/* * User emulator execution * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "disas/disas.h" #include "exec/exec-all.h" #include "tcg/tcg.h" #include "qemu/bitops.h" #include "exec/cpu_ldst.h" #include "translate-all.h" #include "exec/helper-proto.h" #include "qemu/atomic128.h" #include "trace-root.h" #include "trace/mem.h" #undef EAX #undef ECX #undef EDX #undef EBX #undef ESP #undef EBP #undef ESI #undef EDI #undef EIP #ifdef __linux__ #include #endif __thread uintptr_t helper_retaddr; //#define DEBUG_SIGNAL /* exit the current TB from a signal handler. The host registers are restored in a state compatible with the CPU emulator */ static void cpu_exit_tb_from_sighandler(CPUState *cpu, sigset_t *old_set) { /* XXX: use siglongjmp ? */ sigprocmask(SIG_SETMASK, old_set, NULL); cpu_loop_exit_noexc(cpu); } /* 'pc' is the host PC at which the exception was raised. 'address' is the effective address of the memory exception. 'is_write' is 1 if a write caused the exception and otherwise 0'. 'old_set' is the signal set which should be restored */ static inline int handle_cpu_signal(uintptr_t pc, siginfo_t *info, int is_write, sigset_t *old_set) { CPUState *cpu = current_cpu; CPUClass *cc; unsigned long address = (unsigned long)info->si_addr; MMUAccessType access_type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD; switch (helper_retaddr) { default: /* * Fault during host memory operation within a helper function. * The helper's host return address, saved here, gives us a * pointer into the generated code that will unwind to the * correct guest pc. */ pc = helper_retaddr; break; case 0: /* * Fault during host memory operation within generated code. * (Or, a unrelated bug within qemu, but we can't tell from here). * * We take the host pc from the signal frame. However, we cannot * use that value directly. Within cpu_restore_state_from_tb, we * assume PC comes from GETPC(), as used by the helper functions, * so we adjust the address by -GETPC_ADJ to form an address that * is within the call insn, so that the address does not accidentially * match the beginning of the next guest insn. However, when the * pc comes from the signal frame it points to the actual faulting * host memory insn and not the return from a call insn. * * Therefore, adjust to compensate for what will be done later * by cpu_restore_state_from_tb. */ pc += GETPC_ADJ; break; case 1: /* * Fault during host read for translation, or loosely, "execution". * * The guest pc is already pointing to the start of the TB for which * code is being generated. If the guest translator manages the * page crossings correctly, this is exactly the correct address * (and if the translator doesn't handle page boundaries correctly * there's little we can do about that here). Therefore, do not * trigger the unwinder. * * Like tb_gen_code, release the memory lock before cpu_loop_exit. */ pc = 0; access_type = MMU_INST_FETCH; mmap_unlock(); break; } /* For synchronous signals we expect to be coming from the vCPU * thread (so current_cpu should be valid) and either from running * code or during translation which can fault as we cross pages. * * If neither is true then something has gone wrong and we should * abort rather than try and restart the vCPU execution. */ if (!cpu || !cpu->running) { printf("qemu:%s received signal outside vCPU context @ pc=0x%" PRIxPTR "\n", __func__, pc); abort(); } #if defined(DEBUG_SIGNAL) printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", pc, address, is_write, *(unsigned long *)old_set); #endif /* XXX: locking issue */ /* Note that it is important that we don't call page_unprotect() unless * this is really a "write to nonwriteable page" fault, because * page_unprotect() assumes that if it is called for an access to * a page that's writeable this means we had two threads racing and * another thread got there first and already made the page writeable; * so we will retry the access. If we were to call page_unprotect() * for some other kind of fault that should really be passed to the * guest, we'd end up in an infinite loop of retrying the faulting * access. */ if (is_write && info->si_signo == SIGSEGV && info->si_code == SEGV_ACCERR && h2g_valid(address)) { switch (page_unprotect(h2g(address), pc)) { case 0: /* Fault not caused by a page marked unwritable to protect * cached translations, must be the guest binary's problem. */ break; case 1: /* Fault caused by protection of cached translation; TBs * invalidated, so resume execution. Retain helper_retaddr * for a possible second fault. */ return 1; case 2: /* Fault caused by protection of cached translation, and the * currently executing TB was modified and must be exited * immediately. Clear helper_retaddr for next execution. */ clear_helper_retaddr(); cpu_exit_tb_from_sighandler(cpu, old_set); /* NORETURN */ default: g_assert_not_reached(); } } /* Convert forcefully to guest address space, invalid addresses are still valid segv ones */ address = h2g_nocheck(address); /* * There is no way the target can handle this other than raising * an exception. Undo signal and retaddr state prior to longjmp. */ sigprocmask(SIG_SETMASK, old_set, NULL); clear_helper_retaddr(); cc = CPU_GET_CLASS(cpu); cc->tlb_fill(cpu, address, 0, access_type, MMU_USER_IDX, false, pc); g_assert_not_reached(); } static int probe_access_internal(CPUArchState *env, target_ulong addr, int fault_size, MMUAccessType access_type, bool nonfault, uintptr_t ra) { int flags; switch (access_type) { case MMU_DATA_STORE: flags = PAGE_WRITE; break; case MMU_DATA_LOAD: flags = PAGE_READ; break; case MMU_INST_FETCH: flags = PAGE_EXEC; break; default: g_assert_not_reached(); } if (!guest_addr_valid(addr) || page_check_range(addr, 1, flags) < 0) { if (nonfault) { return TLB_INVALID_MASK; } else { CPUState *cpu = env_cpu(env); CPUClass *cc = CPU_GET_CLASS(cpu); cc->tlb_fill(cpu, addr, fault_size, access_type, MMU_USER_IDX, false, ra); g_assert_not_reached(); } } return 0; } int probe_access_flags(CPUArchState *env, target_ulong addr, MMUAccessType access_type, int mmu_idx, bool nonfault, void **phost, uintptr_t ra) { int flags; flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra); *phost = flags ? NULL : g2h(addr); return flags; } void *probe_access(CPUArchState *env, target_ulong addr, int size, MMUAccessType access_type, int mmu_idx, uintptr_t ra) { int flags; g_assert(-(addr | TARGET_PAGE_MASK) >= size); flags = probe_access_internal(env, addr, size, access_type, false, ra); g_assert(flags == 0); return size ? g2h(addr) : NULL; } #if defined(__i386__) #if defined(__NetBSD__) #include #define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP]) #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO]) #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR]) #define MASK_sig(context) ((context)->uc_sigmask) #elif defined(__FreeBSD__) || defined(__DragonFly__) #include #define EIP_sig(context) (*((unsigned long *)&(context)->uc_mcontext.mc_eip)) #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno) #define ERROR_sig(context) ((context)->uc_mcontext.mc_err) #define MASK_sig(context) ((context)->uc_sigmask) #elif defined(__OpenBSD__) #define EIP_sig(context) ((context)->sc_eip) #define TRAP_sig(context) ((context)->sc_trapno) #define ERROR_sig(context) ((context)->sc_err) #define MASK_sig(context) ((context)->sc_mask) #else #define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP]) #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) #define MASK_sig(context) ((context)->uc_sigmask) #endif int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__) ucontext_t *uc = puc; #elif defined(__OpenBSD__) struct sigcontext *uc = puc; #else ucontext_t *uc = puc; #endif unsigned long pc; int trapno; #ifndef REG_EIP /* for glibc 2.1 */ #define REG_EIP EIP #define REG_ERR ERR #define REG_TRAPNO TRAPNO #endif pc = EIP_sig(uc); trapno = TRAP_sig(uc); return handle_cpu_signal(pc, info, trapno == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0, &MASK_sig(uc)); } #elif defined(__x86_64__) #ifdef __NetBSD__ #define PC_sig(context) _UC_MACHINE_PC(context) #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO]) #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR]) #define MASK_sig(context) ((context)->uc_sigmask) #elif defined(__OpenBSD__) #define PC_sig(context) ((context)->sc_rip) #define TRAP_sig(context) ((context)->sc_trapno) #define ERROR_sig(context) ((context)->sc_err) #define MASK_sig(context) ((context)->sc_mask) #elif defined(__FreeBSD__) || defined(__DragonFly__) #include #define PC_sig(context) (*((unsigned long *)&(context)->uc_mcontext.mc_rip)) #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno) #define ERROR_sig(context) ((context)->uc_mcontext.mc_err) #define MASK_sig(context) ((context)->uc_sigmask) #else #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP]) #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) #define MASK_sig(context) ((context)->uc_sigmask) #endif int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; unsigned long pc; #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__) ucontext_t *uc = puc; #elif defined(__OpenBSD__) struct sigcontext *uc = puc; #else ucontext_t *uc = puc; #endif pc = PC_sig(uc); return handle_cpu_signal(pc, info, TRAP_sig(uc) == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0, &MASK_sig(uc)); } #elif defined(_ARCH_PPC) /*********************************************************************** * signal context platform-specific definitions * From Wine */ #ifdef linux /* All Registers access - only for local access */ #define REG_sig(reg_name, context) \ ((context)->uc_mcontext.regs->reg_name) /* Gpr Registers access */ #define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context) /* Program counter */ #define IAR_sig(context) REG_sig(nip, context) /* Machine State Register (Supervisor) */ #define MSR_sig(context) REG_sig(msr, context) /* Count register */ #define CTR_sig(context) REG_sig(ctr, context) /* User's integer exception register */ #define XER_sig(context) REG_sig(xer, context) /* Link register */ #define LR_sig(context) REG_sig(link, context) /* Condition register */ #define CR_sig(context) REG_sig(ccr, context) /* Float Registers access */ #define FLOAT_sig(reg_num, context) \ (((double *)((char *)((context)->uc_mcontext.regs + 48 * 4)))[reg_num]) #define FPSCR_sig(context) \ (*(int *)((char *)((context)->uc_mcontext.regs + (48 + 32 * 2) * 4))) /* Exception Registers access */ #define DAR_sig(context) REG_sig(dar, context) #define DSISR_sig(context) REG_sig(dsisr, context) #define TRAP_sig(context) REG_sig(trap, context) #endif /* linux */ #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) #include #define IAR_sig(context) ((context)->uc_mcontext.mc_srr0) #define MSR_sig(context) ((context)->uc_mcontext.mc_srr1) #define CTR_sig(context) ((context)->uc_mcontext.mc_ctr) #define XER_sig(context) ((context)->uc_mcontext.mc_xer) #define LR_sig(context) ((context)->uc_mcontext.mc_lr) #define CR_sig(context) ((context)->uc_mcontext.mc_cr) /* Exception Registers access */ #define DAR_sig(context) ((context)->uc_mcontext.mc_dar) #define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr) #define TRAP_sig(context) ((context)->uc_mcontext.mc_exc) #endif /* __FreeBSD__|| __FreeBSD_kernel__ */ int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) ucontext_t *uc = puc; #else ucontext_t *uc = puc; #endif unsigned long pc; int is_write; pc = IAR_sig(uc); is_write = 0; #if 0 /* ppc 4xx case */ if (DSISR_sig(uc) & 0x00800000) { is_write = 1; } #else if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) { is_write = 1; } #endif return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); } #elif defined(__alpha__) int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; ucontext_t *uc = puc; uint32_t *pc = uc->uc_mcontext.sc_pc; uint32_t insn = *pc; int is_write = 0; /* XXX: need kernel patch to get write flag faster */ switch (insn >> 26) { case 0x0d: /* stw */ case 0x0e: /* stb */ case 0x0f: /* stq_u */ case 0x24: /* stf */ case 0x25: /* stg */ case 0x26: /* sts */ case 0x27: /* stt */ case 0x2c: /* stl */ case 0x2d: /* stq */ case 0x2e: /* stl_c */ case 0x2f: /* stq_c */ is_write = 1; } return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); } #elif defined(__sparc__) int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; int is_write; uint32_t insn; #if !defined(__arch64__) || defined(CONFIG_SOLARIS) uint32_t *regs = (uint32_t *)(info + 1); void *sigmask = (regs + 20); /* XXX: is there a standard glibc define ? */ unsigned long pc = regs[1]; #else #ifdef __linux__ struct sigcontext *sc = puc; unsigned long pc = sc->sigc_regs.tpc; void *sigmask = (void *)sc->sigc_mask; #elif defined(__OpenBSD__) struct sigcontext *uc = puc; unsigned long pc = uc->sc_pc; void *sigmask = (void *)(long)uc->sc_mask; #elif defined(__NetBSD__) ucontext_t *uc = puc; unsigned long pc = _UC_MACHINE_PC(uc); void *sigmask = (void *)&uc->uc_sigmask; #endif #endif /* XXX: need kernel patch to get write flag faster */ is_write = 0; insn = *(uint32_t *)pc; if ((insn >> 30) == 3) { switch ((insn >> 19) & 0x3f) { case 0x05: /* stb */ case 0x15: /* stba */ case 0x06: /* sth */ case 0x16: /* stha */ case 0x04: /* st */ case 0x14: /* sta */ case 0x07: /* std */ case 0x17: /* stda */ case 0x0e: /* stx */ case 0x1e: /* stxa */ case 0x24: /* stf */ case 0x34: /* stfa */ case 0x27: /* stdf */ case 0x37: /* stdfa */ case 0x26: /* stqf */ case 0x36: /* stqfa */ case 0x25: /* stfsr */ case 0x3c: /* casa */ case 0x3e: /* casxa */ is_write = 1; break; } } return handle_cpu_signal(pc, info, is_write, sigmask); } #elif defined(__arm__) #if defined(__NetBSD__) #include #include #endif int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; #if defined(__NetBSD__) ucontext_t *uc = puc; siginfo_t *si = pinfo; #else ucontext_t *uc = puc; #endif unsigned long pc; uint32_t fsr; int is_write; #if defined(__NetBSD__) pc = uc->uc_mcontext.__gregs[_REG_R15]; #elif defined(__GLIBC__) && (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3)) pc = uc->uc_mcontext.gregs[R15]; #else pc = uc->uc_mcontext.arm_pc; #endif #ifdef __NetBSD__ fsr = si->si_trap; #else fsr = uc->uc_mcontext.error_code; #endif /* * In the FSR, bit 11 is WnR, assuming a v6 or * later processor. On v5 we will always report * this as a read, which will fail later. */ is_write = extract32(fsr, 11, 1); return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); } #elif defined(__aarch64__) #ifndef ESR_MAGIC /* Pre-3.16 kernel headers don't have these, so provide fallback definitions */ #define ESR_MAGIC 0x45535201 struct esr_context { struct _aarch64_ctx head; uint64_t esr; }; #endif static inline struct _aarch64_ctx *first_ctx(ucontext_t *uc) { return (struct _aarch64_ctx *)&uc->uc_mcontext.__reserved; } static inline struct _aarch64_ctx *next_ctx(struct _aarch64_ctx *hdr) { return (struct _aarch64_ctx *)((char *)hdr + hdr->size); } int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; ucontext_t *uc = puc; uintptr_t pc = uc->uc_mcontext.pc; bool is_write; struct _aarch64_ctx *hdr; struct esr_context const *esrctx = NULL; /* Find the esr_context, which has the WnR bit in it */ for (hdr = first_ctx(uc); hdr->magic; hdr = next_ctx(hdr)) { if (hdr->magic == ESR_MAGIC) { esrctx = (struct esr_context const *)hdr; break; } } if (esrctx) { /* For data aborts ESR.EC is 0b10010x: then bit 6 is the WnR bit */ uint64_t esr = esrctx->esr; is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1; } else { /* * Fall back to parsing instructions; will only be needed * for really ancient (pre-3.16) kernels. */ uint32_t insn = *(uint32_t *)pc; is_write = ((insn & 0xbfff0000) == 0x0c000000 /* C3.3.1 */ || (insn & 0xbfe00000) == 0x0c800000 /* C3.3.2 */ || (insn & 0xbfdf0000) == 0x0d000000 /* C3.3.3 */ || (insn & 0xbfc00000) == 0x0d800000 /* C3.3.4 */ || (insn & 0x3f400000) == 0x08000000 /* C3.3.6 */ || (insn & 0x3bc00000) == 0x39000000 /* C3.3.13 */ || (insn & 0x3fc00000) == 0x3d800000 /* ... 128bit */ /* Ignore bits 10, 11 & 21, controlling indexing. */ || (insn & 0x3bc00000) == 0x38000000 /* C3.3.8-12 */ || (insn & 0x3fe00000) == 0x3c800000 /* ... 128bit */ /* Ignore bits 23 & 24, controlling indexing. */ || (insn & 0x3a400000) == 0x28000000); /* C3.3.7,14-16 */ } return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); } #elif defined(__s390__) int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; ucontext_t *uc = puc; unsigned long pc; uint16_t *pinsn; int is_write = 0; pc = uc->uc_mcontext.psw.addr; /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead of the normal 2 arguments. The 3rd argument contains the "int_code" from the hardware which does in fact contain the is_write value. The rt signal handler, as far as I can tell, does not give this value at all. Not that we could get to it from here even if it were. */ /* ??? This is not even close to complete, since it ignores all of the read-modify-write instructions. */ pinsn = (uint16_t *)pc; switch (pinsn[0] >> 8) { case 0x50: /* ST */ case 0x42: /* STC */ case 0x40: /* STH */ is_write = 1; break; case 0xc4: /* RIL format insns */ switch (pinsn[0] & 0xf) { case 0xf: /* STRL */ case 0xb: /* STGRL */ case 0x7: /* STHRL */ is_write = 1; } break; case 0xe3: /* RXY format insns */ switch (pinsn[2] & 0xff) { case 0x50: /* STY */ case 0x24: /* STG */ case 0x72: /* STCY */ case 0x70: /* STHY */ case 0x8e: /* STPQ */ case 0x3f: /* STRVH */ case 0x3e: /* STRV */ case 0x2f: /* STRVG */ is_write = 1; } break; } return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); } #elif defined(__mips__) int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; ucontext_t *uc = puc; greg_t pc = uc->uc_mcontext.pc; int is_write; /* XXX: compute is_write */ is_write = 0; return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); } #elif defined(__riscv) int cpu_signal_handler(int host_signum, void *pinfo, void *puc) { siginfo_t *info = pinfo; ucontext_t *uc = puc; greg_t pc = uc->uc_mcontext.__gregs[REG_PC]; uint32_t insn = *(uint32_t *)pc; int is_write = 0; /* Detect store by reading the instruction at the program counter. Note: we currently only generate 32-bit instructions so we thus only detect 32-bit stores */ switch (((insn >> 0) & 0b11)) { case 3: switch (((insn >> 2) & 0b11111)) { case 8: switch (((insn >> 12) & 0b111)) { case 0: /* sb */ case 1: /* sh */ case 2: /* sw */ case 3: /* sd */ case 4: /* sq */ is_write = 1; break; default: break; } break; case 9: switch (((insn >> 12) & 0b111)) { case 2: /* fsw */ case 3: /* fsd */ case 4: /* fsq */ is_write = 1; break; default: break; } break; default: break; } } /* Check for compressed instructions */ switch (((insn >> 13) & 0b111)) { case 7: switch (insn & 0b11) { case 0: /*c.sd */ case 2: /* c.sdsp */ is_write = 1; break; default: break; } break; case 6: switch (insn & 0b11) { case 0: /* c.sw */ case 3: /* c.swsp */ is_write = 1; break; default: break; } break; default: break; } return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); } #else #error host CPU specific signal handler needed #endif /* The softmmu versions of these helpers are in cputlb.c. */ uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr) { uint32_t ret; uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, false); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); ret = ldub_p(g2h(ptr)); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); return ret; } int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr) { int ret; uint16_t meminfo = trace_mem_get_info(MO_SB, MMU_USER_IDX, false); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); ret = ldsb_p(g2h(ptr)); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); return ret; } uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr) { uint32_t ret; uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, false); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); ret = lduw_be_p(g2h(ptr)); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); return ret; } int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr) { int ret; uint16_t meminfo = trace_mem_get_info(MO_BESW, MMU_USER_IDX, false); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); ret = ldsw_be_p(g2h(ptr)); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); return ret; } uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr) { uint32_t ret; uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, false); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); ret = ldl_be_p(g2h(ptr)); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); return ret; } uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr) { uint64_t ret; uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, false); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); ret = ldq_be_p(g2h(ptr)); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); return ret; } uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr) { uint32_t ret; uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, false); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); ret = lduw_le_p(g2h(ptr)); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); return ret; } int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr) { int ret; uint16_t meminfo = trace_mem_get_info(MO_LESW, MMU_USER_IDX, false); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); ret = ldsw_le_p(g2h(ptr)); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); return ret; } uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr) { uint32_t ret; uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, false); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); ret = ldl_le_p(g2h(ptr)); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); return ret; } uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr) { uint64_t ret; uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, false); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); ret = ldq_le_p(g2h(ptr)); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); return ret; } uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) { uint32_t ret; set_helper_retaddr(retaddr); ret = cpu_ldub_data(env, ptr); clear_helper_retaddr(); return ret; } int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) { int ret; set_helper_retaddr(retaddr); ret = cpu_ldsb_data(env, ptr); clear_helper_retaddr(); return ret; } uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) { uint32_t ret; set_helper_retaddr(retaddr); ret = cpu_lduw_be_data(env, ptr); clear_helper_retaddr(); return ret; } int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) { int ret; set_helper_retaddr(retaddr); ret = cpu_ldsw_be_data(env, ptr); clear_helper_retaddr(); return ret; } uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) { uint32_t ret; set_helper_retaddr(retaddr); ret = cpu_ldl_be_data(env, ptr); clear_helper_retaddr(); return ret; } uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) { uint64_t ret; set_helper_retaddr(retaddr); ret = cpu_ldq_be_data(env, ptr); clear_helper_retaddr(); return ret; } uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) { uint32_t ret; set_helper_retaddr(retaddr); ret = cpu_lduw_le_data(env, ptr); clear_helper_retaddr(); return ret; } int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) { int ret; set_helper_retaddr(retaddr); ret = cpu_ldsw_le_data(env, ptr); clear_helper_retaddr(); return ret; } uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) { uint32_t ret; set_helper_retaddr(retaddr); ret = cpu_ldl_le_data(env, ptr); clear_helper_retaddr(); return ret; } uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) { uint64_t ret; set_helper_retaddr(retaddr); ret = cpu_ldq_le_data(env, ptr); clear_helper_retaddr(); return ret; } void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val) { uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, true); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); stb_p(g2h(ptr), val); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); } void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val) { uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, true); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); stw_be_p(g2h(ptr), val); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); } void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val) { uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, true); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); stl_be_p(g2h(ptr), val); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); } void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val) { uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, true); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); stq_be_p(g2h(ptr), val); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); } void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val) { uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, true); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); stw_le_p(g2h(ptr), val); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); } void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val) { uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, true); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); stl_le_p(g2h(ptr), val); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); } void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val) { uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, true); trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); stq_le_p(g2h(ptr), val); qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); } void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, uintptr_t retaddr) { set_helper_retaddr(retaddr); cpu_stb_data(env, ptr, val); clear_helper_retaddr(); } void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, uintptr_t retaddr) { set_helper_retaddr(retaddr); cpu_stw_be_data(env, ptr, val); clear_helper_retaddr(); } void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, uintptr_t retaddr) { set_helper_retaddr(retaddr); cpu_stl_be_data(env, ptr, val); clear_helper_retaddr(); } void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr, uint64_t val, uintptr_t retaddr) { set_helper_retaddr(retaddr); cpu_stq_be_data(env, ptr, val); clear_helper_retaddr(); } void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, uintptr_t retaddr) { set_helper_retaddr(retaddr); cpu_stw_le_data(env, ptr, val); clear_helper_retaddr(); } void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, uintptr_t retaddr) { set_helper_retaddr(retaddr); cpu_stl_le_data(env, ptr, val); clear_helper_retaddr(); } void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr, uint64_t val, uintptr_t retaddr) { set_helper_retaddr(retaddr); cpu_stq_le_data(env, ptr, val); clear_helper_retaddr(); } uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr) { uint32_t ret; set_helper_retaddr(1); ret = ldub_p(g2h(ptr)); clear_helper_retaddr(); return ret; } uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr) { uint32_t ret; set_helper_retaddr(1); ret = lduw_p(g2h(ptr)); clear_helper_retaddr(); return ret; } uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr) { uint32_t ret; set_helper_retaddr(1); ret = ldl_p(g2h(ptr)); clear_helper_retaddr(); return ret; } uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr) { uint64_t ret; set_helper_retaddr(1); ret = ldq_p(g2h(ptr)); clear_helper_retaddr(); return ret; } /* Do not allow unaligned operations to proceed. Return the host address. */ static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, int size, uintptr_t retaddr) { /* Enforce qemu required alignment. */ if (unlikely(addr & (size - 1))) { cpu_loop_exit_atomic(env_cpu(env), retaddr); } void *ret = g2h(addr); set_helper_retaddr(retaddr); return ret; } /* Macro to call the above, with local variables from the use context. */ #define ATOMIC_MMU_DECLS do {} while (0) #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, DATA_SIZE, GETPC()) #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0) #define ATOMIC_MMU_IDX MMU_USER_IDX #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END)) #define EXTRA_ARGS #include "atomic_common.inc.c" #define DATA_SIZE 1 #include "atomic_template.h" #define DATA_SIZE 2 #include "atomic_template.h" #define DATA_SIZE 4 #include "atomic_template.h" #ifdef CONFIG_ATOMIC64 #define DATA_SIZE 8 #include "atomic_template.h" #endif /* The following is only callable from other helpers, and matches up with the softmmu version. */ #if HAVE_ATOMIC128 || HAVE_CMPXCHG128 #undef EXTRA_ARGS #undef ATOMIC_NAME #undef ATOMIC_MMU_LOOKUP #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr #define ATOMIC_NAME(X) \ HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu)) #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, DATA_SIZE, retaddr) #define DATA_SIZE 16 #include "atomic_template.h" #endif