/* * QEMU TCG Single Threaded vCPUs implementation * * Copyright (c) 2003-2008 Fabrice Bellard * Copyright (c) 2014 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/lockable.h" #include "sysemu/tcg.h" #include "sysemu/replay.h" #include "sysemu/cpu-timers.h" #include "qemu/main-loop.h" #include "qemu/notify.h" #include "qemu/guest-random.h" #include "exec/exec-all.h" #include "tcg/tcg.h" #include "tcg-accel-ops.h" #include "tcg-accel-ops-rr.h" #include "tcg-accel-ops-icount.h" /* Kick all RR vCPUs */ void rr_kick_vcpu_thread(CPUState *unused) { CPUState *cpu; CPU_FOREACH(cpu) { cpu_exit(cpu); }; } /* * TCG vCPU kick timer * * The kick timer is responsible for moving single threaded vCPU * emulation on to the next vCPU. If more than one vCPU is running a * timer event we force a cpu->exit so the next vCPU can get * scheduled. * * The timer is removed if all vCPUs are idle and restarted again once * idleness is complete. */ static QEMUTimer *rr_kick_vcpu_timer; static CPUState *rr_current_cpu; static inline int64_t rr_next_kick_time(void) { return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD; } /* Kick the currently round-robin scheduled vCPU to next */ static void rr_kick_next_cpu(void) { CPUState *cpu; do { cpu = qatomic_read(&rr_current_cpu); if (cpu) { cpu_exit(cpu); } /* Finish kicking this cpu before reading again. */ smp_mb(); } while (cpu != qatomic_read(&rr_current_cpu)); } static void rr_kick_thread(void *opaque) { timer_mod(rr_kick_vcpu_timer, rr_next_kick_time()); rr_kick_next_cpu(); } static void rr_start_kick_timer(void) { if (!rr_kick_vcpu_timer && CPU_NEXT(first_cpu)) { rr_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rr_kick_thread, NULL); } if (rr_kick_vcpu_timer && !timer_pending(rr_kick_vcpu_timer)) { timer_mod(rr_kick_vcpu_timer, rr_next_kick_time()); } } static void rr_stop_kick_timer(void) { if (rr_kick_vcpu_timer && timer_pending(rr_kick_vcpu_timer)) { timer_del(rr_kick_vcpu_timer); } } static void rr_wait_io_event(void) { CPUState *cpu; while (all_cpu_threads_idle()) { rr_stop_kick_timer(); qemu_cond_wait_iothread(first_cpu->halt_cond); } rr_start_kick_timer(); CPU_FOREACH(cpu) { qemu_wait_io_event_common(cpu); } } /* * Destroy any remaining vCPUs which have been unplugged and have * finished running */ static void rr_deal_with_unplugged_cpus(void) { CPUState *cpu; CPU_FOREACH(cpu) { if (cpu->unplug && !cpu_can_run(cpu)) { tcg_cpus_destroy(cpu); break; } } } static void rr_force_rcu(Notifier *notify, void *data) { rr_kick_next_cpu(); } /* * Calculate the number of CPUs that we will process in a single iteration of * the main CPU thread loop so that we can fairly distribute the instruction * count across CPUs. * * The CPU count is cached based on the CPU list generation ID to avoid * iterating the list every time. */ static int rr_cpu_count(void) { static unsigned int last_gen_id = ~0; static int cpu_count; CPUState *cpu; QEMU_LOCK_GUARD(&qemu_cpu_list_lock); if (cpu_list_generation_id_get() != last_gen_id) { cpu_count = 0; CPU_FOREACH(cpu) { ++cpu_count; } last_gen_id = cpu_list_generation_id_get(); } return cpu_count; } /* * In the single-threaded case each vCPU is simulated in turn. If * there is more than a single vCPU we create a simple timer to kick * the vCPU and ensure we don't get stuck in a tight loop in one vCPU. * This is done explicitly rather than relying on side-effects * elsewhere. */ static void *rr_cpu_thread_fn(void *arg) { Notifier force_rcu; CPUState *cpu = arg; assert(tcg_enabled()); rcu_register_thread(); force_rcu.notify = rr_force_rcu; rcu_add_force_rcu_notifier(&force_rcu); tcg_register_thread(); qemu_mutex_lock_iothread(); qemu_thread_get_self(cpu->thread); cpu->thread_id = qemu_get_thread_id(); cpu->neg.can_do_io = true; cpu_thread_signal_created(cpu); qemu_guest_random_seed_thread_part2(cpu->random_seed); /* wait for initial kick-off after machine start */ while (first_cpu->stopped) { qemu_cond_wait_iothread(first_cpu->halt_cond); /* process any pending work */ CPU_FOREACH(cpu) { current_cpu = cpu; qemu_wait_io_event_common(cpu); } } rr_start_kick_timer(); cpu = first_cpu; /* process any pending work */ cpu->exit_request = 1; while (1) { /* Only used for icount_enabled() */ int64_t cpu_budget = 0; qemu_mutex_unlock_iothread(); replay_mutex_lock(); qemu_mutex_lock_iothread(); if (icount_enabled()) { int cpu_count = rr_cpu_count(); /* Account partial waits to QEMU_CLOCK_VIRTUAL. */ icount_account_warp_timer(); /* * Run the timers here. This is much more efficient than * waking up the I/O thread and waiting for completion. */ icount_handle_deadline(); cpu_budget = icount_percpu_budget(cpu_count); } replay_mutex_unlock(); if (!cpu) { cpu = first_cpu; } while (cpu && cpu_work_list_empty(cpu) && !cpu->exit_request) { /* Store rr_current_cpu before evaluating cpu_can_run(). */ qatomic_set_mb(&rr_current_cpu, cpu); current_cpu = cpu; qemu_clock_enable(QEMU_CLOCK_VIRTUAL, (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0); if (cpu_can_run(cpu)) { int r; qemu_mutex_unlock_iothread(); if (icount_enabled()) { icount_prepare_for_run(cpu, cpu_budget); } r = tcg_cpus_exec(cpu); if (icount_enabled()) { icount_process_data(cpu); } qemu_mutex_lock_iothread(); if (r == EXCP_DEBUG) { cpu_handle_guest_debug(cpu); break; } else if (r == EXCP_ATOMIC) { qemu_mutex_unlock_iothread(); cpu_exec_step_atomic(cpu); qemu_mutex_lock_iothread(); break; } } else if (cpu->stop) { if (cpu->unplug) { cpu = CPU_NEXT(cpu); } break; } cpu = CPU_NEXT(cpu); } /* while (cpu && !cpu->exit_request).. */ /* Does not need a memory barrier because a spurious wakeup is okay. */ qatomic_set(&rr_current_cpu, NULL); if (cpu && cpu->exit_request) { qatomic_set_mb(&cpu->exit_request, 0); } if (icount_enabled() && all_cpu_threads_idle()) { /* * When all cpus are sleeping (e.g in WFI), to avoid a deadlock * in the main_loop, wake it up in order to start the warp timer. */ qemu_notify_event(); } rr_wait_io_event(); rr_deal_with_unplugged_cpus(); } rcu_remove_force_rcu_notifier(&force_rcu); rcu_unregister_thread(); return NULL; } void rr_start_vcpu_thread(CPUState *cpu) { char thread_name[VCPU_THREAD_NAME_SIZE]; static QemuCond *single_tcg_halt_cond; static QemuThread *single_tcg_cpu_thread; g_assert(tcg_enabled()); tcg_cpu_init_cflags(cpu, false); if (!single_tcg_cpu_thread) { cpu->thread = g_new0(QemuThread, 1); cpu->halt_cond = g_new0(QemuCond, 1); qemu_cond_init(cpu->halt_cond); /* share a single thread for all cpus with TCG */ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG"); qemu_thread_create(cpu->thread, thread_name, rr_cpu_thread_fn, cpu, QEMU_THREAD_JOINABLE); single_tcg_halt_cond = cpu->halt_cond; single_tcg_cpu_thread = cpu->thread; } else { /* we share the thread */ cpu->thread = single_tcg_cpu_thread; cpu->halt_cond = single_tcg_halt_cond; cpu->thread_id = first_cpu->thread_id; cpu->neg.can_do_io = 1; cpu->created = true; } }