; } else { return hw->samples + rpos; } } int audio_pcm_sw_read (SWVoiceIn *sw, void *buf, int size) { HWVoiceIn *hw = sw->hw; int samples, live, ret = 0, swlim, isamp, osamp, rpos, total = 0; struct st_sample *src, *dst = sw->buf; rpos = audio_pcm_sw_get_rpos_in (sw) % hw->samples; live = hw->total_samples_captured - sw->total_hw_samples_acquired; if (audio_bug (AUDIO_FUNC, live < 0 || live > hw->samples)) { dolog ("live_in=%d hw->samples=%d\n", live, hw->samples); return 0; } samples = size >> sw->info.shift; if (!live) { return 0; } swlim = (live * sw->ratio) >> 32; swlim = audio_MIN (swlim, samples); while (swlim) { src = hw->conv_buf + rpos; isamp = hw->wpos - rpos; /* XXX: <= ? */ if (isamp <= 0) { isamp = hw->samples - rpos; } if (!isamp) { break; } osamp = swlim; if (audio_bug (AUDIO_FUNC, osamp < 0)) { dolog ("osamp=%d\n", osamp); return 0; } st_rate_flow (sw->rate, src, dst, &isamp, &osamp); swlim -= osamp; rpos = (rpos + isamp) % hw->samples; dst += osamp; ret += osamp; total += isamp; } sw->clip (buf, sw->buf, ret); sw->total_hw_samples_acquired += total; return ret << sw->info.shift; } /* * Hard voice (playback) */ static int audio_pcm_hw_find_min_out (HWVoiceOut *hw, int *nb_livep) { SWVoiceOut *sw; int m = INT_MAX; int nb_live = 0; for (sw = hw->sw_head.lh_first; sw; sw = sw->entries.le_next) { if (sw->active || !sw->empty) { m = audio_MIN (m, sw->total_hw_samples_mixed); nb_live += 1; } } *nb_livep = nb_live; return m; } static int audio_pcm_hw_get_live_out (HWVoiceOut *hw, int *nb_live) { int smin; int nb_live1; smin = audio_pcm_hw_find_min_out (hw, &nb_live1); if (nb_live) { *nb_live = nb_live1; } if (nb_live1) { int live = smin; if (audio_bug (AUDIO_FUNC, live < 0 || live > hw->samples)) { dolog ("live=%d hw->samples=%d\n", live, hw->samples); return 0; } return live; } return 0; } /* * Soft voice (playback) */ int audio_pcm_sw_write (SWVoiceOut *sw, void *buf, int size) { int hwsamples, samples, isamp, osamp, wpos, live, dead, left, swlim, blck; int ret = 0, pos = 0, total = 0; if (!sw) { return size; } hwsamples = sw->hw->samples; live = sw->total_hw_samples_mixed; if (audio_bug (AUDIO_FUNC, live < 0 || live > hwsamples)){ dolog ("live=%d hw->samples=%d\n", live, hwsamples); return 0; } if (live == hwsamples) { #ifdef DEBUG_OUT dolog ("%s is full %d\n", sw->name, live); #endif return 0; } wpos = (sw->hw->rpos + live) % hwsamples; samples = size >> sw->info.shift; dead = hwsamples - live; swlim = ((int64_t) dead << 32) / sw->ratio; swlim = audio_MIN (swlim, samples); if (swlim) { sw->conv (sw->buf, buf, swlim, &sw->vol); } while (swlim) { dead = hwsamples - live; left = hwsamples - wpos; blck = audio_MIN (dead, left); if (!blck) { break; } isamp = swlim; osamp = blck; st_rate_flow_mix ( sw->rate, sw->buf + pos, sw->hw->mix_buf + wpos, &isamp, &osamp ); ret += isamp; swlim -= isamp; pos += isamp; live += osamp; wpos = (wpos + osamp) % hwsamples; total += osamp; } sw->total_hw_samples_mixed += total; sw->empty = sw->total_hw_samples_mixed == 0; #ifdef DEBUG_OUT dolog ( "%s: write size %d ret %d total sw %d\n", SW_NAME (sw), size >> sw->info.shift, ret, sw->total_hw_samples_mixed ); #endif return ret << sw->info.shift; } #ifdef DEBUG_AUDIO static void audio_pcm_print_info (const char *cap, struct audio_pcm_info *info) { dolog ("%s: bits %d, sign %d, freq %d, nchan %d\n", cap, info->bits, info->sign, info->freq, info->nchannels); } #endif #define DAC #include "audio_template.h" #undef DAC #include "audio_template.h" /* * Timer */ static void audio_timer (void *opaque) { AudioState *s = opaque; audio_run ("timer"); qemu_mod_timer (s->ts, qemu_get_clock (vm_clock) + conf.period.ticks); } static int audio_is_timer_needed (void) { HWVoiceIn *hwi = NULL; HWVoiceOut *hwo = NULL; while ((hwo = audio_pcm_hw_find_any_enabled_out (hwo))) { if (!hwo->poll_mode) return 1; } while ((hwi = audio_pcm_hw_find_any_enabled_in (hwi))) { if (!hwi->poll_mode) return 1; } return 0; } static void audio_reset_timer (void) { AudioState *s = &glob_audio_state; if (audio_is_timer_needed ()) { qemu_mod_timer (s->ts, qemu_get_clock (vm_clock) + 1); } else { qemu_del_timer (s->ts); } } /* * Public API */ int AUD_write (SWVoiceOut *sw, void *buf, int size) { int bytes; if (!sw) { /* XXX: Consider options */ return size; } if (!sw->hw->enabled) { dolog ("Writing to disabled voice %s\n", SW_NAME (sw)); return 0; } bytes = sw->hw->pcm_ops->write (sw, buf, size); return bytes; } int AUD_read (SWVoiceIn *sw, void *buf, int size) { int bytes; if (!sw) { /* XXX: Consider options */ return size; } if (!sw->hw->enabled) { dolog ("Reading from disabled voice %s\n", SW_NAME (sw)); return 0; } bytes = sw->hw->pcm_ops->read (sw, buf, size); return bytes; } int AUD_get_buffer_size_out (SWVoiceOut *sw) { return sw->hw->samples << sw->hw->info.shift; } void AUD_set_active_out (SWVoiceOut *sw, int on) { HWVoiceOut *hw; if (!sw) { return; } hw = sw->hw; if (sw->active != on) { AudioState *s = &glob_audio_state; SWVoiceOut *temp_sw; SWVoiceCap *sc; if (on) { hw->pending_disable = 0; if (!hw->enabled) { hw->enabled = 1; if (s->vm_running) { hw->pcm_ops->ctl_out (hw, VOICE_ENABLE, conf.try_poll_out); audio_reset_timer (); } } } else { if (hw->enabled) { int nb_active = 0; for (temp_sw = hw->sw_head.lh_first; temp_sw; temp_sw = temp_sw->entries.le_next) { nb_active += temp_sw->active != 0; } hw->pending_disable = nb_active == 1; } } for (sc = hw->cap_head.lh_first; sc; sc = sc->entries.le_next) { sc->sw.active = hw->enabled; if (hw->enabled) { audio_capture_maybe_changed (sc->cap, 1); } } sw->active = on; } } void AUD_set_active_in (SWVoiceIn *sw, int on) { HWVoiceIn *hw; if (!sw) { return; } hw = sw->hw; if (sw->active != on) { AudioState *s = &glob_audio_state; SWVoiceIn *temp_sw; if (on) { if (!hw->enabled) { hw->enabled = 1; if (s->vm_running) { hw->pcm_ops->ctl_in (hw, VOICE_ENABLE, conf.try_poll_in); } } sw->total_hw_samples_acquired = hw->total_samples_captured; } else { if (hw->enabled) { int nb_active = 0; for (temp_sw = hw->sw_head.lh_first; temp_sw; temp_sw = temp_sw->entries.le_next) { nb_active += temp_sw->active != 0; } if (nb_active == 1) { hw->enabled = 0; hw->pcm_ops->ctl_in (hw, VOICE_DISABLE); } } } sw->active = on; } } static int audio_get_avail (SWVoiceIn *sw) { int live; if (!sw) { return 0; } live = sw->hw->total_samples_captured - sw->total_hw_samples_acquired; if (audio_bug (AUDIO_FUNC, live < 0 || live > sw->hw->samples)) { dolog ("live=%d sw->hw->samples=%d\n", live, sw->hw->samples); return 0; } ldebug ( "%s: get_avail live %d ret %" PRId64 "\n", SW_NAME (sw), live, (((int64_t) live << 32) / sw->ratio) << sw->info.shift ); return (((int64_t) live << 32) / sw->ratio) << sw->info.shift; } static int audio_get_free (SWVoiceOut *sw) { int live, dead; if (!sw) { return 0; } live = sw->total_hw_samples_mixed; if (audio_bug (AUDIO_FUNC, live < 0 || live > sw->hw->samples)) { dolog ("live=%d sw->hw->samples=%d\n", live, sw->hw->samples); return 0; } dead = sw->hw->samples - live; #ifdef DEBUG_OUT dolog ("%s: get_free live %d dead %d ret %" PRId64 "\n", SW_NAME (sw), live, dead, (((int64_t) dead << 32) / sw->ratio) << sw->info.shift); #endif return (((int64_t) dead << 32) / sw->ratio) << sw->info.shift; } static void audio_capture_mix_and_clear (HWVoiceOut *hw, int rpos, int samples) { int n; if (hw->enabled) { SWVoiceCap *sc; for (sc = hw->cap_head.lh_first; sc; sc = sc->entries.le_next) { SWVoiceOut *sw = &sc->sw; int rpos2 = rpos; n = samples; while (n) { int till_end_of_hw = hw->samples - rpos2; int to_write = audio_MIN (till_end_of_hw, n); int bytes = to_write << hw->info.shift; int written; sw->buf = hw->mix_buf + rpos2; written = audio_pcm_sw_write (sw, NULL, bytes); if (written - bytes) { dolog ("Could not mix %d bytes into a capture " "buffer, mixed %d\n", bytes, written); break; } n -= to_write; rpos2 = (rpos2 + to_write) % hw->samples; } } } n = audio_MIN (samples, hw->samples - rpos); mixeng_clear (hw->mix_buf + rpos, n); mixeng_clear (hw->mix_buf, samples - n); } static void audio_run_out (AudioState *s) { HWVoiceOut *hw = NULL; SWVoiceOut *sw; while ((hw = audio_pcm_hw_find_any_enabled_out (hw))) { int played; int live, free, nb_live, cleanup_required, prev_rpos; live = audio_pcm_hw_get_live_out (hw, &nb_live); if (!nb_live) { live = 0; } if (audio_bug (AUDIO_FUNC, live < 0 || live > hw->samples)) { dolog ("live=%d hw->samples=%d\n", live, hw->samples); continue; } if (hw->pending_disable && !nb_live) { SWVoiceCap *sc; #ifdef DEBUG_OUT dolog ("Disabling voice\n"); #endif hw->enabled = 0; hw->pending_disable = 0; hw->pcm_ops->ctl_out (hw, VOICE_DISABLE); for (sc = hw->cap_head.lh_first; sc; sc = sc->entries.le_next) { sc->sw.active = 0; audio_recalc_and_notify_capture (sc->cap); } continue; } if (!live) { for (sw = hw->sw_head.lh_first; sw; sw = sw->entries.le_next) { if (sw->active) { free = audio_get_free (sw); if (free > 0) { sw->callback.fn (sw->callback.opaque, free); } } } continue; } prev_rpos = hw->rpos; played = hw->pcm_ops->run_out (hw, live); if (audio_bug (AUDIO_FUNC, hw->rpos >= hw->samples)) { dolog ("hw->rpos=%d hw->samples=%d played=%d\n", hw->rpos, hw->samples, played); hw->rpos = 0; } #ifdef DEBUG_OUT dolog ("played=%d\n", played); #endif if (played) { hw->ts_helper += played; audio_capture_mix_and_clear (hw, prev_rpos, played); } cleanup_required = 0; for (sw = hw->sw_head.lh_first; sw; sw = sw->entries.le_next) { if (!sw->active && sw->empty) { continue; } if (audio_bug (AUDIO_FUNC, played > sw->total_hw_samples_mixed)) { dolog ("played=%d sw->total_hw_samples_mixed=%d\n", played, sw->total_hw_samples_mixed); played = sw->total_hw_samples_mixed; } sw->total_hw_samples_mixed -= played; if (!sw->total_hw_samples_mixed) { sw->empty = 1; cleanup_required |= !sw->active && !sw->callback.fn; } if (sw->active) { free = audio_get_free (sw); if (free > 0) { sw->callback.fn (sw->callback.opaque, free); } } } if (cleanup_required) { SWVoiceOut *sw1; sw = hw->sw_head.lh_first; while (sw) { sw1 = sw->entries.le_next; if (!sw->active && !sw->callback.fn) { #ifdef DEBUG_PLIVE dolog ("Finishing with old voice\n"); #endif audio_close_out (sw); } sw = sw1; } } } } static void audio_run_in (AudioState *s) { HWVoiceIn *hw = NULL; while ((hw = audio_pcm_hw_find_any_enabled_in (hw))) { SWVoiceIn *sw; int captured, min; captured = hw->pcm_ops->run_in (hw); min = audio_pcm_hw_find_min_in (hw); hw->total_samples_captured += captured - min; hw->ts_helper += captured; for (sw = hw->sw_head.lh_first; sw; sw = sw->entries.le_next) { sw->total_hw_samples_acquired -= min; if (sw->active) { int avail; avail = audio_get_avail (sw); if (avail > 0) { sw->callback.fn (sw->callback.opaque, avail); } } } } } static void audio_run_capture (AudioState *s) { CaptureVoiceOut *cap; for (cap = s->cap_head.lh_first; cap; cap = cap->entries.le_next) { int live, rpos, captured; HWVoiceOut *hw = &cap->hw; SWVoiceOut *sw; captured = live = audio_pcm_hw_get_live_out (hw, NULL); rpos = hw->rpos; while (live) { int left = hw->samples - rpos; int to_capture = audio_MIN (live, left); struct st_sample *src; struct capture_callback *cb; src = hw->mix_buf + rpos; hw->clip (cap->buf, src, to_capture); mixeng_clear (src, to_capture); for (cb = cap->cb_head.lh_first; cb; cb = cb->entries.le_next) { cb->ops.capture (cb->opaque, cap->buf, to_capture << hw->info.shift); } rpos = (rpos + to_capture) % hw->samples; live -= to_capture; } hw->rpos = rpos; for (sw = hw->sw_head.lh_first; sw; sw = sw->entries.le_next) { if (!sw->active && sw->empty) { continue; } if (audio_bug (AUDIO_FUNC, captured > sw->total_hw_samples_mixed)) { dolog ("captured=%d sw->total_hw_samples_mixed=%d\n", captured, sw->total_hw_samples_mixed); captured = sw->total_hw_samples_mixed; } sw->total_hw_samples_mixed -= captured; sw->empty = sw->total_hw_samples_mixed == 0; } } } void audio_run (const char *msg) { AudioState *s = &glob_audio_state; audio_run_out (s); audio_run_in (s); audio_run_capture (s); #ifdef DEBUG_POLL { static double prevtime; double currtime; struct timeval tv; if (gettimeofday (&tv, NULL)) { perror ("audio_run: gettimeofday"); return; } currtime = tv.tv_sec + tv.tv_usec * 1e-6; dolog ("Elapsed since last %s: %f\n", msg, currtime - prevtime); prevtime = currtime; } #endif } static struct audio_option audio_options[] = { /* DAC */ { .name = "DAC_FIXED_SETTINGS", .tag = AUD_OPT_BOOL, .valp = &conf.fixed_out.enabled, .descr = "Use fixed settings for host DAC" }, { .name = "DAC_FIXED_FREQ", .tag = AUD_OPT_INT, .valp = &conf.fixed_out.settings.freq, .descr = "Frequency for fixed host DAC" }, { .name = "DAC_FIXED_FMT", .tag = AUD_OPT_FMT, .valp = &conf.fixed_out.settings.fmt, .descr = "Format for fixed host DAC" }, { .name = "DAC_FIXED_CHANNELS", .tag = AUD_OPT_INT, .valp = &conf.fixed_out.settings.nchannels, .descr = "Number of channels for fixed DAC (1 - mono, 2 - stereo)" }, { .name = "DAC_VOICES", .tag = AUD_OPT_INT, .valp = &conf.fixed_out.nb_voices, .descr = "Number of voices for DAC" }, { .name = "DAC_TRY_POLL", .tag = AUD_OPT_BOOL, .valp = &conf.try_poll_out, .descr = "Attempt using poll mode for DAC" }, /* ADC */ { .name = "ADC_FIXED_SETTINGS", .tag = AUD_OPT_BOOL, .valp = &conf.fixed_in.enabled, .descr = "Use fixed settings for host ADC" }, { .name = "ADC_FIXED_FREQ", .tag = AUD_OPT_INT, .valp = &conf.fixed_in.settings.freq, .descr = "Frequency for fixed host ADC" }, { .name = "ADC_FIXED_FMT", .tag = AUD_OPT_FMT, .valp = &conf.fixed_in.settings.fmt, .descr = "Format for fixed host ADC" }, { .name = "ADC_FIXED_CHANNELS", .tag = AUD_OPT_INT, .valp = &conf.fixed_in.settings.nchannels, .descr = "Number of channels for fixed ADC (1 - mono, 2 - stereo)" }, { .name = "ADC_VOICES", .tag = AUD_OPT_INT, .valp = &conf.fixed_in.nb_voices, .descr = "Number of voices for ADC" }, { .name = "ADC_TRY_POLL", .tag = AUD_OPT_BOOL, .valp = &conf.try_poll_in, .descr = "Attempt using poll mode for ADC" }, /* Misc */ { .name = "TIMER_PERIOD", .tag = AUD_OPT_INT, .valp = &conf.period.hertz, .descr = "Timer period in HZ (0 - use lowest possible)" }, { .name = "PLIVE", .tag = AUD_OPT_BOOL, .valp = &conf.plive, .descr = "(undocumented)" }, { .name = "LOG_TO_MONITOR", .tag = AUD_OPT_BOOL, .valp = &conf.log_to_monitor, .descr = "Print logging messages to monitor instead of stderr" }, { /* End of list */ } }; static void audio_pp_nb_voices (const char *typ, int nb) { switch (nb) { case 0: printf ("Does not support %s\n", typ); break; case 1: printf ("One %s voice\n", typ); break; case INT_MAX: printf ("Theoretically supports many %s voices\n", typ); break; default: printf ("Theoretically supports upto %d %s voices\n", nb, typ); break; } } void AUD_help (void) { size_t i; audio_process_options ("AUDIO", audio_options); for (i = 0; i < ARRAY_SIZE (drvtab); i++) { struct audio_driver *d = drvtab[i]; if (d->options) { audio_process_options (d->name, d->options); } } printf ("Audio options:\n"); audio_print_options ("AUDIO", audio_options); printf ("\n"); printf ("Available drivers:\n"); for (i = 0; i < ARRAY_SIZE (drvtab); i++) { struct audio_driver *d = drvtab[i]; printf ("Name: %s\n", d->name); printf ("Description: %s\n", d->descr); audio_pp_nb_voices ("playback", d->max_voices_out); audio_pp_nb_voices ("capture", d->max_voices_in); if (d->options) { printf ("Options:\n"); audio_print_options (d->name, d->options); } else { printf ("No options\n"); } printf ("\n"); } printf ( "Options are settable through environment variables.\n" "Example:\n" #ifdef _WIN32 " set QEMU_AUDIO_DRV=wav\n" " set QEMU_WAV_PATH=c:\\tune.wav\n" #else " export QEMU_AUDIO_DRV=wav\n" " export QEMU_WAV_PATH=$HOME/tune.wav\n" "(for csh replace export with setenv in the above)\n" #endif " qemu ...\n\n" ); } static int audio_driver_init (AudioState *s, struct audio_driver *drv) { if (drv->options) { audio_process_options (drv->name, drv->options); } s->drv_opaque = drv->init (); if (s->drv_opaque) { audio_init_nb_voices_out (drv); audio_init_nb_voices_in (drv); s->drv = drv; return 0; } else { dolog ("Could not init `%s' audio driver\n", drv->name); return -1; } } static void audio_vm_change_state_handler (void *opaque, int running, int reason) { AudioState *s = opaque; HWVoiceOut *hwo = NULL; HWVoiceIn *hwi = NULL; int op = running ? VOICE_ENABLE : VOICE_DISABLE; s->vm_running = running; while ((hwo = audio_pcm_hw_find_any_enabled_out (hwo))) { hwo->pcm_ops->ctl_out (hwo, op, conf.try_poll_out); } while ((hwi = audio_pcm_hw_find_any_enabled_in (hwi))) { hwi->pcm_ops->ctl_in (hwi, op, conf.try_poll_in); } audio_reset_timer (); } static void audio_atexit (void) { AudioState *s = &glob_audio_state; HWVoiceOut *hwo = NULL; HWVoiceIn *hwi = NULL; while ((hwo = audio_pcm_hw_find_any_enabled_out (hwo))) { SWVoiceCap *sc; hwo->pcm_ops->ctl_out (hwo, VOICE_DISABLE); hwo->pcm_ops->fini_out (hwo); for (sc = hwo->cap_head.lh_first; sc; sc = sc->entries.le_next) { CaptureVoiceOut *cap = sc->cap; struct capture_callback *cb; for (cb = cap->cb_head.lh_first; cb; cb = cb->entries.le_next) { cb->ops.destroy (cb->opaque); } } } while ((hwi = audio_pcm_hw_find_any_enabled_in (hwi))) { hwi->pcm_ops->ctl_in (hwi, VOICE_DISABLE); hwi->pcm_ops->fini_in (hwi); } if (s->drv) { s->drv->fini (s->drv_opaque); } } static void audio_save (QEMUFile *f, void *opaque) { (void) f; (void) opaque; } static int audio_load (QEMUFile *f, void *opaque, int version_id) { (void) f; (void) opaque; if (version_id != 1) { return -EINVAL; } return 0; } static void audio_init (void) { size_t i; int done = 0; const char *drvname; VMChangeStateEntry *e; AudioState *s = &glob_audio_state; if (s->drv) { return; } QLIST_INIT (&s->hw_head_out); QLIST_INIT (&s->hw_head_in); QLIST_INIT (&s->cap_head); atexit (audio_atexit); s->ts = qemu_new_timer (vm_clock, audio_timer, s); if (!s->ts) { hw_error("Could not create audio timer\n"); } audio_process_options ("AUDIO", audio_options); s->nb_hw_voices_out = conf.fixed_out.nb_voices; s->nb_hw_voices_in = conf.fixed_in.nb_voices; if (s->nb_hw_voices_out <= 0) { dolog ("Bogus number of playback voices %d, setting to 1\n", s->nb_hw_voices_out); s->nb_hw_voices_out = 1; } if (s->nb_hw_voices_in <= 0) { dolog ("Bogus number of capture voices %d, setting to 0\n", s->nb_hw_voices_in); s->nb_hw_voices_in = 0; } { int def; drvname = audio_get_conf_str ("QEMU_AUDIO_DRV", NULL, &def); } if (drvname) { int found = 0; for (i = 0; i < ARRAY_SIZE (drvtab); i++) { if (!strcmp (drvname, drvtab[i]->name)) { done = !audio_driver_init (s, drvtab[i]); found = 1; break; } } if (!found) { dolog ("Unknown audio driver `%s'\n", drvname); dolog ("Run with -audio-help to list available drivers\n"); } } if (!done) { for (i = 0; !done && i < ARRAY_SIZE (drvtab); i++) { if (drvtab[i]->can_be_default) { done = !audio_driver_init (s, drvtab[i]); } } } if (!done) { done = !audio_driver_init (s, &no_audio_driver); if (!done) { hw_error("Could not initialize audio subsystem\n"); } else { dolog ("warning: Using timer based audio emulation\n"); } } if (conf.period.hertz <= 0) { if (conf.period.hertz < 0) { dolog ("warning: Timer period is negative - %d " "treating as zero\n", conf.period.hertz); } conf.period.ticks = 1; } else { conf.period.ticks = muldiv64 (1, get_ticks_per_sec (), conf.period.hertz); } e = qemu_add_vm_change_state_handler (audio_vm_change_state_handler, s); if (!e) { dolog ("warning: Could not register change state handler\n" "(Audio can continue looping even after stopping the VM)\n"); } QLIST_INIT (&s->card_head); register_savevm ("audio", 0, 1, audio_save, audio_load, s); } void AUD_register_card (const char *name, QEMUSoundCard *card) { audio_init (); card->name = qemu_strdup (name); memset (&card->entries, 0, sizeof (card->entries)); QLIST_INSERT_HEAD (&glob_audio_state.card_head, card, entries); } void AUD_remove_card (QEMUSoundCard *card) { QLIST_REMOVE (card, entries); qemu_free (card->name); } CaptureVoiceOut *AUD_add_capture ( struct audsettings *as, struct audio_capture_ops *ops, void *cb_opaque ) { AudioState *s = &glob_audio_state; CaptureVoiceOut *cap; struct capture_callback *cb; if (audio_validate_settings (as)) { dolog ("Invalid settings were passed when trying to add capture\n"); audio_print_settings (as); goto err0; } cb = audio_calloc (AUDIO_FUNC, 1, sizeof (*cb)); if (!cb) { dolog ("Could not allocate capture callback information, size %zu\n", sizeof (*cb)); goto err0; } cb->ops = *ops; cb->opaque = cb_opaque; cap = audio_pcm_capture_find_specific (as); if (cap) { QLIST_INSERT_HEAD (&cap->cb_head, cb, entries); return cap; } else { HWVoiceOut *hw; CaptureVoiceOut *cap; cap = audio_calloc (AUDIO_FUNC, 1, sizeof (*cap)); if (!cap) { dolog ("Could not allocate capture voice, size %zu\n", sizeof (*cap)); goto err1; } hw = &cap->hw; QLIST_INIT (&hw->sw_head); QLIST_INIT (&cap->cb_head); /* XXX find a more elegant way */ hw->samples = 4096 * 4; hw->mix_buf = audio_calloc (AUDIO_FUNC, hw->samples, sizeof (struct st_sample)); if (!hw->mix_buf) { dolog ("Could not allocate capture mix buffer (%d samples)\n", hw->samples); goto err2; } audio_pcm_init_info (&hw->info, as); cap->buf = audio_calloc (AUDIO_FUNC, hw->samples, 1 << hw->info.shift); if (!cap->buf) { dolog ("Could not allocate capture buffer " "(%d samples, each %d bytes)\n", hw->samples, 1 << hw->info.shift); goto err3; } hw->clip = mixeng_clip [hw->info.nchannels == 2] [hw->info.sign] [hw->info.swap_endianness] [audio_bits_to_index (hw->info.bits)]; QLIST_INSERT_HEAD (&s->cap_head, cap, entries); QLIST_INSERT_HEAD (&cap->cb_head, cb, entries); hw = NULL; while ((hw = audio_pcm_hw_find_any_out (hw))) { audio_attach_capture (hw); } return cap; err3: qemu_free (cap->hw.mix_buf); err2: qemu_free (cap); err1: qemu_free (cb); err0: return NULL; } } void AUD_del_capture (CaptureVoiceOut *cap, void *cb_opaque) { struct capture_callback *cb; for (cb = cap->cb_head.lh_first; cb; cb = cb->entries.le_next) { if (cb->opaque == cb_opaque) { cb->ops.destroy (cb_opaque); QLIST_REMOVE (cb, entries); qemu_free (cb); if (!cap->cb_head.lh_first) { SWVoiceOut *sw = cap->hw.sw_head.lh_first, *sw1; while (sw) { SWVoiceCap *sc = (SWVoiceCap *) sw; #ifdef DEBUG_CAPTURE dolog ("freeing %s\n", sw->name); #endif sw1 = sw->entries.le_next; if (sw->rate) { st_rate_stop (sw->rate); sw->rate = NULL; } QLIST_REMOVE (sw, entries); QLIST_REMOVE (sc, entries); qemu_free (sc); sw = sw1; } QLIST_REMOVE (cap, entries); qemu_free (cap); } return; } } } void AUD_set_volume_out (SWVoiceOut *sw, int mute, uint8_t lvol, uint8_t rvol) { if (sw) { sw->vol.mute = mute; sw->vol.l = nominal_volume.l * lvol / 255; sw->vol.r = nominal_volume.r * rvol / 255; } } void AUD_set_volume_in (SWVoiceIn *sw, int mute, uint8_t lvol, uint8_t rvol) { if (sw) { sw->vol.mute = mute; sw->vol.l = nominal_volume.l * lvol / 255; sw->vol.r = nominal_volume.r * rvol / 255; } }