/* * QEMU System Emulator * * Copyright (c) 2003-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <stdint.h> #include <stdarg.h> #include <stdlib.h> #ifndef _WIN32 #include <sys/types.h> #include <sys/mman.h> #endif #include "config.h" #include "monitor/monitor.h" #include "sysemu/sysemu.h" #include "qemu/bitops.h" #include "qemu/bitmap.h" #include "sysemu/arch_init.h" #include "audio/audio.h" #include "hw/i386/pc.h" #include "hw/pci/pci.h" #include "hw/audio/audio.h" #include "sysemu/kvm.h" #include "migration/migration.h" #include "hw/i386/smbios.h" #include "exec/address-spaces.h" #include "hw/audio/pcspk.h" #include "migration/page_cache.h" #include "qemu/config-file.h" #include "qmp-commands.h" #include "trace.h" #include "exec/cpu-all.h" #include "exec/ram_addr.h" #include "hw/acpi/acpi.h" #include "qemu/host-utils.h" #ifdef DEBUG_ARCH_INIT #define DPRINTF(fmt, ...) \ do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif #ifdef TARGET_SPARC int graphic_width = 1024; int graphic_height = 768; int graphic_depth = 8; #else int graphic_width = 800; int graphic_height = 600; int graphic_depth = 32; #endif #if defined(TARGET_ALPHA) #define QEMU_ARCH QEMU_ARCH_ALPHA #elif defined(TARGET_ARM) #define QEMU_ARCH QEMU_ARCH_ARM #elif defined(TARGET_CRIS) #define QEMU_ARCH QEMU_ARCH_CRIS #elif defined(TARGET_I386) #define QEMU_ARCH QEMU_ARCH_I386 #elif defined(TARGET_M68K) #define QEMU_ARCH QEMU_ARCH_M68K #elif defined(TARGET_LM32) #define QEMU_ARCH QEMU_ARCH_LM32 #elif defined(TARGET_MICROBLAZE) #define QEMU_ARCH QEMU_ARCH_MICROBLAZE #elif defined(TARGET_MIPS) #define QEMU_ARCH QEMU_ARCH_MIPS #elif defined(TARGET_MOXIE) #define QEMU_ARCH QEMU_ARCH_MOXIE #elif defined(TARGET_OPENRISC) #define QEMU_ARCH QEMU_ARCH_OPENRISC #elif defined(TARGET_PPC) #define QEMU_ARCH QEMU_ARCH_PPC #elif defined(TARGET_S390X) #define QEMU_ARCH QEMU_ARCH_S390X #elif defined(TARGET_SH4) #define QEMU_ARCH QEMU_ARCH_SH4 #elif defined(TARGET_SPARC) #define QEMU_ARCH QEMU_ARCH_SPARC #elif defined(TARGET_XTENSA) #define QEMU_ARCH QEMU_ARCH_XTENSA #elif defined(TARGET_UNICORE32) #define QEMU_ARCH QEMU_ARCH_UNICORE32 #endif const uint32_t arch_type = QEMU_ARCH; static bool mig_throttle_on; static int dirty_rate_high_cnt; static void check_guest_throttling(void); /***********************************************************/ /* ram save/restore */ #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ #define RAM_SAVE_FLAG_COMPRESS 0x02 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 #define RAM_SAVE_FLAG_PAGE 0x08 #define RAM_SAVE_FLAG_EOS 0x10 #define RAM_SAVE_FLAG_CONTINUE 0x20 #define RAM_SAVE_FLAG_XBZRLE 0x40 /* 0x80 is reserved in migration.h start with 0x100 next */ static struct defconfig_file { const char *filename; /* Indicates it is an user config file (disabled by -no-user-config) */ bool userconfig; } default_config_files[] = { { CONFIG_QEMU_CONFDIR "/qemu.conf", true }, { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true }, { NULL }, /* end of list */ }; int qemu_read_default_config_files(bool userconfig) { int ret; struct defconfig_file *f; for (f = default_config_files; f->filename; f++) { if (!userconfig && f->userconfig) { continue; } ret = qemu_read_config_file(f->filename); if (ret < 0 && ret != -ENOENT) { return ret; } } return 0; } static inline bool is_zero_range(uint8_t *p, uint64_t size) { return buffer_find_nonzero_offset(p, size) == size; } /* struct contains XBZRLE cache and a static page used by the compression */ static struct { /* buffer used for XBZRLE encoding */ uint8_t *encoded_buf; /* buffer for storing page content */ uint8_t *current_buf; /* Cache for XBZRLE */ PageCache *cache; } XBZRLE = { .encoded_buf = NULL, .current_buf = NULL, .cache = NULL, }; /* buffer used for XBZRLE decoding */ static uint8_t *xbzrle_decoded_buf; int64_t xbzrle_cache_resize(int64_t new_size) { if (new_size < TARGET_PAGE_SIZE) { return -1; } if (XBZRLE.cache != NULL) { return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) * TARGET_PAGE_SIZE; } return pow2floor(new_size); } /* accounting for migration statistics */ typedef struct AccountingInfo { uint64_t dup_pages; uint64_t skipped_pages; uint64_t norm_pages; uint64_t iterations; uint64_t xbzrle_bytes; uint64_t xbzrle_pages; uint64_t xbzrle_cache_miss; uint64_t xbzrle_overflows; } AccountingInfo; static AccountingInfo acct_info; static void acct_clear(void) { memset(&acct_info, 0, sizeof(acct_info)); } uint64_t dup_mig_bytes_transferred(void) { return acct_info.dup_pages * TARGET_PAGE_SIZE; } uint64_t dup_mig_pages_transferred(void) { return acct_info.dup_pages; } uint64_t skipped_mig_bytes_transferred(void) { return acct_info.skipped_pages * TARGET_PAGE_SIZE; } uint64_t skipped_mig_pages_transferred(void) { return acct_info.skipped_pages; } uint64_t norm_mig_bytes_transferred(void) { return acct_info.norm_pages * TARGET_PAGE_SIZE; } uint64_t norm_mig_pages_transferred(void) { return acct_info.norm_pages; } uint64_t xbzrle_mig_bytes_transferred(void) { return acct_info.xbzrle_bytes; } uint64_t xbzrle_mig_pages_transferred(void) { return acct_info.xbzrle_pages; } uint64_t xbzrle_mig_pages_cache_miss(void) { return acct_info.xbzrle_cache_miss; } uint64_t xbzrle_mig_pages_overflow(void) { return acct_info.xbzrle_overflows; } static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset, int cont, int flag) { size_t size; qemu_put_be64(f, offset | cont | flag); size = 8; if (!cont) { qemu_put_byte(f, strlen(block->idstr)); qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); size += 1 + strlen(block->idstr); } return size; } #define ENCODING_FLAG_XBZRLE 0x1 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data, ram_addr_t current_addr, RAMBlock *block, ram_addr_t offset, int cont, bool last_stage) { int encoded_len = 0, bytes_sent = -1; uint8_t *prev_cached_page; if (!cache_is_cached(XBZRLE.cache, current_addr)) { if (!last_stage) { if (cache_insert(XBZRLE.cache, current_addr, current_data) == -1) { return -1; } } acct_info.xbzrle_cache_miss++; return -1; } prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); /* save current buffer into memory */ memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE); /* XBZRLE encoding (if there is no overflow) */ encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE, XBZRLE.encoded_buf, TARGET_PAGE_SIZE); if (encoded_len == 0) { DPRINTF("Skipping unmodified page\n"); return 0; } else if (encoded_len == -1) { DPRINTF("Overflow\n"); acct_info.xbzrle_overflows++; /* update data in the cache */ memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE); return -1; } /* we need to update the data in the cache, in order to get the same data */ if (!last_stage) { memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); } /* Send XBZRLE based compressed page */ bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE); qemu_put_byte(f, ENCODING_FLAG_XBZRLE); qemu_put_be16(f, encoded_len); qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len); bytes_sent += encoded_len + 1 + 2; acct_info.xbzrle_pages++; acct_info.xbzrle_bytes += bytes_sent; return bytes_sent; } /* This is the last block that we have visited serching for dirty pages */ static RAMBlock *last_seen_block; /* This is the last block from where we have sent data */ static RAMBlock *last_sent_block; static ram_addr_t last_offset; static unsigned long *migration_bitmap; static uint64_t migration_dirty_pages; static uint32_t last_version; static bool ram_bulk_stage; static inline ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr, ram_addr_t start) { unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS; unsigned long nr = base + (start >> TARGET_PAGE_BITS); uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr)); unsigned long size = base + (mr_size >> TARGET_PAGE_BITS); unsigned long next; if (ram_bulk_stage && nr > base) { next = nr + 1; } else { next = find_next_bit(migration_bitmap, size, nr); } if (next < size) { clear_bit(next, migration_bitmap); migration_dirty_pages--; } return (next - base) << TARGET_PAGE_BITS; } static inline bool migration_bitmap_set_dirty(ram_addr_t addr) { bool ret; int nr = addr >> TARGET_PAGE_BITS; ret = test_and_set_bit(nr, migration_bitmap); if (!ret) { migration_dirty_pages++; } return ret; } static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length) { ram_addr_t addr; unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS); /* start address is aligned at the start of a word? */ if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) { int k; int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS); unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]; for (k = page; k < page + nr; k++) { if (src[k]) { unsigned long new_dirty; new_dirty = ~migration_bitmap[k]; migration_bitmap[k] |= src[k]; new_dirty &= src[k]; migration_dirty_pages += ctpopl(new_dirty); src[k] = 0; } } } else { for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) { if (cpu_physical_memory_get_dirty(start + addr, TARGET_PAGE_SIZE, DIRTY_MEMORY_MIGRATION)) { cpu_physical_memory_reset_dirty(start + addr, TARGET_PAGE_SIZE, DIRTY_MEMORY_MIGRATION); migration_bitmap_set_dirty(start + addr); } } } } /* Needs iothread lock! */ static void migration_bitmap_sync(void) { RAMBlock *block; uint64_t num_dirty_pages_init = migration_dirty_pages; MigrationState *s = migrate_get_current(); static int64_t start_time; static int64_t bytes_xfer_prev; static int64_t num_dirty_pages_period; int64_t end_time; int64_t bytes_xfer_now; if (!bytes_xfer_prev) { bytes_xfer_prev = ram_bytes_transferred(); } if (!start_time) { start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); } trace_migration_bitmap_sync_start(); address_space_sync_dirty_bitmap(&address_space_memory); QTAILQ_FOREACH(block, &ram_list.blocks, next) { migration_bitmap_sync_range(block->mr->ram_addr, block->length); } trace_migration_bitmap_sync_end(migration_dirty_pages - num_dirty_pages_init); num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init; end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); /* more than 1 second = 1000 millisecons */ if (end_time > start_time + 1000) { if (migrate_auto_converge()) { /* The following detection logic can be refined later. For now: Check to see if the dirtied bytes is 50% more than the approx. amount of bytes that just got transferred since the last time we were in this routine. If that happens >N times (for now N==4) we turn on the throttle down logic */ bytes_xfer_now = ram_bytes_transferred(); if (s->dirty_pages_rate && (num_dirty_pages_period * TARGET_PAGE_SIZE > (bytes_xfer_now - bytes_xfer_prev)/2) && (dirty_rate_high_cnt++ > 4)) { trace_migration_throttle(); mig_throttle_on = true; dirty_rate_high_cnt = 0; } bytes_xfer_prev = bytes_xfer_now; } else { mig_throttle_on = false; } s->dirty_pages_rate = num_dirty_pages_period * 1000 / (end_time - start_time); s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE; start_time = end_time; num_dirty_pages_period = 0; } } /* * ram_save_block: Writes a page of memory to the stream f * * Returns: The number of bytes written. * 0 means no dirty pages */ static int ram_save_block(QEMUFile *f, bool last_stage) { RAMBlock *block = last_seen_block; ram_addr_t offset = last_offset; bool complete_round = false; int bytes_sent = 0; MemoryRegion *mr; ram_addr_t current_addr; if (!block) block = QTAILQ_FIRST(&ram_list.blocks); while (true) { mr = block->mr; offset = migration_bitmap_find_and_reset_dirty(mr, offset); if (complete_round && block == last_seen_block && offset >= last_offset) { break; } if (offset >= block->length) { offset = 0; block = QTAILQ_NEXT(block, next); if (!block) { block = QTAILQ_FIRST(&ram_list.blocks); complete_round = true; ram_bulk_stage = false; } } else { int ret; uint8_t *p; int cont = (block == last_sent_block) ? RAM_SAVE_FLAG_CONTINUE : 0; p = memory_region_get_ram_ptr(mr) + offset; /* In doubt sent page as normal */ bytes_sent = -1; ret = ram_control_save_page(f, block->offset, offset, TARGET_PAGE_SIZE, &bytes_sent); if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { if (ret != RAM_SAVE_CONTROL_DELAYED) { if (bytes_sent > 0) { acct_info.norm_pages++; } else if (bytes_sent == 0) { acct_info.dup_pages++; } } } else if (is_zero_range(p, TARGET_PAGE_SIZE)) { acct_info.dup_pages++; bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_COMPRESS); qemu_put_byte(f, 0); bytes_sent++; } else if (!ram_bulk_stage && migrate_use_xbzrle()) { current_addr = block->offset + offset; bytes_sent = save_xbzrle_page(f, p, current_addr, block, offset, cont, last_stage); if (!last_stage) { p = get_cached_data(XBZRLE.cache, current_addr); } } /* XBZRLE overflow or normal page */ if (bytes_sent == -1) { bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE); qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE); bytes_sent += TARGET_PAGE_SIZE; acct_info.norm_pages++; } /* if page is unmodified, continue to the next */ if (bytes_sent > 0) { last_sent_block = block; break; } } } last_seen_block = block; last_offset = offset; return bytes_sent; } static uint64_t bytes_transferred; void acct_update_position(QEMUFile *f, size_t size, bool zero) { uint64_t pages = size / TARGET_PAGE_SIZE; if (zero) { acct_info.dup_pages += pages; } else { acct_info.norm_pages += pages; bytes_transferred += size; qemu_update_position(f, size); } } static ram_addr_t ram_save_remaining(void) { return migration_dirty_pages; } uint64_t ram_bytes_remaining(void) { return ram_save_remaining() * TARGET_PAGE_SIZE; } uint64_t ram_bytes_transferred(void) { return bytes_transferred; } uint64_t ram_bytes_total(void) { RAMBlock *block; uint64_t total = 0; QTAILQ_FOREACH(block, &ram_list.blocks, next) total += block->length; return total; } void free_xbzrle_decoded_buf(void) { g_free(xbzrle_decoded_buf); xbzrle_decoded_buf = NULL; } static void migration_end(void) { if (migration_bitmap) { memory_global_dirty_log_stop(); g_free(migration_bitmap); migration_bitmap = NULL; } if (XBZRLE.cache) { cache_fini(XBZRLE.cache); g_free(XBZRLE.cache); g_free(XBZRLE.encoded_buf); g_free(XBZRLE.current_buf); XBZRLE.cache = NULL; XBZRLE.encoded_buf = NULL; XBZRLE.current_buf = NULL; } } static void ram_migration_cancel(void *opaque) { migration_end(); } static void reset_ram_globals(void) { last_seen_block = NULL; last_sent_block = NULL; last_offset = 0; last_version = ram_list.version; ram_bulk_stage = true; } #define MAX_WAIT 50 /* ms, half buffered_file limit */ static int ram_save_setup(QEMUFile *f, void *opaque) { RAMBlock *block; int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; migration_bitmap = bitmap_new(ram_pages); bitmap_set(migration_bitmap, 0, ram_pages); migration_dirty_pages = ram_pages; mig_throttle_on = false; dirty_rate_high_cnt = 0; if (migrate_use_xbzrle()) { XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); if (!XBZRLE.cache) { DPRINTF("Error creating cache\n"); return -1; } /* We prefer not to abort if there is no memory */ XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); if (!XBZRLE.encoded_buf) { DPRINTF("Error allocating encoded_buf\n"); return -1; } XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); if (!XBZRLE.current_buf) { DPRINTF("Error allocating current_buf\n"); g_free(XBZRLE.encoded_buf); XBZRLE.encoded_buf = NULL; return -1; } acct_clear(); } qemu_mutex_lock_iothread(); qemu_mutex_lock_ramlist(); bytes_transferred = 0; reset_ram_globals(); memory_global_dirty_log_start(); migration_bitmap_sync(); qemu_mutex_unlock_iothread(); qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); QTAILQ_FOREACH(block, &ram_list.blocks, next) { qemu_put_byte(f, strlen(block->idstr)); qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); qemu_put_be64(f, block->length); } qemu_mutex_unlock_ramlist(); ram_control_before_iterate(f, RAM_CONTROL_SETUP); ram_control_after_iterate(f, RAM_CONTROL_SETUP); qemu_put_be64(f, RAM_SAVE_FLAG_EOS); return 0; } static int ram_save_iterate(QEMUFile *f, void *opaque) { int ret; int i; int64_t t0; int total_sent = 0; qemu_mutex_lock_ramlist(); if (ram_list.version != last_version) { reset_ram_globals(); } ram_control_before_iterate(f, RAM_CONTROL_ROUND); t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); i = 0; while ((ret = qemu_file_rate_limit(f)) == 0) { int bytes_sent; bytes_sent = ram_save_block(f, false); /* no more blocks to sent */ if (bytes_sent == 0) { break; } total_sent += bytes_sent; acct_info.iterations++; check_guest_throttling(); /* we want to check in the 1st loop, just in case it was the 1st time and we had to sync the dirty bitmap. qemu_get_clock_ns() is a bit expensive, so we only check each some iterations */ if ((i & 63) == 0) { uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; if (t1 > MAX_WAIT) { DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n", t1, i); break; } } i++; } qemu_mutex_unlock_ramlist(); /* * Must occur before EOS (or any QEMUFile operation) * because of RDMA protocol. */ ram_control_after_iterate(f, RAM_CONTROL_ROUND); bytes_transferred += total_sent; /* * Do not count these 8 bytes into total_sent, so that we can * return 0 if no page had been dirtied. */ qemu_put_be64(f, RAM_SAVE_FLAG_EOS); bytes_transferred += 8; ret = qemu_file_get_error(f); if (ret < 0) { return ret; } return total_sent; } static int ram_save_complete(QEMUFile *f, void *opaque) { qemu_mutex_lock_ramlist(); migration_bitmap_sync(); ram_control_before_iterate(f, RAM_CONTROL_FINISH); /* try transferring iterative blocks of memory */ /* flush all remaining blocks regardless of rate limiting */ while (true) { int bytes_sent; bytes_sent = ram_save_block(f, true); /* no more blocks to sent */ if (bytes_sent == 0) { break; } bytes_transferred += bytes_sent; } ram_control_after_iterate(f, RAM_CONTROL_FINISH); migration_end(); qemu_mutex_unlock_ramlist(); qemu_put_be64(f, RAM_SAVE_FLAG_EOS); return 0; } static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size) { uint64_t remaining_size; remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; if (remaining_size < max_size) { qemu_mutex_lock_iothread(); migration_bitmap_sync(); qemu_mutex_unlock_iothread(); remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; } return remaining_size; } static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) { int ret, rc = 0; unsigned int xh_len; int xh_flags; if (!xbzrle_decoded_buf) { xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE); } /* extract RLE header */ xh_flags = qemu_get_byte(f); xh_len = qemu_get_be16(f); if (xh_flags != ENCODING_FLAG_XBZRLE) { fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n"); return -1; } if (xh_len > TARGET_PAGE_SIZE) { fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n"); return -1; } /* load data and decode */ qemu_get_buffer(f, xbzrle_decoded_buf, xh_len); /* decode RLE */ ret = xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host, TARGET_PAGE_SIZE); if (ret == -1) { fprintf(stderr, "Failed to load XBZRLE page - decode error!\n"); rc = -1; } else if (ret > TARGET_PAGE_SIZE) { fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n", ret, TARGET_PAGE_SIZE); abort(); } return rc; } static inline void *host_from_stream_offset(QEMUFile *f, ram_addr_t offset, int flags) { static RAMBlock *block = NULL; char id[256]; uint8_t len; if (flags & RAM_SAVE_FLAG_CONTINUE) { if (!block) { fprintf(stderr, "Ack, bad migration stream!\n"); return NULL; } return memory_region_get_ram_ptr(block->mr) + offset; } len = qemu_get_byte(f); qemu_get_buffer(f, (uint8_t *)id, len); id[len] = 0; QTAILQ_FOREACH(block, &ram_list.blocks, next) { if (!strncmp(id, block->idstr, sizeof(id))) return memory_region_get_ram_ptr(block->mr) + offset; } fprintf(stderr, "Can't find block %s!\n", id); return NULL; } /* * If a page (or a whole RDMA chunk) has been * determined to be zero, then zap it. */ void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) { if (ch != 0 || !is_zero_range(host, size)) { memset(host, ch, size); } } static int ram_load(QEMUFile *f, void *opaque, int version_id) { ram_addr_t addr; int flags, ret = 0; int error; static uint64_t seq_iter; seq_iter++; if (version_id < 4 || version_id > 4) { return -EINVAL; } do { addr = qemu_get_be64(f); flags = addr & ~TARGET_PAGE_MASK; addr &= TARGET_PAGE_MASK; if (flags & RAM_SAVE_FLAG_MEM_SIZE) { if (version_id == 4) { /* Synchronize RAM block list */ char id[256]; ram_addr_t length; ram_addr_t total_ram_bytes = addr; while (total_ram_bytes) { RAMBlock *block; uint8_t len; len = qemu_get_byte(f); qemu_get_buffer(f, (uint8_t *)id, len); id[len] = 0; length = qemu_get_be64(f); QTAILQ_FOREACH(block, &ram_list.blocks, next) { if (!strncmp(id, block->idstr, sizeof(id))) { if (block->length != length) { fprintf(stderr, "Length mismatch: %s: " RAM_ADDR_FMT " in != " RAM_ADDR_FMT "\n", id, length, block->length); ret = -EINVAL; goto done; } break; } } if (!block) { fprintf(stderr, "Unknown ramblock \"%s\", cannot " "accept migration\n", id); ret = -EINVAL; goto done; } total_ram_bytes -= length; } } } if (flags & RAM_SAVE_FLAG_COMPRESS) { void *host; uint8_t ch; host = host_from_stream_offset(f, addr, flags); if (!host) { return -EINVAL; } ch = qemu_get_byte(f); ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); } else if (flags & RAM_SAVE_FLAG_PAGE) { void *host; host = host_from_stream_offset(f, addr, flags); if (!host) { return -EINVAL; } qemu_get_buffer(f, host, TARGET_PAGE_SIZE); } else if (flags & RAM_SAVE_FLAG_XBZRLE) { void *host = host_from_stream_offset(f, addr, flags); if (!host) { return -EINVAL; } if (load_xbzrle(f, addr, host) < 0) { ret = -EINVAL; goto done; } } else if (flags & RAM_SAVE_FLAG_HOOK) { ram_control_load_hook(f, flags); } error = qemu_file_get_error(f); if (error) { ret = error; goto done; } } while (!(flags & RAM_SAVE_FLAG_EOS)); done: DPRINTF("Completed load of VM with exit code %d seq iteration " "%" PRIu64 "\n", ret, seq_iter); return ret; } SaveVMHandlers savevm_ram_handlers = { .save_live_setup = ram_save_setup, .save_live_iterate = ram_save_iterate, .save_live_complete = ram_save_complete, .save_live_pending = ram_save_pending, .load_state = ram_load, .cancel = ram_migration_cancel, }; struct soundhw { const char *name; const char *descr; int enabled; int isa; union { int (*init_isa) (ISABus *bus); int (*init_pci) (PCIBus *bus); } init; }; static struct soundhw soundhw[9]; static int soundhw_count; void isa_register_soundhw(const char *name, const char *descr, int (*init_isa)(ISABus *bus)) { assert(soundhw_count < ARRAY_SIZE(soundhw) - 1); soundhw[soundhw_count].name = name; soundhw[soundhw_count].descr = descr; soundhw[soundhw_count].isa = 1; soundhw[soundhw_count].init.init_isa = init_isa; soundhw_count++; } void pci_register_soundhw(const char *name, const char *descr, int (*init_pci)(PCIBus *bus)) { assert(soundhw_count < ARRAY_SIZE(soundhw) - 1); soundhw[soundhw_count].name = name; soundhw[soundhw_count].descr = descr; soundhw[soundhw_count].isa = 0; soundhw[soundhw_count].init.init_pci = init_pci; soundhw_count++; } void select_soundhw(const char *optarg) { struct soundhw *c; if (is_help_option(optarg)) { show_valid_cards: if (soundhw_count) { printf("Valid sound card names (comma separated):\n"); for (c = soundhw; c->name; ++c) { printf ("%-11s %s\n", c->name, c->descr); } printf("\n-soundhw all will enable all of the above\n"); } else { printf("Machine has no user-selectable audio hardware " "(it may or may not have always-present audio hardware).\n"); } exit(!is_help_option(optarg)); } else { size_t l; const char *p; char *e; int bad_card = 0; if (!strcmp(optarg, "all")) { for (c = soundhw; c->name; ++c) { c->enabled = 1; } return; } p = optarg; while (*p) { e = strchr(p, ','); l = !e ? strlen(p) : (size_t) (e - p); for (c = soundhw; c->name; ++c) { if (!strncmp(c->name, p, l) && !c->name[l]) { c->enabled = 1; break; } } if (!c->name) { if (l > 80) { fprintf(stderr, "Unknown sound card name (too big to show)\n"); } else { fprintf(stderr, "Unknown sound card name `%.*s'\n", (int) l, p); } bad_card = 1; } p += l + (e != NULL); } if (bad_card) { goto show_valid_cards; } } } void audio_init(void) { struct soundhw *c; ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL); PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL); for (c = soundhw; c->name; ++c) { if (c->enabled) { if (c->isa) { if (!isa_bus) { fprintf(stderr, "ISA bus not available for %s\n", c->name); exit(1); } c->init.init_isa(isa_bus); } else { if (!pci_bus) { fprintf(stderr, "PCI bus not available for %s\n", c->name); exit(1); } c->init.init_pci(pci_bus); } } } } int qemu_uuid_parse(const char *str, uint8_t *uuid) { int ret; if (strlen(str) != 36) { return -1; } ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3], &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9], &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]); if (ret != 16) { return -1; } return 0; } void do_acpitable_option(const QemuOpts *opts) { #ifdef TARGET_I386 Error *err = NULL; acpi_table_add(opts, &err); if (err) { error_report("Wrong acpi table provided: %s", error_get_pretty(err)); error_free(err); exit(1); } #endif } void do_smbios_option(QemuOpts *opts) { #ifdef TARGET_I386 smbios_entry_add(opts); #endif } void cpudef_init(void) { #if defined(cpudef_setup) cpudef_setup(); /* parse cpu definitions in target config file */ #endif } int tcg_available(void) { return 1; } int kvm_available(void) { #ifdef CONFIG_KVM return 1; #else return 0; #endif } int xen_available(void) { #ifdef CONFIG_XEN return 1; #else return 0; #endif } TargetInfo *qmp_query_target(Error **errp) { TargetInfo *info = g_malloc0(sizeof(*info)); info->arch = g_strdup(TARGET_NAME); return info; } /* Stub function that's gets run on the vcpu when its brought out of the VM to run inside qemu via async_run_on_cpu()*/ static void mig_sleep_cpu(void *opq) { qemu_mutex_unlock_iothread(); g_usleep(30*1000); qemu_mutex_lock_iothread(); } /* To reduce the dirty rate explicitly disallow the VCPUs from spending much time in the VM. The migration thread will try to catchup. Workload will experience a performance drop. */ static void mig_throttle_guest_down(void) { CPUState *cpu; qemu_mutex_lock_iothread(); CPU_FOREACH(cpu) { async_run_on_cpu(cpu, mig_sleep_cpu, NULL); } qemu_mutex_unlock_iothread(); } static void check_guest_throttling(void) { static int64_t t0; int64_t t1; if (!mig_throttle_on) { return; } if (!t0) { t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); return; } t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); /* If it has been more than 40 ms since the last time the guest * was throttled then do it again. */ if (40 < (t1-t0)/1000000) { mig_throttle_guest_down(); t0 = t1; } }