/* * QEMU System Emulator * * Copyright (c) 2003-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <stdint.h> #include <stdarg.h> #include <stdlib.h> #ifndef _WIN32 #include <sys/types.h> #include <sys/mman.h> #endif #include "config.h" #include "monitor.h" #include "sysemu.h" #include "arch_init.h" #include "audio/audio.h" #include "hw/pc.h" #include "hw/pci.h" #include "hw/audiodev.h" #include "kvm.h" #include "migration.h" #include "net.h" #include "gdbstub.h" #include "hw/smbios.h" #ifdef TARGET_SPARC int graphic_width = 1024; int graphic_height = 768; int graphic_depth = 8; #else int graphic_width = 800; int graphic_height = 600; int graphic_depth = 15; #endif const char arch_config_name[] = CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf"; #if defined(TARGET_ALPHA) #define QEMU_ARCH QEMU_ARCH_ALPHA #elif defined(TARGET_ARM) #define QEMU_ARCH QEMU_ARCH_ARM #elif defined(TARGET_CRIS) #define QEMU_ARCH QEMU_ARCH_CRIS #elif defined(TARGET_I386) #define QEMU_ARCH QEMU_ARCH_I386 #elif defined(TARGET_M68K) #define QEMU_ARCH QEMU_ARCH_M68K #elif defined(TARGET_LM32) #define QEMU_ARCH QEMU_ARCH_LM32 #elif defined(TARGET_MICROBLAZE) #define QEMU_ARCH QEMU_ARCH_MICROBLAZE #elif defined(TARGET_MIPS) #define QEMU_ARCH QEMU_ARCH_MIPS #elif defined(TARGET_PPC) #define QEMU_ARCH QEMU_ARCH_PPC #elif defined(TARGET_S390X) #define QEMU_ARCH QEMU_ARCH_S390X #elif defined(TARGET_SH4) #define QEMU_ARCH QEMU_ARCH_SH4 #elif defined(TARGET_SPARC) #define QEMU_ARCH QEMU_ARCH_SPARC #elif defined(TARGET_XTENSA) #define QEMU_ARCH QEMU_ARCH_XTENSA #endif const uint32_t arch_type = QEMU_ARCH; /***********************************************************/ /* ram save/restore */ #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ #define RAM_SAVE_FLAG_COMPRESS 0x02 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 #define RAM_SAVE_FLAG_PAGE 0x08 #define RAM_SAVE_FLAG_EOS 0x10 #define RAM_SAVE_FLAG_CONTINUE 0x20 static int is_dup_page(uint8_t *page, uint8_t ch) { uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch; uint32_t *array = (uint32_t *)page; int i; for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) { if (array[i] != val) { return 0; } } return 1; } static RAMBlock *last_block; static ram_addr_t last_offset; static int ram_save_block(QEMUFile *f) { RAMBlock *block = last_block; ram_addr_t offset = last_offset; ram_addr_t current_addr; int bytes_sent = 0; if (!block) block = QLIST_FIRST(&ram_list.blocks); current_addr = block->offset + offset; do { if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) { uint8_t *p; int cont = (block == last_block) ? RAM_SAVE_FLAG_CONTINUE : 0; cpu_physical_memory_reset_dirty(current_addr, current_addr + TARGET_PAGE_SIZE, MIGRATION_DIRTY_FLAG); p = block->host + offset; if (is_dup_page(p, *p)) { qemu_put_be64(f, offset | cont | RAM_SAVE_FLAG_COMPRESS); if (!cont) { qemu_put_byte(f, strlen(block->idstr)); qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); } qemu_put_byte(f, *p); bytes_sent = 1; } else { qemu_put_be64(f, offset | cont | RAM_SAVE_FLAG_PAGE); if (!cont) { qemu_put_byte(f, strlen(block->idstr)); qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); } qemu_put_buffer(f, p, TARGET_PAGE_SIZE); bytes_sent = TARGET_PAGE_SIZE; } break; } offset += TARGET_PAGE_SIZE; if (offset >= block->length) { offset = 0; block = QLIST_NEXT(block, next); if (!block) block = QLIST_FIRST(&ram_list.blocks); } current_addr = block->offset + offset; } while (current_addr != last_block->offset + last_offset); last_block = block; last_offset = offset; return bytes_sent; } static uint64_t bytes_transferred; static ram_addr_t ram_save_remaining(void) { RAMBlock *block; ram_addr_t count = 0; QLIST_FOREACH(block, &ram_list.blocks, next) { ram_addr_t addr; for (addr = block->offset; addr < block->offset + block->length; addr += TARGET_PAGE_SIZE) { if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG)) { count++; } } } return count; } uint64_t ram_bytes_remaining(void) { return ram_save_remaining() * TARGET_PAGE_SIZE; } uint64_t ram_bytes_transferred(void) { return bytes_transferred; } uint64_t ram_bytes_total(void) { RAMBlock *block; uint64_t total = 0; QLIST_FOREACH(block, &ram_list.blocks, next) total += block->length; return total; } static int block_compar(const void *a, const void *b) { RAMBlock * const *ablock = a; RAMBlock * const *bblock = b; if ((*ablock)->offset < (*bblock)->offset) { return -1; } else if ((*ablock)->offset > (*bblock)->offset) { return 1; } return 0; } static void sort_ram_list(void) { RAMBlock *block, *nblock, **blocks; int n; n = 0; QLIST_FOREACH(block, &ram_list.blocks, next) { ++n; } blocks = g_malloc(n * sizeof *blocks); n = 0; QLIST_FOREACH_SAFE(block, &ram_list.blocks, next, nblock) { blocks[n++] = block; QLIST_REMOVE(block, next); } qsort(blocks, n, sizeof *blocks, block_compar); while (--n >= 0) { QLIST_INSERT_HEAD(&ram_list.blocks, blocks[n], next); } g_free(blocks); } int ram_save_live(Monitor *mon, QEMUFile *f, int stage, void *opaque) { ram_addr_t addr; uint64_t bytes_transferred_last; double bwidth = 0; uint64_t expected_time = 0; if (stage < 0) { cpu_physical_memory_set_dirty_tracking(0); return 0; } if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) { qemu_file_set_error(f); return 0; } if (stage == 1) { RAMBlock *block; bytes_transferred = 0; last_block = NULL; last_offset = 0; sort_ram_list(); /* Make sure all dirty bits are set */ QLIST_FOREACH(block, &ram_list.blocks, next) { for (addr = block->offset; addr < block->offset + block->length; addr += TARGET_PAGE_SIZE) { if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG)) { cpu_physical_memory_set_dirty(addr); } } } /* Enable dirty memory tracking */ cpu_physical_memory_set_dirty_tracking(1); qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); QLIST_FOREACH(block, &ram_list.blocks, next) { qemu_put_byte(f, strlen(block->idstr)); qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); qemu_put_be64(f, block->length); } } bytes_transferred_last = bytes_transferred; bwidth = qemu_get_clock_ns(rt_clock); while (!qemu_file_rate_limit(f)) { int bytes_sent; bytes_sent = ram_save_block(f); bytes_transferred += bytes_sent; if (bytes_sent == 0) { /* no more blocks */ break; } } bwidth = qemu_get_clock_ns(rt_clock) - bwidth; bwidth = (bytes_transferred - bytes_transferred_last) / bwidth; /* if we haven't transferred anything this round, force expected_time to a * a very high value, but without crashing */ if (bwidth == 0) { bwidth = 0.000001; } /* try transferring iterative blocks of memory */ if (stage == 3) { int bytes_sent; /* flush all remaining blocks regardless of rate limiting */ while ((bytes_sent = ram_save_block(f)) != 0) { bytes_transferred += bytes_sent; } cpu_physical_memory_set_dirty_tracking(0); } qemu_put_be64(f, RAM_SAVE_FLAG_EOS); expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth; return (stage == 2) && (expected_time <= migrate_max_downtime()); } static inline void *host_from_stream_offset(QEMUFile *f, ram_addr_t offset, int flags) { static RAMBlock *block = NULL; char id[256]; uint8_t len; if (flags & RAM_SAVE_FLAG_CONTINUE) { if (!block) { fprintf(stderr, "Ack, bad migration stream!\n"); return NULL; } return block->host + offset; } len = qemu_get_byte(f); qemu_get_buffer(f, (uint8_t *)id, len); id[len] = 0; QLIST_FOREACH(block, &ram_list.blocks, next) { if (!strncmp(id, block->idstr, sizeof(id))) return block->host + offset; } fprintf(stderr, "Can't find block %s!\n", id); return NULL; } int ram_load(QEMUFile *f, void *opaque, int version_id) { ram_addr_t addr; int flags; if (version_id < 3 || version_id > 4) { return -EINVAL; } do { addr = qemu_get_be64(f); flags = addr & ~TARGET_PAGE_MASK; addr &= TARGET_PAGE_MASK; if (flags & RAM_SAVE_FLAG_MEM_SIZE) { if (version_id == 3) { if (addr != ram_bytes_total()) { return -EINVAL; } } else { /* Synchronize RAM block list */ char id[256]; ram_addr_t length; ram_addr_t total_ram_bytes = addr; while (total_ram_bytes) { RAMBlock *block; uint8_t len; len = qemu_get_byte(f); qemu_get_buffer(f, (uint8_t *)id, len); id[len] = 0; length = qemu_get_be64(f); QLIST_FOREACH(block, &ram_list.blocks, next) { if (!strncmp(id, block->idstr, sizeof(id))) { if (block->length != length) return -EINVAL; break; } } if (!block) { fprintf(stderr, "Unknown ramblock \"%s\", cannot " "accept migration\n", id); return -EINVAL; } total_ram_bytes -= length; } } } if (flags & RAM_SAVE_FLAG_COMPRESS) { void *host; uint8_t ch; if (version_id == 3) host = qemu_get_ram_ptr(addr); else host = host_from_stream_offset(f, addr, flags); if (!host) { return -EINVAL; } ch = qemu_get_byte(f); memset(host, ch, TARGET_PAGE_SIZE); #ifndef _WIN32 if (ch == 0 && (!kvm_enabled() || kvm_has_sync_mmu())) { qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED); } #endif } else if (flags & RAM_SAVE_FLAG_PAGE) { void *host; if (version_id == 3) host = qemu_get_ram_ptr(addr); else host = host_from_stream_offset(f, addr, flags); qemu_get_buffer(f, host, TARGET_PAGE_SIZE); } if (qemu_file_has_error(f)) { return -EIO; } } while (!(flags & RAM_SAVE_FLAG_EOS)); return 0; } void qemu_service_io(void) { qemu_notify_event(); } #ifdef HAS_AUDIO struct soundhw { const char *name; const char *descr; int enabled; int isa; union { int (*init_isa) (qemu_irq *pic); int (*init_pci) (PCIBus *bus); } init; }; static struct soundhw soundhw[] = { #ifdef HAS_AUDIO_CHOICE #if defined(TARGET_I386) || defined(TARGET_MIPS) { "pcspk", "PC speaker", 0, 1, { .init_isa = pcspk_audio_init } }, #endif #ifdef CONFIG_SB16 { "sb16", "Creative Sound Blaster 16", 0, 1, { .init_isa = SB16_init } }, #endif #ifdef CONFIG_CS4231A { "cs4231a", "CS4231A", 0, 1, { .init_isa = cs4231a_init } }, #endif #ifdef CONFIG_ADLIB { "adlib", #ifdef HAS_YMF262 "Yamaha YMF262 (OPL3)", #else "Yamaha YM3812 (OPL2)", #endif 0, 1, { .init_isa = Adlib_init } }, #endif #ifdef CONFIG_GUS { "gus", "Gravis Ultrasound GF1", 0, 1, { .init_isa = GUS_init } }, #endif #ifdef CONFIG_AC97 { "ac97", "Intel 82801AA AC97 Audio", 0, 0, { .init_pci = ac97_init } }, #endif #ifdef CONFIG_ES1370 { "es1370", "ENSONIQ AudioPCI ES1370", 0, 0, { .init_pci = es1370_init } }, #endif #ifdef CONFIG_HDA { "hda", "Intel HD Audio", 0, 0, { .init_pci = intel_hda_and_codec_init } }, #endif #endif /* HAS_AUDIO_CHOICE */ { NULL, NULL, 0, 0, { NULL } } }; void select_soundhw(const char *optarg) { struct soundhw *c; if (*optarg == '?') { show_valid_cards: printf("Valid sound card names (comma separated):\n"); for (c = soundhw; c->name; ++c) { printf ("%-11s %s\n", c->name, c->descr); } printf("\n-soundhw all will enable all of the above\n"); exit(*optarg != '?'); } else { size_t l; const char *p; char *e; int bad_card = 0; if (!strcmp(optarg, "all")) { for (c = soundhw; c->name; ++c) { c->enabled = 1; } return; } p = optarg; while (*p) { e = strchr(p, ','); l = !e ? strlen(p) : (size_t) (e - p); for (c = soundhw; c->name; ++c) { if (!strncmp(c->name, p, l) && !c->name[l]) { c->enabled = 1; break; } } if (!c->name) { if (l > 80) { fprintf(stderr, "Unknown sound card name (too big to show)\n"); } else { fprintf(stderr, "Unknown sound card name `%.*s'\n", (int) l, p); } bad_card = 1; } p += l + (e != NULL); } if (bad_card) { goto show_valid_cards; } } } void audio_init(qemu_irq *isa_pic, PCIBus *pci_bus) { struct soundhw *c; for (c = soundhw; c->name; ++c) { if (c->enabled) { if (c->isa) { if (isa_pic) { c->init.init_isa(isa_pic); } } else { if (pci_bus) { c->init.init_pci(pci_bus); } } } } } #else void select_soundhw(const char *optarg) { } void audio_init(qemu_irq *isa_pic, PCIBus *pci_bus) { } #endif int qemu_uuid_parse(const char *str, uint8_t *uuid) { int ret; if (strlen(str) != 36) { return -1; } ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3], &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9], &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]); if (ret != 16) { return -1; } #ifdef TARGET_I386 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid); #endif return 0; } void do_acpitable_option(const char *optarg) { #ifdef TARGET_I386 if (acpi_table_add(optarg) < 0) { fprintf(stderr, "Wrong acpi table provided\n"); exit(1); } #endif } void do_smbios_option(const char *optarg) { #ifdef TARGET_I386 if (smbios_entry_add(optarg) < 0) { fprintf(stderr, "Wrong smbios provided\n"); exit(1); } #endif } void cpudef_init(void) { #if defined(cpudef_setup) cpudef_setup(); /* parse cpu definitions in target config file */ #endif } int audio_available(void) { #ifdef HAS_AUDIO return 1; #else return 0; #endif } int tcg_available(void) { return 1; } int kvm_available(void) { #ifdef CONFIG_KVM return 1; #else return 0; #endif } int xen_available(void) { #ifdef CONFIG_XEN return 1; #else return 0; #endif }