/* * QEMU ALSA audio driver * * Copyright (c) 2005 Vassili Karpov (malc) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <alsa/asoundlib.h> #include "qemu-common.h" #include "qemu-char.h" #include "audio.h" #if QEMU_GNUC_PREREQ(4, 3) #pragma GCC diagnostic ignored "-Waddress" #endif #define AUDIO_CAP "alsa" #include "audio_int.h" struct pollhlp { snd_pcm_t *handle; struct pollfd *pfds; int count; int mask; }; typedef struct ALSAVoiceOut { HWVoiceOut hw; int wpos; int pending; void *pcm_buf; snd_pcm_t *handle; struct pollhlp pollhlp; } ALSAVoiceOut; typedef struct ALSAVoiceIn { HWVoiceIn hw; snd_pcm_t *handle; void *pcm_buf; struct pollhlp pollhlp; } ALSAVoiceIn; static struct { int size_in_usec_in; int size_in_usec_out; const char *pcm_name_in; const char *pcm_name_out; unsigned int buffer_size_in; unsigned int period_size_in; unsigned int buffer_size_out; unsigned int period_size_out; unsigned int threshold; int buffer_size_in_overridden; int period_size_in_overridden; int buffer_size_out_overridden; int period_size_out_overridden; int verbose; } conf = { .buffer_size_out = 4096, .period_size_out = 1024, .pcm_name_out = "default", .pcm_name_in = "default", }; struct alsa_params_req { int freq; snd_pcm_format_t fmt; int nchannels; int size_in_usec; int override_mask; unsigned int buffer_size; unsigned int period_size; }; struct alsa_params_obt { int freq; audfmt_e fmt; int endianness; int nchannels; snd_pcm_uframes_t samples; }; static void GCC_FMT_ATTR (2, 3) alsa_logerr (int err, const char *fmt, ...) { va_list ap; va_start (ap, fmt); AUD_vlog (AUDIO_CAP, fmt, ap); va_end (ap); AUD_log (AUDIO_CAP, "Reason: %s\n", snd_strerror (err)); } static void GCC_FMT_ATTR (3, 4) alsa_logerr2 ( int err, const char *typ, const char *fmt, ... ) { va_list ap; AUD_log (AUDIO_CAP, "Could not initialize %s\n", typ); va_start (ap, fmt); AUD_vlog (AUDIO_CAP, fmt, ap); va_end (ap); AUD_log (AUDIO_CAP, "Reason: %s\n", snd_strerror (err)); } static void alsa_fini_poll (struct pollhlp *hlp) { int i; struct pollfd *pfds = hlp->pfds; if (pfds) { for (i = 0; i < hlp->count; ++i) { qemu_set_fd_handler (pfds[i].fd, NULL, NULL, NULL); } qemu_free (pfds); } hlp->pfds = NULL; hlp->count = 0; hlp->handle = NULL; } static void alsa_anal_close1 (snd_pcm_t **handlep) { int err = snd_pcm_close (*handlep); if (err) { alsa_logerr (err, "Failed to close PCM handle %p\n", *handlep); } *handlep = NULL; } static void alsa_anal_close (snd_pcm_t **handlep, struct pollhlp *hlp) { alsa_fini_poll (hlp); alsa_anal_close1 (handlep); } static int alsa_recover (snd_pcm_t *handle) { int err = snd_pcm_prepare (handle); if (err < 0) { alsa_logerr (err, "Failed to prepare handle %p\n", handle); return -1; } return 0; } static int alsa_resume (snd_pcm_t *handle) { int err = snd_pcm_resume (handle); if (err < 0) { alsa_logerr (err, "Failed to resume handle %p\n", handle); return -1; } return 0; } static void alsa_poll_handler (void *opaque) { int err, count; snd_pcm_state_t state; struct pollhlp *hlp = opaque; unsigned short revents; count = poll (hlp->pfds, hlp->count, 0); if (count < 0) { dolog ("alsa_poll_handler: poll %s\n", strerror (errno)); return; } if (!count) { return; } /* XXX: ALSA example uses initial count, not the one returned by poll, correct? */ err = snd_pcm_poll_descriptors_revents (hlp->handle, hlp->pfds, hlp->count, &revents); if (err < 0) { alsa_logerr (err, "snd_pcm_poll_descriptors_revents"); return; } if (!(revents & hlp->mask)) { if (conf.verbose) { dolog ("revents = %d\n", revents); } return; } state = snd_pcm_state (hlp->handle); switch (state) { case SND_PCM_STATE_SETUP: alsa_recover (hlp->handle); break; case SND_PCM_STATE_XRUN: alsa_recover (hlp->handle); break; case SND_PCM_STATE_SUSPENDED: alsa_resume (hlp->handle); break; case SND_PCM_STATE_PREPARED: audio_run ("alsa run (prepared)"); break; case SND_PCM_STATE_RUNNING: audio_run ("alsa run (running)"); break; default: dolog ("Unexpected state %d\n", state); } } static int alsa_poll_helper (snd_pcm_t *handle, struct pollhlp *hlp, int mask) { int i, count, err; struct pollfd *pfds; count = snd_pcm_poll_descriptors_count (handle); if (count <= 0) { dolog ("Could not initialize poll mode\n" "Invalid number of poll descriptors %d\n", count); return -1; } pfds = audio_calloc ("alsa_poll_helper", count, sizeof (*pfds)); if (!pfds) { dolog ("Could not initialize poll mode\n"); return -1; } err = snd_pcm_poll_descriptors (handle, pfds, count); if (err < 0) { alsa_logerr (err, "Could not initialize poll mode\n" "Could not obtain poll descriptors\n"); qemu_free (pfds); return -1; } for (i = 0; i < count; ++i) { if (pfds[i].events & POLLIN) { err = qemu_set_fd_handler (pfds[i].fd, alsa_poll_handler, NULL, hlp); } if (pfds[i].events & POLLOUT) { if (conf.verbose) { dolog ("POLLOUT %d %d\n", i, pfds[i].fd); } err = qemu_set_fd_handler (pfds[i].fd, NULL, alsa_poll_handler, hlp); } if (conf.verbose) { dolog ("Set handler events=%#x index=%d fd=%d err=%d\n", pfds[i].events, i, pfds[i].fd, err); } if (err) { dolog ("Failed to set handler events=%#x index=%d fd=%d err=%d\n", pfds[i].events, i, pfds[i].fd, err); while (i--) { qemu_set_fd_handler (pfds[i].fd, NULL, NULL, NULL); } qemu_free (pfds); return -1; } } hlp->pfds = pfds; hlp->count = count; hlp->handle = handle; hlp->mask = mask; return 0; } static int alsa_poll_out (HWVoiceOut *hw) { ALSAVoiceOut *alsa = (ALSAVoiceOut *) hw; return alsa_poll_helper (alsa->handle, &alsa->pollhlp, POLLOUT); } static int alsa_poll_in (HWVoiceIn *hw) { ALSAVoiceIn *alsa = (ALSAVoiceIn *) hw; return alsa_poll_helper (alsa->handle, &alsa->pollhlp, POLLIN); } static int alsa_write (SWVoiceOut *sw, void *buf, int len) { return audio_pcm_sw_write (sw, buf, len); } static snd_pcm_format_t aud_to_alsafmt (audfmt_e fmt) { switch (fmt) { case AUD_FMT_S8: return SND_PCM_FORMAT_S8; case AUD_FMT_U8: return SND_PCM_FORMAT_U8; case AUD_FMT_S16: return SND_PCM_FORMAT_S16_LE; case AUD_FMT_U16: return SND_PCM_FORMAT_U16_LE; case AUD_FMT_S32: return SND_PCM_FORMAT_S32_LE; case AUD_FMT_U32: return SND_PCM_FORMAT_U32_LE; default: dolog ("Internal logic error: Bad audio format %d\n", fmt); #ifdef DEBUG_AUDIO abort (); #endif return SND_PCM_FORMAT_U8; } } static int alsa_to_audfmt (snd_pcm_format_t alsafmt, audfmt_e *fmt, int *endianness) { switch (alsafmt) { case SND_PCM_FORMAT_S8: *endianness = 0; *fmt = AUD_FMT_S8; break; case SND_PCM_FORMAT_U8: *endianness = 0; *fmt = AUD_FMT_U8; break; case SND_PCM_FORMAT_S16_LE: *endianness = 0; *fmt = AUD_FMT_S16; break; case SND_PCM_FORMAT_U16_LE: *endianness = 0; *fmt = AUD_FMT_U16; break; case SND_PCM_FORMAT_S16_BE: *endianness = 1; *fmt = AUD_FMT_S16; break; case SND_PCM_FORMAT_U16_BE: *endianness = 1; *fmt = AUD_FMT_U16; break; case SND_PCM_FORMAT_S32_LE: *endianness = 0; *fmt = AUD_FMT_S32; break; case SND_PCM_FORMAT_U32_LE: *endianness = 0; *fmt = AUD_FMT_U32; break; case SND_PCM_FORMAT_S32_BE: *endianness = 1; *fmt = AUD_FMT_S32; break; case SND_PCM_FORMAT_U32_BE: *endianness = 1; *fmt = AUD_FMT_U32; break; default: dolog ("Unrecognized audio format %d\n", alsafmt); return -1; } return 0; } static void alsa_dump_info (struct alsa_params_req *req, struct alsa_params_obt *obt) { dolog ("parameter | requested value | obtained value\n"); dolog ("format | %10d | %10d\n", req->fmt, obt->fmt); dolog ("channels | %10d | %10d\n", req->nchannels, obt->nchannels); dolog ("frequency | %10d | %10d\n", req->freq, obt->freq); dolog ("============================================\n"); dolog ("requested: buffer size %d period size %d\n", req->buffer_size, req->period_size); dolog ("obtained: samples %ld\n", obt->samples); } static void alsa_set_threshold (snd_pcm_t *handle, snd_pcm_uframes_t threshold) { int err; snd_pcm_sw_params_t *sw_params; snd_pcm_sw_params_alloca (&sw_params); err = snd_pcm_sw_params_current (handle, sw_params); if (err < 0) { dolog ("Could not fully initialize DAC\n"); alsa_logerr (err, "Failed to get current software parameters\n"); return; } err = snd_pcm_sw_params_set_start_threshold (handle, sw_params, threshold); if (err < 0) { dolog ("Could not fully initialize DAC\n"); alsa_logerr (err, "Failed to set software threshold to %ld\n", threshold); return; } err = snd_pcm_sw_params (handle, sw_params); if (err < 0) { dolog ("Could not fully initialize DAC\n"); alsa_logerr (err, "Failed to set software parameters\n"); return; } } static int alsa_open (int in, struct alsa_params_req *req, struct alsa_params_obt *obt, snd_pcm_t **handlep) { snd_pcm_t *handle; snd_pcm_hw_params_t *hw_params; int err; int size_in_usec; unsigned int freq, nchannels; const char *pcm_name = in ? conf.pcm_name_in : conf.pcm_name_out; snd_pcm_uframes_t obt_buffer_size; const char *typ = in ? "ADC" : "DAC"; snd_pcm_format_t obtfmt; freq = req->freq; nchannels = req->nchannels; size_in_usec = req->size_in_usec; snd_pcm_hw_params_alloca (&hw_params); err = snd_pcm_open ( &handle, pcm_name, in ? SND_PCM_STREAM_CAPTURE : SND_PCM_STREAM_PLAYBACK, SND_PCM_NONBLOCK ); if (err < 0) { alsa_logerr2 (err, typ, "Failed to open `%s':\n", pcm_name); return -1; } err = snd_pcm_hw_params_any (handle, hw_params); if (err < 0) { alsa_logerr2 (err, typ, "Failed to initialize hardware parameters\n"); goto err; } err = snd_pcm_hw_params_set_access ( handle, hw_params, SND_PCM_ACCESS_RW_INTERLEAVED ); if (err < 0) { alsa_logerr2 (err, typ, "Failed to set access type\n"); goto err; } err = snd_pcm_hw_params_set_format (handle, hw_params, req->fmt); if (err < 0 && conf.verbose) { alsa_logerr2 (err, typ, "Failed to set format %d\n", req->fmt); } err = snd_pcm_hw_params_set_rate_near (handle, hw_params, &freq, 0); if (err < 0) { alsa_logerr2 (err, typ, "Failed to set frequency %d\n", req->freq); goto err; } err = snd_pcm_hw_params_set_channels_near ( handle, hw_params, &nchannels ); if (err < 0) { alsa_logerr2 (err, typ, "Failed to set number of channels %d\n", req->nchannels); goto err; } if (nchannels != 1 && nchannels != 2) { alsa_logerr2 (err, typ, "Can not handle obtained number of channels %d\n", nchannels); goto err; } if (req->buffer_size) { unsigned long obt; if (size_in_usec) { int dir = 0; unsigned int btime = req->buffer_size; err = snd_pcm_hw_params_set_buffer_time_near ( handle, hw_params, &btime, &dir ); obt = btime; } else { snd_pcm_uframes_t bsize = req->buffer_size; err = snd_pcm_hw_params_set_buffer_size_near ( handle, hw_params, &bsize ); obt = bsize; } if (err < 0) { alsa_logerr2 (err, typ, "Failed to set buffer %s to %d\n", size_in_usec ? "time" : "size", req->buffer_size); goto err; } if ((req->override_mask & 2) && (obt - req->buffer_size)) dolog ("Requested buffer %s %u was rejected, using %lu\n", size_in_usec ? "time" : "size", req->buffer_size, obt); } if (req->period_size) { unsigned long obt; if (size_in_usec) { int dir = 0; unsigned int ptime = req->period_size; err = snd_pcm_hw_params_set_period_time_near ( handle, hw_params, &ptime, &dir ); obt = ptime; } else { int dir = 0; snd_pcm_uframes_t psize = req->period_size; err = snd_pcm_hw_params_set_period_size_near ( handle, hw_params, &psize, &dir ); obt = psize; } if (err < 0) { alsa_logerr2 (err, typ, "Failed to set period %s to %d\n", size_in_usec ? "time" : "size", req->period_size); goto err; } if (((req->override_mask & 1) && (obt - req->period_size))) dolog ("Requested period %s %u was rejected, using %lu\n", size_in_usec ? "time" : "size", req->period_size, obt); } err = snd_pcm_hw_params (handle, hw_params); if (err < 0) { alsa_logerr2 (err, typ, "Failed to apply audio parameters\n"); goto err; } err = snd_pcm_hw_params_get_buffer_size (hw_params, &obt_buffer_size); if (err < 0) { alsa_logerr2 (err, typ, "Failed to get buffer size\n"); goto err; } err = snd_pcm_hw_params_get_format (hw_params, &obtfmt); if (err < 0) { alsa_logerr2 (err, typ, "Failed to get format\n"); goto err; } if (alsa_to_audfmt (obtfmt, &obt->fmt, &obt->endianness)) { dolog ("Invalid format was returned %d\n", obtfmt); goto err; } err = snd_pcm_prepare (handle); if (err < 0) { alsa_logerr2 (err, typ, "Could not prepare handle %p\n", handle); goto err; } if (!in && conf.threshold) { snd_pcm_uframes_t threshold; int bytes_per_sec; bytes_per_sec = freq << (nchannels == 2); switch (obt->fmt) { case AUD_FMT_S8: case AUD_FMT_U8: break; case AUD_FMT_S16: case AUD_FMT_U16: bytes_per_sec <<= 1; break; case AUD_FMT_S32: case AUD_FMT_U32: bytes_per_sec <<= 2; break; } threshold = (conf.threshold * bytes_per_sec) / 1000; alsa_set_threshold (handle, threshold); } obt->nchannels = nchannels; obt->freq = freq; obt->samples = obt_buffer_size; *handlep = handle; if (conf.verbose && (obt->fmt != req->fmt || obt->nchannels != req->nchannels || obt->freq != req->freq)) { dolog ("Audio parameters for %s\n", typ); alsa_dump_info (req, obt); } #ifdef DEBUG alsa_dump_info (req, obt); #endif return 0; err: alsa_anal_close1 (&handle); return -1; } static snd_pcm_sframes_t alsa_get_avail (snd_pcm_t *handle) { snd_pcm_sframes_t avail; avail = snd_pcm_avail_update (handle); if (avail < 0) { if (avail == -EPIPE) { if (!alsa_recover (handle)) { avail = snd_pcm_avail_update (handle); } } if (avail < 0) { alsa_logerr (avail, "Could not obtain number of available frames\n"); return -1; } } return avail; } static void alsa_write_pending (ALSAVoiceOut *alsa) { HWVoiceOut *hw = &alsa->hw; while (alsa->pending) { int left_till_end_samples = hw->samples - alsa->wpos; int len = audio_MIN (alsa->pending, left_till_end_samples); char *src = advance (alsa->pcm_buf, alsa->wpos << hw->info.shift); while (len) { snd_pcm_sframes_t written; written = snd_pcm_writei (alsa->handle, src, len); if (written <= 0) { switch (written) { case 0: if (conf.verbose) { dolog ("Failed to write %d frames (wrote zero)\n", len); } return; case -EPIPE: if (alsa_recover (alsa->handle)) { alsa_logerr (written, "Failed to write %d frames\n", len); return; } if (conf.verbose) { dolog ("Recovering from playback xrun\n"); } continue; case -ESTRPIPE: /* stream is suspended and waiting for an application recovery */ if (alsa_resume (alsa->handle)) { alsa_logerr (written, "Failed to write %d frames\n", len); return; } if (conf.verbose) { dolog ("Resuming suspended output stream\n"); } continue; case -EAGAIN: return; default: alsa_logerr (written, "Failed to write %d frames from %p\n", len, src); return; } } alsa->wpos = (alsa->wpos + written) % hw->samples; alsa->pending -= written; len -= written; } } } static int alsa_run_out (HWVoiceOut *hw, int live) { ALSAVoiceOut *alsa = (ALSAVoiceOut *) hw; int decr; snd_pcm_sframes_t avail; avail = alsa_get_avail (alsa->handle); if (avail < 0) { dolog ("Could not get number of available playback frames\n"); return 0; } decr = audio_MIN (live, avail); decr = audio_pcm_hw_clip_out (hw, alsa->pcm_buf, decr, alsa->pending); alsa->pending += decr; alsa_write_pending (alsa); return decr; } static void alsa_fini_out (HWVoiceOut *hw) { ALSAVoiceOut *alsa = (ALSAVoiceOut *) hw; ldebug ("alsa_fini\n"); alsa_anal_close (&alsa->handle, &alsa->pollhlp); if (alsa->pcm_buf) { qemu_free (alsa->pcm_buf); alsa->pcm_buf = NULL; } } static int alsa_init_out (HWVoiceOut *hw, struct audsettings *as) { ALSAVoiceOut *alsa = (ALSAVoiceOut *) hw; struct alsa_params_req req; struct alsa_params_obt obt; snd_pcm_t *handle; struct audsettings obt_as; req.fmt = aud_to_alsafmt (as->fmt); req.freq = as->freq; req.nchannels = as->nchannels; req.period_size = conf.period_size_out; req.buffer_size = conf.buffer_size_out; req.size_in_usec = conf.size_in_usec_out; req.override_mask = (conf.period_size_out_overridden ? 1 : 0) | (conf.buffer_size_out_overridden ? 2 : 0); if (alsa_open (0, &req, &obt, &handle)) { return -1; } obt_as.freq = obt.freq; obt_as.nchannels = obt.nchannels; obt_as.fmt = obt.fmt; obt_as.endianness = obt.endianness; audio_pcm_init_info (&hw->info, &obt_as); hw->samples = obt.samples; alsa->pcm_buf = audio_calloc (AUDIO_FUNC, obt.samples, 1 << hw->info.shift); if (!alsa->pcm_buf) { dolog ("Could not allocate DAC buffer (%d samples, each %d bytes)\n", hw->samples, 1 << hw->info.shift); alsa_anal_close1 (&handle); return -1; } alsa->handle = handle; return 0; } static int alsa_voice_ctl (snd_pcm_t *handle, const char *typ, int pause) { int err; if (pause) { err = snd_pcm_drop (handle); if (err < 0) { alsa_logerr (err, "Could not stop %s\n", typ); return -1; } } else { err = snd_pcm_prepare (handle); if (err < 0) { alsa_logerr (err, "Could not prepare handle for %s\n", typ); return -1; } } return 0; } static int alsa_ctl_out (HWVoiceOut *hw, int cmd, ...) { ALSAVoiceOut *alsa = (ALSAVoiceOut *) hw; switch (cmd) { case VOICE_ENABLE: { va_list ap; int poll_mode; va_start (ap, cmd); poll_mode = va_arg (ap, int); va_end (ap); ldebug ("enabling voice\n"); if (poll_mode && alsa_poll_out (hw)) { poll_mode = 0; } hw->poll_mode = poll_mode; return alsa_voice_ctl (alsa->handle, "playback", 0); } case VOICE_DISABLE: ldebug ("disabling voice\n"); return alsa_voice_ctl (alsa->handle, "playback", 1); } return -1; } static int alsa_init_in (HWVoiceIn *hw, struct audsettings *as) { ALSAVoiceIn *alsa = (ALSAVoiceIn *) hw; struct alsa_params_req req; struct alsa_params_obt obt; snd_pcm_t *handle; struct audsettings obt_as; req.fmt = aud_to_alsafmt (as->fmt); req.freq = as->freq; req.nchannels = as->nchannels; req.period_size = conf.period_size_in; req.buffer_size = conf.buffer_size_in; req.size_in_usec = conf.size_in_usec_in; req.override_mask = (conf.period_size_in_overridden ? 1 : 0) | (conf.buffer_size_in_overridden ? 2 : 0); if (alsa_open (1, &req, &obt, &handle)) { return -1; } obt_as.freq = obt.freq; obt_as.nchannels = obt.nchannels; obt_as.fmt = obt.fmt; obt_as.endianness = obt.endianness; audio_pcm_init_info (&hw->info, &obt_as); hw->samples = obt.samples; alsa->pcm_buf = audio_calloc (AUDIO_FUNC, hw->samples, 1 << hw->info.shift); if (!alsa->pcm_buf) { dolog ("Could not allocate ADC buffer (%d samples, each %d bytes)\n", hw->samples, 1 << hw->info.shift); alsa_anal_close1 (&handle); return -1; } alsa->handle = handle; return 0; } static void alsa_fini_in (HWVoiceIn *hw) { ALSAVoiceIn *alsa = (ALSAVoiceIn *) hw; alsa_anal_close (&alsa->handle, &alsa->pollhlp); if (alsa->pcm_buf) { qemu_free (alsa->pcm_buf); alsa->pcm_buf = NULL; } } static int alsa_run_in (HWVoiceIn *hw) { ALSAVoiceIn *alsa = (ALSAVoiceIn *) hw; int hwshift = hw->info.shift; int i; int live = audio_pcm_hw_get_live_in (hw); int dead = hw->samples - live; int decr; struct { int add; int len; } bufs[2] = { { .add = hw->wpos, .len = 0 }, { .add = 0, .len = 0 } }; snd_pcm_sframes_t avail; snd_pcm_uframes_t read_samples = 0; if (!dead) { return 0; } avail = alsa_get_avail (alsa->handle); if (avail < 0) { dolog ("Could not get number of captured frames\n"); return 0; } if (!avail) { snd_pcm_state_t state; state = snd_pcm_state (alsa->handle); switch (state) { case SND_PCM_STATE_PREPARED: avail = hw->samples; break; case SND_PCM_STATE_SUSPENDED: /* stream is suspended and waiting for an application recovery */ if (alsa_resume (alsa->handle)) { dolog ("Failed to resume suspended input stream\n"); return 0; } if (conf.verbose) { dolog ("Resuming suspended input stream\n"); } break; default: if (conf.verbose) { dolog ("No frames available and ALSA state is %d\n", state); } return 0; } } decr = audio_MIN (dead, avail); if (!decr) { return 0; } if (hw->wpos + decr > hw->samples) { bufs[0].len = (hw->samples - hw->wpos); bufs[1].len = (decr - (hw->samples - hw->wpos)); } else { bufs[0].len = decr; } for (i = 0; i < 2; ++i) { void *src; struct st_sample *dst; snd_pcm_sframes_t nread; snd_pcm_uframes_t len; len = bufs[i].len; src = advance (alsa->pcm_buf, bufs[i].add << hwshift); dst = hw->conv_buf + bufs[i].add; while (len) { nread = snd_pcm_readi (alsa->handle, src, len); if (nread <= 0) { switch (nread) { case 0: if (conf.verbose) { dolog ("Failed to read %ld frames (read zero)\n", len); } goto exit; case -EPIPE: if (alsa_recover (alsa->handle)) { alsa_logerr (nread, "Failed to read %ld frames\n", len); goto exit; } if (conf.verbose) { dolog ("Recovering from capture xrun\n"); } continue; case -EAGAIN: goto exit; default: alsa_logerr ( nread, "Failed to read %ld frames from %p\n", len, src ); goto exit; } } hw->conv (dst, src, nread, &nominal_volume); src = advance (src, nread << hwshift); dst += nread; read_samples += nread; len -= nread; } } exit: hw->wpos = (hw->wpos + read_samples) % hw->samples; return read_samples; } static int alsa_read (SWVoiceIn *sw, void *buf, int size) { return audio_pcm_sw_read (sw, buf, size); } static int alsa_ctl_in (HWVoiceIn *hw, int cmd, ...) { ALSAVoiceIn *alsa = (ALSAVoiceIn *) hw; switch (cmd) { case VOICE_ENABLE: { va_list ap; int poll_mode; va_start (ap, cmd); poll_mode = va_arg (ap, int); va_end (ap); ldebug ("enabling voice\n"); if (poll_mode && alsa_poll_in (hw)) { poll_mode = 0; } hw->poll_mode = poll_mode; return alsa_voice_ctl (alsa->handle, "capture", 0); } case VOICE_DISABLE: ldebug ("disabling voice\n"); if (hw->poll_mode) { hw->poll_mode = 0; alsa_fini_poll (&alsa->pollhlp); } return alsa_voice_ctl (alsa->handle, "capture", 1); } return -1; } static void *alsa_audio_init (void) { return &conf; } static void alsa_audio_fini (void *opaque) { (void) opaque; } static struct audio_option alsa_options[] = { { .name = "DAC_SIZE_IN_USEC", .tag = AUD_OPT_BOOL, .valp = &conf.size_in_usec_out, .descr = "DAC period/buffer size in microseconds (otherwise in frames)" }, { .name = "DAC_PERIOD_SIZE", .tag = AUD_OPT_INT, .valp = &conf.period_size_out, .descr = "DAC period size (0 to go with system default)", .overriddenp = &conf.period_size_out_overridden }, { .name = "DAC_BUFFER_SIZE", .tag = AUD_OPT_INT, .valp = &conf.buffer_size_out, .descr = "DAC buffer size (0 to go with system default)", .overriddenp = &conf.buffer_size_out_overridden }, { .name = "ADC_SIZE_IN_USEC", .tag = AUD_OPT_BOOL, .valp = &conf.size_in_usec_in, .descr = "ADC period/buffer size in microseconds (otherwise in frames)" }, { .name = "ADC_PERIOD_SIZE", .tag = AUD_OPT_INT, .valp = &conf.period_size_in, .descr = "ADC period size (0 to go with system default)", .overriddenp = &conf.period_size_in_overridden }, { .name = "ADC_BUFFER_SIZE", .tag = AUD_OPT_INT, .valp = &conf.buffer_size_in, .descr = "ADC buffer size (0 to go with system default)", .overriddenp = &conf.buffer_size_in_overridden }, { .name = "THRESHOLD", .tag = AUD_OPT_INT, .valp = &conf.threshold, .descr = "(undocumented)" }, { .name = "DAC_DEV", .tag = AUD_OPT_STR, .valp = &conf.pcm_name_out, .descr = "DAC device name (for instance dmix)" }, { .name = "ADC_DEV", .tag = AUD_OPT_STR, .valp = &conf.pcm_name_in, .descr = "ADC device name" }, { .name = "VERBOSE", .tag = AUD_OPT_BOOL, .valp = &conf.verbose, .descr = "Behave in a more verbose way" }, { /* End of list */ } }; static struct audio_pcm_ops alsa_pcm_ops = { .init_out = alsa_init_out, .fini_out = alsa_fini_out, .run_out = alsa_run_out, .write = alsa_write, .ctl_out = alsa_ctl_out, .init_in = alsa_init_in, .fini_in = alsa_fini_in, .run_in = alsa_run_in, .read = alsa_read, .ctl_in = alsa_ctl_in, }; struct audio_driver alsa_audio_driver = { .name = "alsa", .descr = "ALSA http://www.alsa-project.org", .options = alsa_options, .init = alsa_audio_init, .fini = alsa_audio_fini, .pcm_ops = &alsa_pcm_ops, .can_be_default = 1, .max_voices_out = INT_MAX, .max_voices_in = INT_MAX, .voice_size_out = sizeof (ALSAVoiceOut), .voice_size_in = sizeof (ALSAVoiceIn) };